Skip to content
2000
image of Primary Changes in Corneal Nerve Fiber Structure in Patients with Primary Glaucoma and Related Influencing Factors

Abstract

Objective

The aim of this study was to explore the primary changes in corneal nerve fiber structure and its influencing factors in patients with primary glaucoma.

Method

A retrospective analysis was conducted in this study. A total of 51 patients with primary glaucoma who were diagnosed and treated in our hospital from March 2020 to March 2022 were selected as the research objects and designated as the glaucoma group. In addition, 51 patients with normal eyes were chosen as the control group. The characteristic changes of corneal nerve fibers, the thickness of the nerve fiber layer, and the number of ganglion cell complexes and dendritic cells were measured. Multivariate logistic regression analysis was performed to analyze the influencing factors of ganglion fiber structure change.

Result

Compared with the control group, the length of corneal nerve fibers and the density of corneal nerve fibers in the glaucoma group were significantly shortened, the number of branches was significantly reduced, the curvature was significantly increased, and the number of dendritic cells was significantly increased ( <0.05). Compared with the control group, the thickness of the upper, lower, nasal, temporal, and peripheral nerve fiber layers in the glaucoma group was obviously reduced ( <0.05). Compared with the control group, the thickness of the above inferior, nasal, temporal, and peripheral nerve fiber layers in the glaucoma group was significantly reduced ( <0.05). Compared with the control group, the above, below, and mean ganglion cell complex thickness in the glaucoma group was significantly reduced ( <0.05). Logistic regression analysis showed that intraocular pressure and the number of dendritic cells were risk factors for ganglion fiber structure change. In contrast, nerve fiber layer thickness and ganglion cell complex were protective factors for ganglion fiber structure change ( <0.05).

Conclusion

There were primary changes in the structure of corneal nerve fibers in patients with primary glaucoma, which were more slender, tortuous, and sparse, and the primary changes in nerve fiber structure could be affected by intraocular pressure, the number of dendritic cells, the thickness of the nerve fiber layer, and the ganglion cell complex.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026340315241126041735
2024-11-29
2025-01-23
Loading full text...

Full text loading...

