Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background

Adherens junction in the blood-labyrinth barrier is largely unexplored because it is traditionally thought to be less important than the tight junction. Since increasing evidence indicates that it actually functions upstream of tight junction adherens junction may potentially be a better target for ameliorating the leakage of the blood-labyrinth barrier under pathological conditions such as acoustic trauma.

Aims

This study was conducted to investigate the pathogenesis of the disruption of adherens junction after acoustic trauma and explore potential therapeutic targets.

Methods

Critical targets that regulated the disruption of adherens junction were investigated by techniques such as immunofluorescence and Western blotting in C57BL/6J mice.

Results

Upregulation of Vascular Endothelial Growth Factor (VEGF) and downregulation of Pigment Epithelium-derived Factor (PEDF) coactivated VEGF-PEDF/VEGF receptor 2 (VEGFR2) signaling pathway in the stria vascularis after noise exposure. Downstream effector Src kinase was then activated to degrade VE-cadherin and dissociate adherens junction, which led to the leakage of the blood-labyrinth barrier. By inhibiting VEGFR2 or Src kinase, VE-cadherin degradation and blood-labyrinth barrier leakage could be attenuated, but Src kinase represented a better target to ameliorate blood-labyrinth barrier leakage as inhibiting it would not interfere with vascular endothelium repair, neurotrophy and pericytes proliferation mediated by upstream VEGFR2.

Conclusion

Src kinase may represent a promising target to relieve noise-induced disruption of adherens junction and hyperpermeability of the blood-labyrinth barrier.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026320884240620070951
2024-06-24
2025-01-15
Loading full text...

Full text loading...

