Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Objective

Nearly half of Acute Ischemic Stroke (AIS) patients failed to achieve favorable outcomes despite successful reperfusion treatment. This phenomenon is referred to as Futile Recanalization (FR). Screening patients at risk of FR is vital for stroke management. Previous studies reported the diagnostic value of alkaline phosphatase (ALP) levels in certain aspects of stroke prognosis. However, the association between serum ALP level and FR among AIS patients treated with thrombectomy remained unclear.

Methods

We screened stroke patients who underwent thrombectomy at our center from January 2017 to June 2021, and those who achieved successful reperfusion (modified Thrombolysis in Cerebral Infarction score=3) were ultimately analyzed. Demographic information, vascular risk factors, and laboratory test results were collected at admission. The 3-month unfavorable outcome was defined as a modified Rankin Scale score of 3 to 6. The effect of ALP levels on FR was investigated with a logistic regression model.

Results

Of 788 patients who underwent thrombectomy, 277 achieved successful reperfusion. Among them, 142 patients (51.3%) failed to realize favorable outcomes at 3 months. After adjusting for confounding variables, higher ALP levels ( =0.002) at admission were independently associated with unfavorable outcomes at three months. Adding ALP values to conventional risk factors improved the performance of prediction models for FR.

Conclusion

The current study found that the serum ALP levels at admission emerged as a potential biomarker for futile reperfusion in stroke patients undergoing thrombectomy. Further studies are warranted to confirm the clinical applicability of ALP level for futile recanalization prediction.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026344020240911114809
2024-10-03
2025-04-21
Loading full text...

Full text loading...

