- Home
- A-Z Publications
- Current Neuropharmacology
- Previous Issues
- Volume 21, Issue 12, 2023
Current Neuropharmacology - Volume 21, Issue 12, 2023
Volume 21, Issue 12, 2023
-
-
Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.
-
-
-
Machine Learning and Pharmacogenomics at the Time of Precision Psychiatry
Traditional medicine and biomedical sciences are reaching a turning point because of the constantly growing impact and volume of Big Data. Machine Learning (ML) techniques and related algorithms play a central role as diagnostic, prognostic, and decision-making tools in this field. Another promising area becoming part of everyday clinical practice is personalized therapy and pharmacogenomics. Applying ML to pharmacogenomics opens new frontiers to tailored therapeutical strategies to help clinicians choose drugs with the best response and fewer side effects, operating with genetic information and combining it with the clinical profile. This systematic review aims to draw up the state-of-the-art ML applied to pharmacogenomics in psychiatry. Our research yielded fourteen papers; most were published in the last three years. The sample comprises 9,180 patients diagnosed with mood disorders, psychoses, or autism spectrum disorders. Prediction of drug response and prediction of side effects are the most frequently considered domains with the supervised ML technique, which first requires training and then testing. The random forest is the most used algorithm; it comprises several decision trees, reduces the training set's overfitting, and makes precise predictions. ML proved effective and reliable, especially when genetic and biodemographic information were integrated into the algorithm. Even though ML and pharmacogenomics are not part of everyday clinical practice yet, they will gain a unique role in the next future in improving personalized treatments in psychiatry.
-
-
-
Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia
More LessSchizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.
-
-
-
Hexahydrocannabinol Pharmacology, Toxicology, and Analysis: The First Evidence for a Recent New Psychoactive Substance
Background: During the last two years, hexahydrocannabinol (HHC), the hydrogenated derivative of tetrahydrocannabinol has been freely sold by internet websites as a “legal” replacement to THC and cannabis in a range of highly attractive branded and unbranded products, some of which are sold as “legal highs”. Potentially, there could be a large demand for HHC products by individuals in Europe and internationally. Methods: Studies reporting HHC pharmacology, toxicology and analysis were identified from Pubmed and Scopus databases, and official international organizations’ websites were considered. Results: HHC showed the effects of the typical cannabinoid on the central nervous system, with lower potency than Δ9-THC. A few studies highlighted that 9(R)-HHC is more potent than 9(S)-HHC. This molecule showed an affinity for cannabinoid receptor CB1 both in vitro and in vivo, suggesting a possible therapeutic effect in several pathologies. However, the affinity for the CB1 receptor suggests a possible addiction potential, inducing the users to misuse it. Since actual intoxication cases have not yet been reported, the HHC harmful potential was not described, probably due to the lack of effective analytical methods to detect HHC in biological matrices. Conversely, different analytical assays were developed and validated to separate HHC epimers in natural and non-natural sources. Conclusion: Similarly to other NPS, the HHC represents a cheaper alternative to the controlled Δ9-THC. Its monitoring is a crucial challenge for toxicological and forensic purposes. To this concern, it is essential to further investigate HHC to support health providers in the identification of related intoxications.
-
-
-
Cognitive Effects of Lurasidone and Cariprazine: A Mini Systematic Review
Cognitive deficits are associated with schizophrenia and show a progressive worsening, often being unresponsive to treatment. New antipsychotic molecules acting as antagonist at the serotoninergic 5-hydroxytryptamine receptor 7 (e.g. lurasidone) or partial agonists at dopamine D3 receptor (e.g. cariprazine) could have an impact on cognition in this patient group. The aim of the systematic review is to explore the efficacy of lurasidone and cariprazine in improving cognition in both animal models and human studies. The following terms: (lurasidone AND cognit*) OR (cariprazine AND cognit*) were searched in Web of Science from inception to December 2021. We included all studies that assessed changes in cognitive function after treatment with cariprazine or lurasidone. Of 201 selected articles, 36 were included. Twenty-four articles used animal models (rats, mice and marmosets), five evaluating the effects of cariprazine and 19 the effects of lurasidone. Twelve articles were clinical studies (cariprazine n = 2; lurasidone n = 10). In both animal and human studies lurasidone showed a greater efficacy on cognitive performance compared to placebo, quetiapine, ziprasidone or treatmentas- usual. Cariprazine was superior to other antipsychotics in improving cognitive functions in both animal and human studies. The cognitive effect of lurasidone could be explained by its potent antagonism at the 5-HT7 receptors combined with partial agonism at 5-HT1A receptors. The pro-cognitive effect of cariprazine is probably explained by its very high affinity for D3 receptors. Head-to-head studies comparing lurasidone and cariprazine are needed to establish the “first-choice” treatment for cognitive dysfunction associated with schizophrenia.