References

  1. HibinoH. NinF. TsuzukiC. KurachiY. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.Pflugers Arch.2010459452153310.1007/s00424‑009‑0754‑z20012478
    [Google Scholar]
  2. CosentinoA. AgafonovaA. ModafferiS. Trovato SalinaroA. ScutoM. MaiolinoL. FritschT. CalabreseE.J. LupoG. AnfusoC.D. CalabreseV. Blood–labyrinth barrier in health and diseases: Effect of hormetic nutrients.Antioxid. Redox Signal.2024407-954256310.1089/ars.2023.025137565276
    [Google Scholar]
  3. KeY. MaX. JingY. DiaoT. YuL. The breakdown of blood-labyrinth barrier makes it easier for drugs to enter the inner ear.Laryngoscope202413452377238610.1002/lary.3119437987231
    [Google Scholar]
  4. ShiX. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review).Hear. Res.2016338526310.1016/j.heares.2016.01.01026802581
    [Google Scholar]
  5. OhlemillerK.K. DwyerN. HensonV. FasmanK. HiroseK. A critical evaluation of “leakage” at the cochlear blood-stria-barrier and its functional significance.Front. Mol. Neurosci.202417136805810.3389/fnmol.2024.136805838486963
    [Google Scholar]
  6. WuJ. HanW. ChenX. GuoW. LiuK. WangR. ZhangJ. SaiN. Matrix metalloproteinase-2 and −9 contribute to functional integrity and noise-induced damage to the blood-labyrinth-barrier.Mol. Med. Rep.20171621731173810.3892/mmr.2017.678428627704
    [Google Scholar]
  7. WuY.X. ZhuG.X. LiuX.Q. SunF. ZhouK. WangS. WangC.M. JiaJ.W. SongJ.T. LuL.J. Noise alters guinea pig’s blood-labyrinth barrier ultrastructure and permeability along with a decrease of cochlear Claudin-5 and Occludin.BMC Neurosci.201415113610.1186/s12868‑014‑0136‑025539640
    [Google Scholar]
  8. BahloulA. SimmlerM.C. MichelV. LeiboviciM. PerfettiniI. RouxI. WeilD. NouailleS. ZuoJ. ZadroC. LicastroD. GaspariniP. AvanP. HardelinJ.P. PetitC. Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells.EMBO Mol. Med.20091212513810.1002/emmm.20090001520049712
    [Google Scholar]
  9. SaiN. ZhangT. WuJ. HanW.J. Noise-induced blood-labyrinth-barrier trauma of guinea pig and the protective effect of matrix metalloproteinase inhibitors.Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi202055436337032306634
    [Google Scholar]
  10. LiuX. ZhengG. WuY. ShenX. JingJ. YuT. SongH. ChenJ. LuoW. Lead exposure results in hearing loss and disruption of the cochlear blood–labyrinth barrier and the protective role of iron supplement.Neurotoxicology20133917318110.1016/j.neuro.2013.10.00224144481
    [Google Scholar]
  11. GuJ. TongL. LinX. ChenY. WuH. WangX. YuD. The disruption and hyperpermeability of blood-labyrinth barrier mediates cisplatin-induced ototoxicity.Toxicol. Lett.2022354566410.1016/j.toxlet.2021.10.01534757176
    [Google Scholar]
  12. GarciaM.A. NelsonW.J. ChavezN. Cell–cell junctions organize structural and signaling networks.Cold Spring Harb. Perspect. Biol.2018104a02918110.1101/cshperspect.a02918128600395
    [Google Scholar]
  13. TietzS. EngelhardtB. Brain barriers: Crosstalk between complex tight junctions and adherens junctions.J. Cell Biol.2015209449350610.1083/jcb.20141214726008742
    [Google Scholar]
  14. CampbellH.K. MaiersJ.L. DeMaliK.A. Interplay between tight junctions & adherens junctions.Exp. Cell Res.20173581394410.1016/j.yexcr.2017.03.06128372972
    [Google Scholar]
  15. LiW. ChenZ. ChinI. ChenZ. DaiH. The role of VE-cadherin in blood-brain barrier integrity under central nervous system pathological conditions.Curr. Neuropharmacol.20181691375138410.2174/1570159X1666618022216480929473514
    [Google Scholar]
  16. NinchojiT. LoveD.T. SmithR.O. HedlundM. VestweberD. SessaW.C. Claesson-WelshL. eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin.eLife202110e6494410.7554/eLife.6494433908348
    [Google Scholar]
  17. ShenD. YeX. LiJ. HaoX. JinL. JinY. TongL. GaoF. Metformin preserves VE–Cadherin in choroid plexus and attenuates hydrocephalus via VEGF/VEGFR2/p-Src in an intraventricular hemorrhage rat model.Int. J. Mol. Sci.20222315855210.3390/ijms2315855235955686
    [Google Scholar]
  18. BielefeldE.C. Protection from noise-induced hearing loss with Src inhibitors.Drug Discov. Today201520676076510.1016/j.drudis.2015.01.01025637168
    [Google Scholar]
  19. BielefeldE.C. HangauerD. HendersonD. Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors.Neurosci. Res.201171434835410.1016/j.neures.2011.07.183621840347
    [Google Scholar]
  20. BielefeldE.C. TanakaC. ChenG. ColingD. LiM. HendersonD. FetoniA.R. An Src-protein tyrosine kinase inhibitor to reduce cisplatin ototoxicity while preserving its antitumor effect.Anticancer Drugs2013241435110.1097/CAD.0b013e32835739fd22828384
    [Google Scholar]
  21. HarrisK.C. HuB. HangauerD. HendersonD. Prevention of noise-induced hearing loss with Src-PTK inhibitors.Hear. Res.20052081-2142510.1016/j.heares.2005.04.00915950415