References

  1. PowersW.J. RabinsteinA.A. AckersonT. AdeoyeO.M. BambakidisN.C. BeckerK. BillerJ. BrownM. DemaerschalkB.M. HohB. JauchE.C. KidwellC.S. Leslie-MazwiT.M. OvbiageleB. ScottP.A. ShethK.N. SoutherlandA.M. SummersD.V. TirschwellD.L. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association.Stroke20195012e344e41810.1161/STR.000000000000021131662037
    [Google Scholar]
  2. WuC. YangN. LeeH. Intravenous thrombolysis for acute ischemic stroke: From alteplase to tenecteplase.Brain Circ.202392616310.4103/bc.bc_70_2237576574
    [Google Scholar]
  3. SuzukiK. MatsumaruY. TakeuchiM. MorimotoM. KanazawaR. TakayamaY. KamiyaY. ShigetaK. OkuboS. HayakawaM. IshiiN. KoguchiY. TakigawaT. InoueM. NaitoH. OtaT. HiranoT. KatoN. UedaT. IguchiY. AkajiK. TsurutaW. MikiK. FujimotoS. HigashidaT. IwasakiM. AokiJ. NishiyamaY. OtsukaT. KimuraK. Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke.JAMA2021325324425310.1001/jama.2020.2352233464334
    [Google Scholar]
  4. NieX. LengX. MiaoZ. FisherM. LiuL. Clinically ineffective reperfusion after endovascular therapy in acute ischemic stroke.Stroke202354387388110.1161/STROKEAHA.122.03846636475464
    [Google Scholar]
  5. KanY. LiS. ZhangB. DingY. ZhaoW. JiX. No-reflow phenomenon following stroke recanalization therapy: Clinical assessment advances: A narrative review.Brain Circ.20239421422110.4103/bc.bc_37_2338284109
    [Google Scholar]
  6. FengY. BaiX. LiW. CaoW. XuX. YuF. FuZ. TianQ. GuoX. WangT. ShaA. ChenY. GaoP. WangY. ChenJ. MaY. ChenF. DmytriwA.A. RegenhardtR.W. LuJ. MaQ. YangB. JiaoL. Postoperative neutrophil-lymphocyte ratio predicts unfavorable outcome of acute ischemic stroke patients who achieve complete reperfusion after thrombectomy.Front. Immunol.20221396311110.3389/fimmu.2022.96311136275640
    [Google Scholar]
  7. ChaurasiaR.N. DashP. SinghV.K. GautamD. PathakA. KumarA. MishraS.P. DashD. MishraV.N. JoshiD. Aspirin resistance and blood biomarkers in predicting ischemic stroke recurrence: An exploratory study.Brain Circ.202281313710.4103/bc.bc_75_2135372727
    [Google Scholar]
  8. HervellaP. Sampedro-VianaA. Rodríguez-YáñezM. López-DequidtI. PumarJ.M. MosqueiraA.J. Fernández-RodicioS. Bazarra-BarreirosM. SerenaJ. Silva-BlasY. Gubern-MeridaC. Rey-AldanaD. CinzaS. CamposF. SobrinoT. CastilloJ. Alonso-AlonsoM.L. Iglesias-ReyR. Systemic biomarker associated with poor outcome after futile reperfusion.Eur. J. Clin. Invest.2024546e1418110.1111/eci.1418138361320
    [Google Scholar]
  9. HaarhausM. BrandenburgV. Kalantar-ZadehK. StenvinkelP. MagnussonP. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD.Nat. Rev. Nephrol.201713742944210.1038/nrneph.2017.6028502983
    [Google Scholar]
  10. JiangC. HuF. LiJ. GaoG. GuoX. Diagnostic value of alkaline phosphatase and bone-specific alkaline phosphatase for metastases in breast cancer: A systematic review and meta-analysis.Breast Cancer Res. Treat.2023202223324410.1007/s10549‑023‑07066‑z37522998
    [Google Scholar]
  11. MakrisK. MousaC. CavalierE. Alkaline phosphatases: Biochemistry, functions, and measurement.Calcif. Tissue Int.2022112223324210.1007/s00223‑022‑01048‑x36571614
    [Google Scholar]
  12. HaarhausM. CiancioloG. BarbutoS. La MannaG. GasperoniL. TripepiG. PlebaniM. FusaroM. MagnussonP. Alkaline phosphatase: An old friend as treatment target for cardiovascular and mineral bone disorders in chronic kidney disease.Nutrients20221410212410.3390/nu1410212435631265
    [Google Scholar]
  13. MoriK. JanischF. PariziM.K. MostafaeiH. LysenkoI. EnikeevD.V. KimuraS. EgawaS. ShariatS.F. Prognostic value of alkaline phosphatase in hormone-sensitive prostate cancer: A systematic review and meta-analysis.Int. J. Clin. Oncol.202025224725710.1007/s10147‑019‑01578‑931768692
    [Google Scholar]
  14. MaJ. GuoW. XuJ. LiS. RenC. WuL. WuC. LiC. ChenJ. DuanJ. MaQ. SongH. ZhaoW. JiX. Association of platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio with outcomes in stroke patients achieving successful recanalization by endovascular thrombectomy.Front. Neurol.202213103906010.3389/fneur.2022.103906036588905
    [Google Scholar]
  15. YanW. YanM. WangH. XuZ. Associations of serum alkaline phosphatase level with all-cause and cardiovascular mortality in the general population.Front. Endocrinol. (Lausanne)202314121736910.3389/fendo.2023.121736937867513
    [Google Scholar]
  16. ZongL. WangX. LiZ. ZhaoX. LiuL. LiH. MengX. WangY. WangY. Alkaline phosphatase and outcomes in patients with preserved renal function.Stroke20184951176118210.1161/STROKEAHA.118.02023729669879
    [Google Scholar]
  17. TyagiK. VenkateshV. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics.RSC Med. Chem.20241541148116010.1039/D3MD00565H38665831
    [Google Scholar]
  18. KabootariM. RaeeM.R. AkbarpourS. AsgariS. AziziF. HadaeghF. Serum alkaline phosphatase and the risk of coronary heart disease, stroke and all-cause mortality: Tehran Lipid and Glucose Study.BMJ Open2018811e02373510.1136/bmjopen‑2018‑02373530478120
    [Google Scholar]
  19. ParkJ.B. KangD. YangH.M. ChoH.J. ParkK.W. LeeH.Y. KangH.J. KooB.K. KimH.S. Serum alkaline phosphatase is a predictor of mortality, myocardial infarction, or stent thrombosis after implantation of coronary drug-eluting stent.Eur. Heart J.2013341292093110.1093/eurheartj/ehs41923242189
    [Google Scholar]
