Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

Electrochemical oxidation of Alizarin Yellow R (AYR) was investigated on Ytterbium (Yb) doped Ti/PbO electrodes prepared by an electrodeposition method.

Methods

The etching of the Ti sheet by using a mixed acid of HSO and TA (volume ratio= 2: 1) for 50 min at 100°C could produce a suitable interface for further modification. The morphologies, composition, and electrochemical properties of Yb doping on the electrode were characterized by SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive Spectroscopy), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The introduction of an appropriate intermediate layer, Zr-SnO, was performed. We also tried to fabricate Ytterbium (Yb) doped Ti/Zr-SnO/PbO electrodes by an electrodeposition method on the intermediate layer of Zr-SnO. The surface morphology of the Ti/Zr-SnO/PbO electrode was changed due to the Yb doping, which affected the electrocatalytic activity of the modified electrode.

Results

The developed Yb-doped Ti/Zr-SnO/PbO electrode showed improved removal efficiencies toward AYR.

Conclusion

The effects of current density and initial AYR concentration on the electrochemical oxidation of AYR by Yb-doped Ti/Zr-SnO/PbO were investigated. The removal rate of AYR was 97.3% in 180 min under the conditions of the current density of 60 mA/cm2, initial AYR concentration of 50.0 mg L-1, and NaSO concentration of 0.10 mol L-1.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137302282240422063450
2024-05-10
2025-04-25
Loading full text...

Full text loading...