    [Google Scholar]
  22. FetoniA.R. BielefeldE.C. PaludettiG. NicoteraT. HendersonD. A putative role of p53 pathway against impulse noise induced damage as demonstrated by protection with pifithrin-alpha and a Src inhibitor.Neurosci. Res.201481-82303710.1016/j.neures.2014.01.00624472721
    [Google Scholar]
  23. ApteR.S. ChenD.S. FerraraN. VEGF in signaling and disease: Beyond discovery and development.Cell201917661248126410.1016/j.cell.2019.01.02130849371
    [Google Scholar]
  24. ZhouW. LiuK. ZengL. HeJ. GaoX. GuX. ChenX. Jing LiJ. WangM. WuD. CaiZ. Claesson-WelshL. JuR. WangJ. ZhangF. ChenY. Targeting VEGF-A/VEGFR2 Y949 signaling-mediated vascular permeability alleviates hypoxic pulmonary hypertension.Circulation2022146241855188110.1161/CIRCULATIONAHA.122.06190036384284
    [Google Scholar]
  25. ZhangS.X. WangJ.J. GaoG. ParkeK. MaJ. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF–VEGF receptor 2 binding in diabetic retinopathy.J. Mol. Endocrinol.200637111210.1677/jme.1.0200816901919
    [Google Scholar]
  26. ZhangM. Tombran-TinkJ. YangS. ZhangX. LiX. BarnstableC.J. PEDF is an endogenous inhibitor of VEGF-R2 angiogenesis signaling in endothelial cells.Exp. Eye Res.202121310882810.1016/j.exer.2021.10882834742690
    [Google Scholar]
  27. PicciottiP.M. FetoniA.R. PaludettiG. WolfF.I. TorselloA. TroianiD. FerraresiA. PolaR. SergiB. Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss.Hear. Res.20062141-2768310.1016/j.heares.2006.02.00416603326
    [Google Scholar]
  28. ZhangF. DaiM. NengL. ZhangJ.H. ZhiZ. FridbergerA. ShiX. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma-a salient feature of strial barrier associated hearing loss.FASEB J.20132793730374010.1096/fj.13‑23289223729595
    [Google Scholar]
  29. YanY. MaL. ZhouX. PonnusamyM. TangJ. ZhuangM.A. TolbertE. BaylissG. BaiJ. ZhuangS. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis.Kidney Int.2016891688110.1038/ki.2015.29326444028
    [Google Scholar]
  30. HuangT.H. SunC.K. ChenY.L. WangC.J. YinT.C. LeeM.S. YipH.K. Shock wave therapy enhances angiogenesis through VEGFR2 activation and recycling.Mol. Med.201622185086210.2119/molmed.2016.0010827925633
    [Google Scholar]
  31. ChettyS. EngquistE.N. MehannaE. LuiK.O. TsankovA.M. MeltonD.A. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation.J. Cell Biol.201521071257126810.1083/jcb.20150203526416968
    [Google Scholar]
  32. RutledgeC.A. NgF.S. SulkinM.S. GreenerI.D. SergeyenkoA.M. LiuH. GemelJ. BeyerE.C. SovariA.A. EfimovI.R. DudleyS.C. c-Src kinase inhibition reduces arrhythmia inducibility and connexin43 dysregulation after myocardial infarction.J. Am. Coll. Cardiol.201463992893410.1016/j.jacc.2013.10.08124361364
    [Google Scholar]
  33. LipovsekM. ElgoyhenA.B. The evolutionary tuning of hearing.Trends Neurosci.202346211012310.1016/j.tins.2022.12.00236621369
    [Google Scholar]
  34. JuhnS.K. RybakL.P. Labyrinthine barriers and cochlear homeostasis.Acta Otolaryngol.1981911-652953410.3109/000164881091385386791457
    [Google Scholar]
  35. SchmutzhardJ. KositzC.H. GlueckertR. SchmutzhardE. Schrott-FischerA. LacknerP. Apoptosis of the fibrocytes type 1 in the spiral ligament and blood labyrinth barrier disturbance cause hearing impairment in murine cerebral malaria.Malar. J.20121113010.1186/1475‑2875‑11‑3022297132
    [Google Scholar]
  36. NengL. ZhangJ. YangJ. ZhangF. LopezI.A. DongM. ShiX. Structural changes in thestrial blood–labyrinth barrier of aged C57BL/6 mice.Cell Tissue Res.2015361368569610.1007/s00441‑015‑2147‑225740201
    [Google Scholar]
  37. ZhangJ. ChenS. CaiJ. HouZ. WangX. KachelmeierA. ShiX. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage like melanocytes from the young mouse vestibular system.Hear. Res.2017345102210.1016/j.heares.2016.12.01228087417
    [Google Scholar]
  38. ShiX. Research advances in cochlear pericytes and hearing loss.Hear. Res.202343810887710.1016/j.heares.2023.10887737651921
    [Google Scholar]
  39. MoriniM.F. GiampietroC. CoradaM. PisatiF. LavaroneE. CunhaS.I. ConzeL.L. O’ReillyN. JoshiD. KjaerS. GeorgeR. NyeE. MaA. JinJ. MitterR. LupiaM. CavallaroU. PasiniD. CaladoD.P. DejanaE. TaddeiA. VE-cadherin–mediated epigenetic regulation of endothelial gene expression.Circ. Res.2018122223124510.1161/CIRCRESAHA.117.31239229233846
    [Google Scholar]
  40. SekulicM. PucheR. BodmerD. PetkovicV. Human blood-labyrinth barrier model to study the effects of cytokines and inflammation.Front. Mol. Neurosci.202316124337010.3389/fnmol.2023.124337037808472
    [Google Scholar]
  41. DejanaE. Tournier-LasserveE. WeinsteinB.M. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications.Dev. Cell200916220922110.1016/j.devcel.2009.01.00419217423
    [Google Scholar]