-
-
-
Virtual Screening-Based Drug Development for the Treatment of Nervous System Diseases
Authors: Qian Li, Zhaobin Ma, Shuhua Qin and Wei-Jiang ZhaoThe incidence rate of nervous system diseases has increased in recent years. Nerve injury or neurodegenerative diseases usually cause neuronal loss and neuronal circuit damage, which seriously affect motor nerve and autonomic nervous function. Therefore, safe and effective treatment is needed. As traditional drug research becomes slower and more expensive, it is vital to enlist the help of cutting- edge technology. Virtual screening (VS) is an attractive option for the identification and development of promising new compounds with high efficiency and low cost. With the assistance of computer- aided drug design (CADD), VS is becoming more and more popular in new drug development and research. In recent years, it has become a reality to transform non-neuronal cells into functional neurons through small molecular compounds, which provides a broader application prospect than transcription factor-mediated neuronal reprogramming. This review mainly summarizes related theory and technology of VS and the drug research and development using VS technology in nervous system diseases in recent years, and focuses more on the potential application of VS technology in neuronal reprogramming, thus facilitating new drug design for both prevention and treatment of nervous system diseases.
-
-
-
The Relationship of Astrocytes and Microglia with Different Stages of Ischemic Stroke
Authors: Zhen Liang, Yingyue Lou, Yulei Hao, Hui Li, Jiachun Feng and Songyan LiuIschemic stroke is the predominant cause of severe morbidity and mortality worldwide. Post-stroke neuroinflammation has recently received increasing attention with the aim of providing a new effective treatment strategy for ischemic stroke. Microglia and astrocytes are major components of the innate immune system of the central nervous system. They can be involved in all phases of ischemic stroke, from the early stage, contributing to the first wave of neuronal cell death, to the late stage involving phagocytosis and repair. In the early stage of ischemic stroke, a vicious cycle exists between the activation of microglia and astrocytes (through astrocytic connexin 43 hemichannels), aggravating neuroinflammatory injury post-stroke. However, in the late stage of ischemic stroke, repeatedly activated microglia can induce the formation of glial scars by triggering reactive astrogliosis in the peri-infarct regions, which may limit the movement of activated microglia in reverse and restrict the diffusion of inflammation to healthy brain tissues, alleviating the neuroinflammatory injury poststroke. In this review, we elucidated the various roles of astrocytes and microglia and summarized their relationship with neuroinflammation. We also examined how astrocytes and microglia influence each other at different stages of ischemic stroke. Several potential therapeutic approaches targeting astrocytes and microglia in ischemic stroke have been reviewed. Understanding the details of astrocytemicroglia interaction processes will contribute to a better understanding of the mechanisms underlying ischemic stroke, contributing to the identification of new therapeutic interventions.
-
-
-
Probiotic Influences on Motor Skills: A Review
Authors: Robert Lalonde and Catherine StrazielleThe effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson’s disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson’s disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.
-
-
-
A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management
Background: Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. Objective: The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. Method: This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. Results: A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. Conclusion: Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
-
-
-
Nabiximols is Efficient as Add-On Treatment for Patients with Multiple Sclerosis Spasticity Refractory to Standard Treatment: A Systematic Review and Meta-Analysis of Randomised Clinical Trials
Background: Spasticity affects 54% of multiple sclerosis (MS) patients at disease onset, but this rate gradually increases with disease progression. Spasticity does not fully respond to standard treatment in one-third of the patients. Objective: Our systematic review and meta-analysis assessed whether add-on nabiximols, can improve MS-associated refractory spasticity. Methods: The systematic literature search was performed in Web of Science, MEDLINE, Scopus, CENTRAL, and Embase, on 15/10/2021, without restrictions. We included in the review blinded, randomized, placebo-controlled trials evaluating the efficacy of nabiximols in adult MS patients with refractory spasticity, by comparison with placebo. The primary outcome was responder rate by spasticity numerical rating scale (NRS). Secondary outcomes were spasticity-related parameters. We used random effect models to calculate odds ratios (OR) or mean differences and the corresponding 95% CI. Bias-factors were assessed with Cochrane risk of bias tool (RoB2). (PROSPERO ID: CRD42021282177). Results: We identified 9 eligible articles, of which 7 (1128 patients) were included in the meta-analysis. The spasticity numerical rating scale (NRS) was significantly higher in the nabiximols group than in the placebo group (OR 2.41 (95% CI 1.39; 4.18)). Secondary outcomes were in accordance with our primary results. At least some concerns were detected in the risk of bias analysis. Conclusion: Our results indicate that nabiximols is efficient in MS associated spasticity, refractory to standard treatment and it may be considered as add-on symptomatic therapy. Nevertheless, further studies are needed to establish the optimal treatment protocol – dose, duration, moment of initiation, disease type.