References

  1. Ma Y. Li S. Shao M. Cao W. Sun X. Platelet parameters and their relationships with the thickness of the retinal nerve fiber layer and ganglion cell complex in primary open-angle glaucoma. Front. Neurol. 2022 13 867465 10.3389/fneur.2022.867465 35585849
    [Google Scholar]
  2. Stein J.D. Khawaja A.P. Weizer J.S. Glaucoma in adults—screening, diagnosis, and management. JAMA 2021 325 2 164 174 10.1001/jama.2020.21899 33433580
    [Google Scholar]
  3. Minami M. Chihara E. Overestimation of corneal endothelial cell density by automated method in glaucomatous eyes with impaired corneal endothelial cells. Int. Ophthalmol. 2022 42 1 133 145 10.1007/s10792‑021‑02008‑4 34482487
    [Google Scholar]
  4. Mossa E.A.M. Sayed K.M. Mounir A. Ammar H. Corneal endothelium, retinal nerve fiber layer, ganglion cell complex, and perimetry measurements in normal eyes and those with primary open-angle glaucoma. Med. Hypothesis Discov. Innov. Ophthalmol. 2022 11 2 85 91 10.51329/mehdiophthal1450 37641785
    [Google Scholar]
  5. Sugumaran A. Devasena M.A. Thomas M. Periyathambi D. A cross sectional study on evaluating the corneal endothelial cell density and central corneal thickness in eyes with primary glaucoma. J. Family Med. Prim. Care 2022 11 8 4650 4654 10.4103/jfmpc.jfmpc_2423_21 36352928
    [Google Scholar]
  6. Stache N. Sterenczak K.A. Sperlich K. Marfurt C.F. Allgeier S. Köhler B. Mikut R. Bartschat A. Reichert K.M. Guthoff R.F. Stachs A. Stachs O. Bohn S. Assessment of dynamic corneal nerve changes using static landmarks by in vivo large-area confocal microscopy—a longitudinal proof-of-concept study. Quant. Imaging Med. Surg. 2022 12 10 4734 4746 10.21037/qims‑22‑15 36185050
    [Google Scholar]
  7. Schuster A.K. Erb C. Hoffmann E.M. Dietlein T. Pfeiffer N. The diagnosis and treatment of glaucoma. Dtsch. Arztebl. Int. 2020 117 13 225 234 32343668
    [Google Scholar]
  8. Omodaka K. Kikawa T. Kabakura S. Himori N. Tsuda S. Ninomiya T. Takahashi N. Pak K. Takeda N. Akiba M. Nakazawa T. Clinical characteristics of glaucoma patients with various risk factors. BMC Ophthalmol. 2022 22 1 373 10.1186/s12886‑022‑02587‑5 36123604
    [Google Scholar]
  9. Chang H.L. Kuo B.I. Wu J.H. Huang W.L. Su C.C. Chen W.L. Anti-glaucoma agents-induced pseudodendritic keratitis presumed to be herpetic simplex keratitis: A clinical case series. Sci. Rep. 2021 11 1 21443 10.1038/s41598‑021‑01073‑0 34728756
    [Google Scholar]
  10. Bitirgen G. Akpinar Z. Uca A.U. Ozkagnici A. Petropoulos I.N. Malik R.A. Progressive loss of corneal and retinal nerve fibers in patients with multiple sclerosis: A 2-year follow-up study. Transl. Vis. Sci. Technol. 2020 9 13 37 10.1167/tvst.9.13.37 33384891
    [Google Scholar]
  11. Schlötzer-Schrehardt U. Latta L. Gießl A. Zenkel M. Fries F.N. Käsmann-Kellner B. Kruse F.E. Seitz B. Dysfunction of the limbal epithelial stem cell niche in aniridia-associated keratopathy. Ocul. Surf. 2021 21 160 173 10.1016/j.jtos.2021.06.002 34102310
    [Google Scholar]
  12. Bohn S. Sperlich K. Stahnke T. Schünemann M. Stolz H. Guthoff R.F. Stachs O. Multiwavelength confocal laser scanning microscopy of the cornea. Biomed. Opt. Express 2020 11 10 5689 5700 10.1364/BOE.397615 33149979
    [Google Scholar]
  13. Rathinam N. Kasturi N. Kaliaperumal S. Jayaseelan V. Correlation between retinal nerve fiber layer thickness and anterior segment parameters in patients with pseudoexfoliation: A cross-sectional comparative study. Oman J. Ophthalmol. 2023 16 2 252 257 10.4103/ojo.ojo_119_22 37602158
    [Google Scholar]
  14. Wong B.J. Moghimi S. Zangwill L.M. Christopher M. Belghith A. Ekici E. Bowd C. Fazio M.A. Girkin C.A. Weinreb R.N. Relationship of corneal hysteresis and anterior lamina cribrosa displacement in glaucoma. Am. J. Ophthalmol. 2020 212 134 143 10.1016/j.ajo.2019.11.017 31770514
    [Google Scholar]
  15. Eguchi H. Hiura A. Nakagawa H. Kusaka S. Shimomura Y. Corneal nerve fiber structure, its role in corneal function, and its changes in corneal diseases. BioMed Res. Int. 2017 2017 1 15 10.1155/2017/3242649 29238714
    [Google Scholar]
  16. Lee J.E. Lee J.Y. Kook M.S. Retinal nerve fiber layer damage in young myopic eyes with optic disc torsion and glaucomatous hemifield defect. J. Glaucoma 2017 26 1 77 86 10.1097/IJG.0000000000000466 27300647
    [Google Scholar]
  17. Mastropasqua R. Agnifili L. Fasanella V. Lappa A. Brescia L. Lanzini M. Oddone F. Perri P. Mastropasqua L. In vivo distribution of corneal epithelial dendritic cells in patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 2016 57 14 5996 6002 10.1167/iovs.16‑20333 27820631
    [Google Scholar]
  18. Oh S.E. Shin H.J. Park C.K. Park H.Y.L. Factors associated with vascular changes at the level of retinal ganglion cell axon versus soma/dendrite in glaucoma patients. J. Clin. Med. 2023 12 13 4221 10.3390/jcm12134221 37445255