  42. VestweberD. WinderlichM. CagnaG. NottebaumA.F. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player.Trends Cell Biol.200919181510.1016/j.tcb.2008.10.00119010680
    [Google Scholar]
  43. CaiJ. WuL. QiX. Li CalziS. CaballeroS. ShawL. RuanQ. GrantM.B. BoultonM.E. PEDF regulates vascular permeability by a γ-secretase-mediated pathway.PLoS One201166e2116410.1371/journal.pone.002116421695048
    [Google Scholar]
  44. KaurC. LingE. Blood brain barrier in hypoxic-ischemic conditions.Curr. Neurovasc. Res.200851718110.2174/15672020878356564518289024
    [Google Scholar]
  45. ShiX. DoychevaD.M. XuL. TangJ. YanM. ZhangJ.H. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats.Neurobiol. Dis.20169511112110.1016/j.nbd.2016.07.01627425892
    [Google Scholar]
  46. YangD. ZhouH. ZhangJ. LiuL. Increased endothelial progenitor cell circulation and VEGF production in a rat model of noise-induced hearing loss.Acta Otolaryngol.2015135662262810.3109/00016489.2014.100309225720428
    [Google Scholar]
  47. YamashitaT. AbeK. Mechanisms of endogenous endothelial repair in stroke.Curr. Pharm. Des.201218253649365210.2174/13816121280200283222574978
    [Google Scholar]
  48. Monge NaldiA. GassmannM. BodmerD. Erythropoietin but not VEGF has a protective effect on auditory hair cells in the inner ear.Cell. Mol. Life Sci.200966223595359910.1007/s00018‑009‑0144‑x19763398
    [Google Scholar]
  49. ZhangJ. HouZ. WangX. JiangH. NengL. ZhangY. YuQ. BurwoodG. SongJ. AuerM. FridbergerA. HoaM. ShiX. VEGFA165 gene therapy ameliorates blood-labyrinth barrier breakdown and hearing loss.JCI Insight202168e14328510.1172/jci.insight.14328533690221
    [Google Scholar]
  50. UedaS. YamagishiS.I. OkudaS. Anti-vasopermeability effects of PEDF in retinal-renal disorders.Curr. Mol. Med.201010327928310.2174/15665241079106529120236056
    [Google Scholar]
  51. HuiH.L. JiangB. ZhouY.Y. QiuF. LinY.G. LiH.M. LiD. LuoM. MiaoH.R. OngS.B. ZhangY.Q. PEDF inhibits VEGF-induced vascular leakage through binding to VEGFR2 in acute myocardial infarction.J. Biomol. Struct. Dyn.202412211310.1080/07391102.2024.231426038345053
    [Google Scholar]
  52. ZhangJ. FanW. NengL. ChenB. ZuoB. LuW. Long non-coding RNA Rian promotes the expression of tight junction proteins in endothelial cells by regulating perivascular-resident macrophage like melanocytes and PEDF secretion.Hum. Cell20213441093110210.1007/s13577‑021‑00521‑333768511
    [Google Scholar]
  53. YuQ. LiuS. GuoR. ChenK. LiY. JiangD. GongS. YinL. LiuK. Complete restoration of hearing loss and cochlear synaptopathy via minimally invasive, single-dose, and controllable middle ear delivery of brain-derived neurotrophic Factor–Poly( dl -lactic acid- co -glycolic acid)-loaded Hydrogel.ACS Nano20241886298631310.1021/acsnano.3c1104938345574
    [Google Scholar]
  54. IngersollM.A. LutzeR.D. KelmannR.G. KresockD.F. MarshJ.D. QuevedoR.V. ZuoJ. TeitzT. KSR1 knockout mouse model demonstrates MAPK pathway’s key role in cisplatin- and noise-induced hearing loss.J. Neurosci.20244418e217423202410.1523/JNEUROSCI.2174‑23.202438548338
    [Google Scholar]
  55. TanW.J.T. SongL. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss.Hear. Res.202343410878310.1016/j.heares.2023.10878337167889
    [Google Scholar]
  56. FengB. DongT. SongX. ZhengX. JinC. ChengZ. LiuY. ZhangW. WangX. TaoY. WuH. Personalized porous gelatin methacryloyl sustained-release nicotinamide protects against noise-induced hearing loss.Adv. Sci. (Weinh.)20241112230568210.1002/advs.20230568238225752
    [Google Scholar]
  57. ChenM.B. LiM.H. WuL.Y. WangR. LongX. ZhangL. SunW. GuoW.W. PanY. ZhangY.S. LinC. ShiX. YangS.M. Oridonin employs interleukin 1 receptor type 2 to treat noise-induced hearing loss by blocking inner ear inflammation.Biochem. Pharmacol.202321011545710.1016/j.bcp.2023.11545736806583
    [Google Scholar]
  58. LyeJ. DelaneyD.S. LeithF.K. SardesaiV.S. McLenachanS. ChenF.K. AtlasM.D. WongE.Y.M. Recent therapeutic progress and future perspectives for the treatment of hearing loss.Biomedicines20231112334710.3390/biomedicines1112334738137568
    [Google Scholar]
  59. SaidiaA.R. FrançoisF. CasasF. MechalyI. VenteoS. VeechiJ.T. RuelJ. PuelJ.L. WangJ. Oxidative stress plays an important role in glutamatergic excitotoxicity-induced cochlear synaptopathy: Implication for therapeutic molecules screening.Antioxidants202413214910.3390/antiox1302014938397748
    [Google Scholar]
  60. XuK. XuB. GuJ. WangX. YuD. ChenY. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss.Theranostics202313113524354910.7150/thno.8338337441605
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026320884240620070951
Loading
/content/journals/cnr/10.2174/0115672026320884240620070951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test