-
-
-
Bipolar Disorder and Manic-Like Symptoms in Alzheimer’s, Vascular and Frontotemporal Dementia: A Systematic Review
Background: An increased risk of manic episodes has been reported in patients with neurodegenerative disorders, but the clinical features of bipolar disorder (BD) in different subtypes of dementia have not been thoroughly investigated. Objectives: The main aim of this study is to systematically review clinical and therapeutic evidence about manic syndromes in patients with Alzheimer’s disease (AD), vascular dementia (VaD), and frontotemporal dementia (FTD). Since manic-mixed episodes have been associated to negative outcomes in patients with dementia and often require medical intervention, we also critically summarized selected studies with relevance for the treatment of mania in patients with cognitive decline. Methods: A systematic review of the literature was conducted according to PRISMA guidelines. PubMed, Scopus, and Web of Science databases were searched up to February 2022. Sixty-one articles on patients with AD, VaD, or FTD and BD or (hypo) mania have been included. Results: Manic symptoms seem to be associated to disease progression in AD, have a greatly variable temporal relationship with cognitive decline in VaD, and frequently coincide with or precede cognitive impairment in FTD. Overall, mood stabilizers, and electroconvulsive therapy may be the most effective treatments, while the benefits of short-term treatment with antipsychotic agents must be balanced with the associated risks. Importantly, low-dose lithium salts may exert neuroprotective activity in patients with AD. Conclusion: Prevalence, course, and characteristics of manic syndromes in patients with dementia may be differentially affected by the nature of the underlying neurodegenerative conditions.
-
-
-
Does Patisiran Reduce Ocular Transthyretin Synthesis? A Pilot Study of Two Cases
Background: Variant transthyretin-mediated amyloidosis (ATTR-v) is a well-characterized disease affecting the neurologic and cardiovascular systems. Patisiran has been approved for neurologic involvement as it reduces hepatic synthesis of transthyretin (TTR). Eye involvement is a lateonset feature increasing the risk of glaucoma and cataracts in patients. Aims: The aim of this case series was to assess whether patisiran can effectively reduce TTR synthesis in such a barrier-protected organ as the eye. Methods: Two patisiran-treated ATTR-v patients underwent serum and aqueous humor sampling to measure TTR levels detected by SDS-PAGE and immunoblotting. Serum samples were compared to healthy control (HC), whereas aqueous humor samples were compared to non-amyloidotic subjects affected by cataracts and glaucoma. Results: Serum TTR levels representative of hepatic synthesis were sharply lower in treated patients if compared to the HC (-87.5% and -93.75%, respectively). Aqueous humor TTR levels showed mild-tono reduction in treated patients compared to non-amyloidotic subjects with cataracts (-34.9% and +8.1%, respectively) and glaucoma (-41.1% and -2.1%). Conclusion: Patisiran does not seem to be as effective in inhibiting ocular TTR synthesis as it is in inhibiting hepatic synthesis. Re-engineering the envelope could allow the drug to target RPE cells thus avoiding any ocular involvement.
-
-
-
OL-FS13 Alleviates Cerebral Ischemia-reperfusion Injury by Inhibiting miR-21-3p Expression
Authors: Naixin Liu, Yan Fan, Yilin Li, Yingxuan Zhang, Jiayi Li, Yinglei Wang, Zhuo Wang, Yixiang Liu, Yuansheng Li, Zijian Kang, Ying Peng, Zeqiong Ru, Meifeng Yang, Chengan Feng, Ying Wang and Xinwang YangBackground: OL-FS13, a neuroprotective peptide derived from Odorrana livida, can alleviate cerebral ischemia-reperfusion (CI/R) injury, although the specific underlying mechanism remains to be further explored. Objective: The effect of miR-21-3p on the neural-protective effects of OL-FS13 was examined. Methods: In this study, the multiple genome sequencing analysis, double luciferase experiment, RT-qPCR, and Western blotting were used to explore the mechanism of OL-FS13. Results: Showed that over-expression of miR-21-3p against the protective effects of OL-FS13 on oxygen- glucose deprivation/re-oxygenation (OGD/R)-damaged pheochromocytoma (PC12) cells and in CI/R-injured rats. miR-21-3p was then found to target calcium/calmodulin-dependent protein kinase 2 (CAMKK2), and its overexpression inhibited the expression of CAMKK2 and phosphorylation of its downstream adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK), thereby inhibiting the therapeutic effects of OL-FS13 on OGD/R and CI/R. Inhibition of CAMKK2 also antagonized up-regulated of nuclear factor erythroid 2-related factor 2 (Nrf-2) by OL-FS13, thereby abolishing the antioxidant activity of the peptide. Conclusion: Our results showed that OL-FS13 alleviated OGD/R and CI/R by inhibiting miR-21-3p to activate the CAMKK2/AMPK/Nrf-2 axis.