  20. ShimizuY. ImanoH. OhiraT. KitamuraA. KiyamaM. OkadaT. IshikawaY. ShimamotoT. YamagishiK. TanigawaT. IsoH. Alkaline phosphatase and risk of stroke among Japanese: The Circulatory Risk in Communities Study (CIRCS).J. Stroke Cerebrovasc. Dis.20132271046105510.1016/j.jstrokecerebrovasdis.2012.06.00922841505
    [Google Scholar]
  21. LiuK. YuY. YuanY. XuX. LeiW. NiuR. ShenM. ZhouL. PengR. WangQ. YangH. GuoH. GeY. LiuG. HeM. WuT. ZhangX. Elevated Levels of Serum Alkaline Phosphatase are Associated with Increased Risk of Cardiovascular Disease: A Prospective Cohort Study.J. Atheroscler. Thromb.202330779581910.5551/jat.6364636261365
    [Google Scholar]
  22. KimJ. SongT.J. SongD. LeeH.S. NamC.M. NamH.S. KimY.D. HeoJ.H. Serum alkaline phosphatase and phosphate in cerebral atherosclerosis and functional outcomes after cerebral infarction.Stroke201344123547354910.1161/STROKEAHA.113.00295924021686
    [Google Scholar]
  23. GuoW. LiuZ. LuQ. LiuP. LinX. WangJ. WangY. ChangQ. WangF. WuS. Non-linear association between serum alkaline phosphatase and 3-month outcomes in patients with acute stroke: Results from the Xi’an stroke registry study of china.Front. Neurol.20221385925810.3389/fneur.2022.85925835911898
    [Google Scholar]
  24. LiS. WangW. ZhangQ. WangY. WangA. ZhaoX. Association between alkaline phosphatase and clinical outcomes in patients with spontaneous intracerebral hemorrhage.Front. Neurol.20211267769610.3389/fneur.2021.67769634526953
    [Google Scholar]
  25. TaoX. YangC. HeJ. LiuQ. WuS. TangW. WangJ. Serum alkaline phosphatase was independently associated with depression in patients with cerebrovascular disease.Front. Psychiatry202314118467310.3389/fpsyt.2023.118467337469359
    [Google Scholar]
  26. RyuW.S. LeeS.H. KimC.K. KimB.J. YoonB.W. Increased serum alkaline phosphatase as a predictor of long-term mortality after stroke.Neurology201075221995200210.1212/WNL.0b013e3181ff966a21115954
    [Google Scholar]
  27. WangZ. LiJ. JingJ. ZhangZ. XuQ. LiuT. LinJ. JiangY. WangY. WangA. MengX. Impact of alkaline phosphatase on clinical outcomes in patients with ischemic stroke: A nationwide registry analysis.Front. Neurol.202415133606910.3389/fneur.2024.133606938419697
    [Google Scholar]
  28. ZhuH.J. SunX. GuoZ.N. QuY. SunY.Y. JinH. WangM.Q. XuB.F. YangY. Prognostic values of serum alkaline phosphatase and globulin levels in patients undergoing intravenous thrombolysis.Front. Mol. Neurosci.20221593207510.3389/fnmol.2022.93207535909453
    [Google Scholar]
  29. LomashviliK.A. NarisawaS. MillánJ.L. O’NeillW.C. Vascular calcification is dependent on plasma levels of pyrophosphate.Kidney Int.20148561351135610.1038/ki.2013.52124717293
    [Google Scholar]
  30. BessueilleL. KawtharanyL. QuillardT. GoettschC. BriolayA. TaraconatN. BalayssacS. GilardV. MebarekS. PeyruchaudO. DuboeufF. BouillotC. PinkertonA. MechtouffL. BuchetR. HamadeE. ZibaraK. FontaC. Canet-soulasE. MillanJ. MagneD. Inhibition of alkaline phosphatase impairs dyslipidemia and protects mice from atherosclerosis.Transl. Res.202325121310.1016/j.trsl.2022.06.01035724933
    [Google Scholar]
  31. DuH. ZhengJ. LiX. BosD. YangW. ChengY. LiuC. WongL.K.S. HuJ. ChenX. The correlation between intracranial arterial calcification and the outcome of reperfusion therapy.Ann. Clin. Transl. Neurol.202310697498210.1002/acn3.5178037088543
    [Google Scholar]
  32. YuY. ZhangF.L. QuY.M. ZhangP. ZhouH.W. LuoY. WangY. LiuJ. QinH.Q. GuoZ.N. YangY. Intracranial Calcification is Predictive for Hemorrhagic Transformation and Prognosis After Intravenous Thrombolysis in Non-Cardioembolic Stroke Patients.J. Atheroscler. Thromb.202128435636410.5551/jat.5588932595195
    [Google Scholar]
  33. RyuW.S. LeeS.H. KimC.K. KimB.J. KwonH.M. YoonB.W. High serum alkaline phosphatase in relation to cerebral small vessel disease.Atherosclerosis2014232231331810.1016/j.atherosclerosis.2013.11.04724468144
    [Google Scholar]
  34. MechtouffL. BochatonT. PaccaletA. Da SilvaC.C. BuissonM. AmazC. DerexL. OngE. BerthezeneY. EkerO.F. DufayN. MewtonN. OvizeM. ChoT.H. NighoghossianN. Association of interleukin-6 levels and futile reperfusion after mechanical thrombectomy.Neurology2021965e752e75710.1212/WNL.000000000001126833262232
    [Google Scholar]
  35. NwaforD.C. BrichacekA.L. AliA. BrownC.M. Tissue-nonspecific alkaline phosphatase in central nervous system health and disease: A focus on brain microvascular endothelial cells.Int. J. Mol. Sci.20212210525710.3390/ijms2210525734067629
    [Google Scholar]
  36. SperringC.P. SavageW.M. ArgenzianoM.G. LeiferV.P. AlexanderJ. EchlovN. SpinazziE.F. ConnollyE.S.Jr No-reflow post-recanalization in acute ischemic stroke: Mechanisms, measurements, and molecular markers.Stroke20235492472248010.1161/STROKEAHA.123.04424037534511
    [Google Scholar]
  37. PedrazaM.I. de LeraM. BosD. CallejaA.I. CortijoE. Gómez-VicenteB. ReyesJ. Coco-MartínM.B. CalongeT. AgullaJ. Martínez-PíasE. TalaveraB. Pérez-FernándezS. SchüllerM. GalvánJ. CastañoM. Martínez-GaldámezM. ArenillasJ.F. Brain atrophy and the risk of futile endovascular reperfusion in acute ischemic stroke.Stroke20205151514152110.1161/STROKEAHA.119.02851132188368
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026344020240911114809
Loading
/content/journals/cnr/10.2174/0115672026344020240911114809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test