    [Google Scholar]
  19. Ghita A.M. Iliescu D.A. Ghita A.C. Ilie L.A. Otobic A. Ganglion cell complex analysis: Correlations with retinal nerve fiber layer on optical coherence tomography. Diagnostics 2023 13 2 266 10.3390/diagnostics13020266 36673076
    [Google Scholar]
  20. Murtagh P. O’Brien C. Corneal hysteresis, intraocular pressure, and progression of glaucoma: Time for a “Hyst-Oric” change in clinical practice? J. Clin. Med. 2022 11 10 2895 10.3390/jcm11102895 35629021
    [Google Scholar]
  21. Alotaibi S. Ozkan J. Papas E. Markoulli M. Diurnal variation of corneal dendritic cell density. Curr. Eye Res. 2022 47 9 1239 1245 10.1080/02713683.2022.2088799 35726825
    [Google Scholar]
  22. Pérez-López M. Ting D.S.J. Lanzagorta-Aresti A. Montolio-Marzo S. Davó-Cabrera J. Cid-García I. Influence of corneal biomechanical properties on intraocular pressure measurement in different types of Graves’ orbitopathy. Eur. J. Ophthalmol. 2023 33 1 567 573 10.1177/11206721221124655 36062595
    [Google Scholar]
  23. Chou C.C. Shih P.J. Lin H.C. Chen J.P. Yen J.Y. Wang I.J. Changes in intraocular pressure after transepithelial photorefractive keratectomy and femtosecond laser in situ keratomileusis. J. Ophthalmol. 2021 2021 1 10 10.1155/2021/5592195 33777445
    [Google Scholar]
  24. Lee H. Roberts C.J. Kim T. Ambrósio R. Jr Elsheikh A. Kang D.S.Y. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser–assisted laser in situ keratomileusis. J. Cataract Refract. Surg. 2017 43 12 1495 1503 10.1016/j.jcrs.2017.08.019 29335093
    [Google Scholar]
  25. Jung K.I. Lee J. Shin D.Y. Park C.K. Long-term intraocular pressure fluctuation and epiretinal membrane in patients with glaucoma or glaucoma suspect. J. Clin. Med. 2024 13 4 1138 10.3390/jcm13041138 38398451
    [Google Scholar]
  26. Suh M.H. Weinreb R.N. Zangwill L.M. Walker E. Reduction of optic disc microvasculature and retinal nerve fiber layer thinning in patients with glaucoma. Am. J. Ophthalmol. 2024 265 224 235 10.1016/j.ajo.2024.04.014 38703801
    [Google Scholar]
  27. Kambayashi M. Saito H. Araie M. Enomoto N. Murata H. Kikawa T. Sugiyama K. Higashide T. Miki A. Iwase A. Tomita G. Nakazawa T. Aihara M. Ohno-Matsui K. Kim T.W. Leung C.K.S. Zangwill L.M. Weinreb R.N. Effects of deep optic nerve head structures on Bruch’s membrane opening minimum rim width and peripapillary retinal nerve fiber layer. Am. J. Ophthalmol. 2024 263 99 108 10.1016/j.ajo.2024.02.017 38403100
    [Google Scholar]
  28. Shin H.J. Park H.Y.L. Ryu H.K. Oh S.E. Kim S.A. Jung Y. Park C.K. Clinical characteristics and associated factors to the development of glaucoma in eyes with myopic optic neuropathy. Am. J. Ophthalmol. 2024 260 160 171 10.1016/j.ajo.2024.01.001 38191067
    [Google Scholar]
  29. Baudouin C. Kolko M. Melik-Parsadaniantz S. Messmer E.M. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog. Retin. Eye Res. 2021 83 100916 10.1016/j.preteyeres.2020.100916 33075485
    [Google Scholar]
  30. Quaranta L. Bruttini C. Micheletti E. Konstas A.G.P. Michelessi M. Oddone F. Katsanos A. Sbardella D. De Angelis G. Riva I. Glaucoma and neuroinflammation: An overview. Surv. Ophthalmol. 2021 66 5 693 713 10.1016/j.survophthal.2021.02.003 33582161
    [Google Scholar]
  31. Tan O. Liu L. You Q. Wang J. Chen A. Ing E. Morrison J.C. Jia Y. Huang D. Focal loss analysis of nerve fiber layer reflectance for glaucoma diagnosis. Transl. Vis. Sci. Technol. 2021 10 6 9 10.1167/tvst.10.6.9 34111254
    [Google Scholar]
  32. Blumenthal E.Z. Weinreb R.N. Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection. Surv. Ophthalmol. 2001 45 Suppl. 3 S305 S312 10.1016/S0039‑6257(01)00202‑8 11377454
    [Google Scholar]
  33. Nishida T. Moghimi S. Mohammadzadeh V. Wu J.H. Yamane M.L.M. Kamalipour A. Mahmoudinezhad G. Micheletti E. Liebmann J.M. Fazio M.A. Girkin C.A. Zangwill L.M. Weinreb R.N. Association between ganglion cell complex thinning and vision-related quality of life in glaucoma. JAMA Ophthalmol. 2022 140 8 800 806 10.1001/jamaophthalmol.2022.2140 35771529
    [Google Scholar]
  34. Mohammadzadeh V. Su E. Mohammadi M. Law S.K. Coleman A.L. Caprioli J. Weiss R.E. Nouri-Mahdavi K. Association of blood pressure with rates of macular ganglion cell complex thinning in patients with glaucoma. JAMA Ophthalmol. 2023 141 3 251 257 10.1001/jamaophthalmol.2022.6092 36757702
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026340315241126041735
Loading
/content/journals/cnr/10.2174/0115672026340315241126041735
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: corneal nerve fiber structure ; influence factor ; Primary glaucoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test