-
-
-
Ofatumumab and Early Immunological Cells Subset Characterization in Naïve Relapsing Multiple Sclerosis Patients: A Real-World Study
Authors: Emanuele D´ Amico, Aurora Zanghì, Roberta Fantozzi, Diego Centonze and Carlo AvolioBackground: Ofatumumab (OFA) is a fully human anti-CD20 monoclonal antibody administered with a 20 mg subcutaneous monthly dosing regimen. Methods: Inclusion criteria were patients: 1) aged 18-55; 2) with a confirmed diagnosis of relapsing Multiple Sclerosis (RMS), per the revised 2010 McDonald criteria; 2) who started OFA according to Italian Medicines Agency prescription rules and within 12 months from the RMS diagnosis; 3) naïve to any disease-modifying therapy. The primary outcome was to offer an overview of cellular subsets of RMS naïve patients (time 0) and then after 4 weeks (time 1) and 12 weeks (time 2) on therapy with OFA in a real-world setting. Results: Fifteen patients were enrolled. CD3+ T cell frequencies were higher at time 1 (%80.4, SD 7.7) and time 2 (%82.6, SD 5.8) when compared to time 0 (%72.4, SD 9.8), p = .013. B naïve cells were barely detectable in the OFA group at time 1 (%0.4, SD 0.5) and 2 (%1.4, SD 2.9) when compared to time 0 (%11.5, SD 3.8), p < .001. Conclusion: The progressive and increasing use of anti-CD20 drugs imposes the need for larger, prospective, real-world, long-term studies to characterize further immunophenotypes of patients with RMS treated with OFA.
-
-
-
MiR-142-3p is a Critical Modulator of TNF-mediated Neuronal Toxicity in Multiple Sclerosis
Authors: Francesca De Vito, Sara Balletta, Silvia Caioli, Alessandra Musella, Livia Guadalupi, Valentina Vanni, Diego Fresegna, Mario S. Bassi, Luana Gilio, Krizia Sanna, Antonietta Gentile, Antonio Bruno, Ettore Dolcetti, Fabio Buttari, Luigi Pavone, Roberto Furlan, Annamaria Finardi, Emerald Perlas, Eran Hornstein, Diego Centonze and Georgia MandolesiBackground: TNF-dependent synaptotoxicity contributes to the neuronal damage occurring in patients with Multiple Sclerosis (pwMS) and its mouse model Experimental Autoimmune Encephalomyelitis (EAE). Here, we investigated miR-142-3p, a synaptotoxic microRNA induced by inflammation in EAE and MS, as a potential downstream effector of TNF signalling. Methods: Electrophysiological recordings, supported by molecular, biochemical and histochemical analyses, were performed to explore TNF-synaptotoxicity in the striatum of EAE and healthy mice. MiR-142 heterozygous (miR-142 HE) mice and/or LNA-anti miR-142-3p strategy were used to verify the TNF-miR-142-3p axis hypothesis. The cerebrospinal fluid (CSF) of 151 pwMS was analysed to evaluate possible correlation between TNF and miR-142-3p levels and their impact on clinical parameters (e.g. progression index (PI), age-related clinical severity (gARMSS)) and MRI measurements at diagnosis (T0). Results: High levels of TNF and miR-142-3p were detected in both EAE striatum and MS-CSF. The TNF-dependent glutamatergic alterations were prevented in the inflamed striatum of EAE miR-142 HE mice. Accordingly, TNF was ineffective in healthy striatal slices incubated with LNA-anti miR- 142-3p. However, both preclinical and clinical data did not validate the TNF-miR-142-3p axis hypothesis, suggesting a permissive neuronal role of miR-142-3p on TNF-signalling. Clinical data showed a negative impact of each molecule on disease course and/or brain lesions and unveiled that their high levels exert a detrimental synergistic effect on disease activity, PI and white matter lesion volume. Conclusion: We propose miR-142-3p as a critical modulator of TNF-mediated neuronal toxicity and suggest a detrimental synergistic action of these molecules on MS pathology.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)