References

  1. MengY. WangY. YeZ. WangN. HeC. ZhuY. FujitaT. WuH. WangX. Three-dimension titanium phosphate aerogel for selective removal of radioactive strontium(II) from contaminated waters.J. Environ. Manage.2023325Pt B11642410.1016/j.jenvman.2022.11642436283167
    [Google Scholar]
  2. ShirzadiH. Nezamzadeh-EjhiehA. An efficient modified zeolite for simultaneous removal of Pb(II) and Hg(II) from aqueous solution.J. Mol. Liq.201723022122910.1016/j.molliq.2017.01.029
    [Google Scholar]
  3. NosuhiM. Nezamzadeh-EjhiehA. An indirect application aspect of zeolite modified electrodes for voltammetric determination of iodate.J. Electroanal. Chem. 201881011912810.1016/j.jelechem.2017.12.075
    [Google Scholar]
  4. GhattaviS. Nezamzadeh-EjhiehA. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers.Compos., Part B Eng.202018310771210.1016/j.compositesb.2019.107712
    [Google Scholar]
  5. YousefiA. Nezamzadeh-EjhiehA. Preparation and characterization of SnO2-BiVO4-CuO catalyst and kinetics of phenazopyridine photodegradation.Iran. J. Cataly.202111247259
    [Google Scholar]
  6. SlamaniS. AbdelmalekF. GhezzarM.R. AddouA. Initiation of Fenton process by plasma gliding arc discharge for the degradation of paracetamol in water.J. Photochem. Photobiol. Chem.201835911010.1016/j.jphotochem.2018.03.032
    [Google Scholar]
  7. MirianZ.A. Nezamzadeh-EjhiehA. Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite.Desalination Water Treat.20165735164831649410.1080/19443994.2015.1087881
    [Google Scholar]
  8. IazdaniF. Nezamzadeh-EjhiehA. Photocatalytic kinetics of 2,4-dichloroaniline degradation by NiO-clinoptilolite nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.202125011922810.1016/j.saa.2020.11922833257250
    [Google Scholar]
  9. SoodS. MehtaS.K. UmarA. KansalS.K. The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO 2 nanoparticles.New J. Chem.20143873127313610.1039/C4NJ00179F
    [Google Scholar]
  10. LiL. HuangX. HuT. WangJ. ZhangW. ZhangJ. Synthesis of three-dimensionally ordered macroporous composite Ag/Bi 2 O 3 –TiO 2 by dual templates and its photocatalytic activities for degradation of organic pollutants under multiple modes.New J. Chem.201438115293530210.1039/C4NJ01002G
    [Google Scholar]
  11. SharifiA. MontazerghaemL. NaeimiA. AbhariA.R. VafaeeM. AliG.A.M. SadeghH. Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation.J. Environ. Manage.201924762463210.1016/j.jenvman.2019.06.09631279139
    [Google Scholar]
  12. EthirajA.S. UttamP. KV. ChongK.F. AliG.A.M. Photocatalytic performance of a novel semiconductor nanocatalyst: Copper doped nickel oxide for phenol degradation.Mater. Chem. Phys.202024212252010.1016/j.matchemphys.2019.122520
    [Google Scholar]
  13. LaouiniS.E. BouafiaA. SoldatovA.V. AlgarniH. TedjaniM.L. AliG.A.M. BarhoumA. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their azo dye photodegradation.Membranes (Basel)202111746810.3390/membranes1107046834202049
    [Google Scholar]
  14. GhafourianN. HosseiniS.N. MahmoodiZ. MasnabadiN. ThaljiM.R. AbhariA.R. Al ZoubiW. ChongK.F. AliG.A.M. BakrZ.H. TiO2-Mica 450 composite for photocatalytic degradation of methylene blue using UV irradiation.Emergent Materials2023651527153610.1007/s42247‑023‑00552‑6
    [Google Scholar]
  15. FarsiM. Nezamzadeh-EjhiehA. A Z-scheme Cobalt(II) oxide-silver tungstate nano photocatalyst: Experimental design and mechanism study for the degradation of methylene blue.Surf. Interfaces20223210214810.1016/j.surfin.2022.102148
    [Google Scholar]
  16. MirsalariS.A. Nezamzadeh-EjhiehA. MassahA.R. A designed experiment for CdS-AgBr photocatalyst toward methylene blue.Environ. Sci. Pollut. Res. Int.20222922330133303210.1007/s11356‑021‑17569‑135018594
    [Google Scholar]
  17. EjhiehA.N. KhorsandiM. Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst.J. Hazard. Mater.20101761-362963710.1016/j.jhazmat.2009.11.07720005035
    [Google Scholar]
  18. JeongY. GongG. LeeH.J. SeongJ. HongS.W. LeeC. Transformation of microplastics by oxidative water and wastewater treatment processes: A critical review.J. Hazard. Mater.2023443Pt B13031310.1016/j.jhazmat.2022.13031336372022
    [Google Scholar]
  19. YuY. ZhongY. SunW. XieJ. WangM. GuoZ. A novel electrocoagulation process with centrifugal electrodes for wastewater treatment: Electrochemical behavior of anode and kinetics of heavy metal removal.Chemosphere202331013686210.1016/j.chemosphere.2022.13686236243084
    [Google Scholar]
  20. TamijiT. Nezamzadeh-EjhiehA. Electrocatalytic behavior of AgBr NPs as modifier of carbon past electrode in the presence of methanol and ethanol in aqueous solution: A kinetic study.J. Taiwan Inst. Chem. Eng.201910413013810.1016/j.jtice.2019.08.021
    [Google Scholar]
