Skip to content
2000
Volume 3, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Force spectroscopy provides a direct approach for probing biological interactions at the single-molecule level. Tethered systems, in which flexible polymer linkers connect the interacting molecules to the surfaces of the atomic force microscope probe and sample, provide a particularly attractive platform for studying such interactions. We will review the basic physical principles of force spectroscopy measurements in these systems, and show that mechanical properties of the tether linkages allow independent determination of the bond rupture forces and the number of ruptured bonds. Forces measured in these systems obey the predictions of a Markovian model for the strength of multiple parallel bonds. Finally, we discuss the use of the dynamic force spectra of single and multiple protein-ligand bonds for determination of kinetic parameters for multivalent interactions.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341307779940607
2007-02-01
2024-11-23
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341307779940607
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test