  21. Raeisi-KheirabadiN. Nezamzadeh-EjhiehA. AghaeiH. Electrochemical amperometric sensing of loratadine using NiO modified paste electrode as an amplified sensor.Iran. J. Cataly.202111181189
    [Google Scholar]
  22. DongG. LangK. GaoY. ZhangW. GuoD. LiJ. ChaiD.F. JingL. ZhangZ. WangY. A novel composite anode via immobilizing of Ce-doped PbO2 on CoTiO3 for efficiently electrocatalytic degradation of dye.J. Colloid Interface Sci.2022608Pt 32921293110.1016/j.jcis.2021.11.02334799045
    [Google Scholar]
  23. ZhangY. HeP. JiaL. LiC. LiuH. WangS. ZhouS. DongF. Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R.J. Colloid Interface Sci.201953375076110.1016/j.jcis.2018.09.00330199831
    [Google Scholar]
  24. DuanT. WenQ. ChenY. ZhouY. DuanY. Enhancing electrocatalytic performance of Sb-doped SnO2 electrode by compositing nitrogen-doped graphene nanosheets.J. Hazard. Mater.201428030431410.1016/j.jhazmat.2014.08.01825179102
    [Google Scholar]
  25. ZhongX. YangB. ZhangX. JiaJ. YiG. Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method.Particuology201210336537010.1016/j.partic.2011.09.005
    [Google Scholar]
  26. ZhouC. WangY. ChenJ. XuL. HuangH. NiuJ. High-efficiency electrochemical degradation of antiviral drug abacavir using a penetration flux porous Ti/SnO2–Sb anode.Chemosphere201922530431010.1016/j.chemosphere.2019.03.03630877924
    [Google Scholar]
  27. ZhiD. QinJ. ZhouH. WangJ. YangS. Removal of tetracycline by electrochemical oxidation using a Ti/SnO2–Sb anode: characterization, kinetics, and degradation pathway.J. Appl. Electrochem.201747121313132210.1007/s10800‑017‑1125‑7
    [Google Scholar]
  28. DuanY. WenQ. ChenY. DuanT. ZhouY. Preparation and characterization of TiN-doped Ti/SnO2-Sb electrode by dip coating for Orange II decolorization.Appl. Surf. Sci.201432074675510.1016/j.apsusc.2014.09.182
    [Google Scholar]
  29. ShaoD. LiW. WangZ. YangC. XuH. YanW. YangL. WangG. YangJ. FengL. WangS. LiY. JiaX. SongH. Variable activity and selectivity for electrochemical oxidation wastewater treatment using a magnetically assembled electrode based on Ti/PbO2 and carbon nanotubes.Separ. Purif. Tech.202230112200810.1016/j.seppur.2022.122008
    [Google Scholar]
  30. HosseiniM.G. HosseiniM.M. AhadzadeI. The use of silica in IrO2-based DSA type electrode: An efficient approach to construct cost-effective, potent electrodes for oxygen evolution reaction.Mater. Chem. Phys.202228512608610.1016/j.matchemphys.2022.126086
    [Google Scholar]
  31. KangX. WuJ. WeiZ. JiaB. FengQ. XuS. WangY. Modification of Ti/Sb-SnO2/PbO2 electrode by active granules and its application in wastewater containing copper ions.Catalysts202313351510.3390/catal13030515
    [Google Scholar]
  32. LiS. WangW. ZengX. MaX. Electro-catalytic degradation mechanism of nitenpyram in synthetic wastewater using Ti-based SnO 2 –Sb with rare earth-doped anode.Desalination Water Treat.20155471925193810.1080/19443994.2014.899514
    [Google Scholar]
  33. YaoY. ZhaoC. ZhuJ. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes.Electrochim. Acta20126914615110.1016/j.electacta.2012.02.103
    [Google Scholar]
  34. LiS. LiuY. WuY. ChenW. QinZ. GongN. YuD. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO2 nanobelt.Physica B2016489333810.1016/j.physb.2016.02.021
    [Google Scholar]
  35. ZhouY. LiZ. HaoC. ZhangY. ChaiS. HanG. XuH. LuJ. DangY. SunX. FuY. Electrocatalysis enhancement of α, β-PbO2 nanocrystals induced via rare earth Er(III) doping strategy: Principle, degradation application and electrocatalytic mechanism.Electrochim. Acta202033313553510.1016/j.electacta.2019.135535
    [Google Scholar]
  36. HanX. ZhouC. ChenY. WanY. ZhangB. ShiL. ShiS. Preparation of Yb–Sb co-doped Ti/SnO2 electrode for electrocatalytic degradation of sulfamethoxazole (SMX).Chemosphere202333913963310.1016/j.chemosphere.2023.13963337516322
    [Google Scholar]
  37. SongR. ChiH. MaQ. LiD. WangX. GaoW. WangH. WangX. LiZ. LiC. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis.J. Am. Chem. Soc.202114334136641367410.1021/jacs.1c0500834412472
    [Google Scholar]
  38. KhodamiZ. Nezamzadeh-EjhiehA. Investigation of photocatalytic effect of ZnO–SnO2/nano clinoptilolite system in the photodegradation of aqueous mixture of 4-methylbenzoic acid/2-chloro-5-nitrobenzoic acid.J. Mol. Catal. Chem.2015409596810.1016/j.molcata.2015.08.013
    [Google Scholar]
  39. DerikvandiH. Nezamzadeh-EjhiehA. A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles.J. Mol. Catal. Chem.201742615816910.1016/j.molcata.2016.11.011
    [Google Scholar]
  40. YaoM.H. BairdR.J. KunzF.W. HoostT.E. An XRD and TEM investigation of the structure of alumina-supported ceria–zirconia.J. Catal.19971661677410.1006/jcat.1997.1504
    [Google Scholar]
  41. ChenC.J. HuangJ.C. ChouH.S. LaiY.H. ChangL.W. DuX.H. ChuJ.P. NiehT.G. On the amorphous and nanocrystalline Zr–Cu and Zr–Ti co-sputtered thin films.J. Alloys Compd.20094831-233734010.1016/j.jallcom.2008.07.188
    [Google Scholar]
  42. HemmatpourP. Nezamzadeh-EjhiehA. ErshadiA. A brief study on the Eriochrome Black T photodegradation kinetic by CdS/BiVO4 coupled catalyst.Mater. Res. Bull.202215111183010.1016/j.materresbull.2022.111830
    [Google Scholar]
  43. VahabiradS. Nezamzadeh-EjhiehA. Co-precipitation synthesis of BiOI/(BiO)2CO3: Brief characterization and the kinetic study in the photodegradation and mineralization of sulfasalazine.J. Solid State Chem.202231012301810.1016/j.jssc.2022.123018
    [Google Scholar]
  44. Amani-BeniZ. Nezamzadeh-EjhiehA. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor.Anal. Chim. Acta20181031475910.1016/j.aca.2018.06.00230119743
    [Google Scholar]
  45. KumarK.V. PorkodiK. RochaF. Langmuir–Hinshelwood kinetics : A theoretical study.Catal. Commun.200891828410.1016/j.catcom.2007.05.019
    [Google Scholar]
  46. JinY. LvY. YangC. CaiW. ZhangZ. TongH. ZhouX. Fabrication of superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE electrode and application in wastewater treatment.J. Electron. Mater.20204942411241810.1007/s11664‑019‑07936‑7
    [Google Scholar]
  47. DuanX. WangW. WangQ. SuiX. LiN. ChangL. Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: Electrode characterization, degradation mechanism and toxicity.Chemosphere202026012758710.1016/j.chemosphere.2020.127587
    [Google Scholar]
  48. SongS. FanJ. HeZ. ZhanL. LiuZ. ChenJ. XuX. Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes.Electrochim. Acta201055113606361310.1016/j.electacta.2010.01.101
    [Google Scholar]
  49. de OliveiraG.R. FernandesN.S. MeloJ.V. da SilvaD.R. UrgegheC. Martínez-HuitleC.A. Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters.Chem. Eng. J.2011168120821410.1016/j.cej.2010.12.070
    [Google Scholar]
  50. SunG. WangC. GuW. SongQ. A facile electroless preparation of Cu, Sn and Sb oxides coated Ti electrode for electrocatalytic degradation of organic pollutants.Sci. Total Environ.202177214490810.1016/j.scitotenv.2020.14490833578158
    [Google Scholar]
  51. ChangJ.H. EllisA.V. HsiehY.H. TungC.H. ShenS.Y. Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD.Sci. Total Environ.2009407225914592010.1016/j.scitotenv.2009.07.04119712960
    [Google Scholar]
  52. PanG. JingX. DingX. ShenY. XuS. MiaoW. Synergistic effects of photocatalytic and electrocatalytic oxidation based on a three-dimensional electrode reactor toward degradation of dyes in wastewater.J. Alloys Compd.201980915174910.1016/j.jallcom.2019.151749
    [Google Scholar]
  53. ChenS. ZhouL. YangT. HeQ. ZhouP. HeP. DongF. ZhangH. JiaB. Thermal decomposition based fabrication of dimensionally stable Ti/SnO2–RuO2 anode for highly efficient electrocatalytic degradation of alizarin cyanin green.Chemosphere202026112820110.1016/j.chemosphere.2020.12820133113663
    [Google Scholar]
  54. BaiH. HeP. ChenJ. LiuK. LeiH. DongF. ZhangX. LiH. Fabrication of Sc2O3-magneli phase titanium composite electrode and its application in efficient electrocatalytic degradation of methyl orange.Appl. Surf. Sci.201740121822410.1016/j.apsusc.2017.01.019
    [Google Scholar]
  55. XuM. MaoY. SongW. OuYangX. HuY. WeiY. ZhuC. FangW. ShaoB. LuR. WangF. Preparation and characterization of Fe-Ce co-doped Ti/TiO2 NTs/PbO2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants.J. Electroanal. Chem. (Lausanne)201882319320210.1016/j.jelechem.2018.06.007
    [Google Scholar]
  56. DengD. LiY. WuM. SongY. HuangQ. DuanY. ChangY. ZhaoY. HeC. Electrocatalytic degradation of rhodamine B on the Sb-doped SnO2/Ti electrode in alkaline medium.ACS Omega2023850484804849010.1021/acsomega.3c0839138144056
    [Google Scholar]
  57. XuM. WangZ. WangF. HongP. WangC. OuyangX. ZhuC. WeiY. HunY. FangW. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation.Electrochim. Acta201620124025010.1016/j.electacta.2016.03.168
    [Google Scholar]
  58. SalazarR. Ureta-ZañartuM.S. González-VargasC. BritoC.N. Martinez-HuitleC.A. Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway.Chemosphere2018198212910.1016/j.chemosphere.2017.12.09229421732
    [Google Scholar]
  59. WangC. WangF. XuM. ZhuC. FangW. WeiY. Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition.J. Electroanal. Chem. 201575915816610.1016/j.jelechem.2015.11.009
    [Google Scholar]
  60. LiuY. FanX. QuanX. FanY. ChenS. ZhaoX. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond.Environ. Sci. Technol.20195395195520110.1021/acs.est.8b0613030957993
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137302282240422063450
Loading
/content/journals/cnano/10.2174/0115734137302282240422063450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test