- Home
- A-Z Publications
- Current Neuropharmacology
- Previous Issues
- Volume 20, Issue 2, 2022
Current Neuropharmacology - Volume 20, Issue 2, 2022
Volume 20, Issue 2, 2022
-
-
Sleep, Narcolepsy, and Sodium Oxybate
More LessSodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
-
-
-
Progression in Moyamoya Disease: Clinical Features, Neuroimaging Evaluation, and Treatment
Authors: Xin Zhang, Weiping Xiao, Qing Zhang, Ding Xia, Peng Gao, Jiabin Su, Heng Yang, Xinjie Gao, Wei Ni, Yu Lei and Yuxiang GuMoyamoya disease (MMD) is a chronic cerebrovascular disease characterized by progressive stenosis of the arteries of the circle of Willis, with the formation of collateral vascular network at the base of the brain. Its clinical manifestations are complicated. Numerous studies have attempted to clarify the clinical features of MMD, including its epidemiology, genetic characteristics, and pathophysiology. With the development of neuroimaging techniques, various neuroimaging modalities with different advantages have deepened the understanding of MMD in terms of structural, functional, spatial, and temporal dimensions. At present, the main treatment for MMD focuses on neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as pharmacological treatment, surgical revascularization, and cognitive rehabilitation. In this review, we discuss recent progress in understanding the clinical features, in the neuroimaging evaluation and treatment of MMD.
-
-
-
PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer’s Disease
Progressive degeneration and dysfunction of the nervous system because of oxidative stress, aggregations of misfolded proteins, and neuroinflammation are the key pathological features of neurodegenerative diseases. Alzheimer's disease is a chronic neurodegenerative disorder driven by uncontrolled extracellular deposition of β-amyloid (Aβ) in the amyloid plaques and intracellular accumulation of hyperphosphorylated tau protein. Curcumin is a hydrophobic polyphenol with noticeable neuroprotective and anti-inflammatory effects that can cross the blood-brain barrier. Therefore, it is widely studied for the alleviation of inflammatory and neurological disorders. However, the clinical application of curcumin is limited due to its low aqueous solubility and bioavailability. Recently, nano-based curcumin delivery systems are developed to overcome these limitations effectively. This review article discusses the effects and potential mechanisms of curcumin-loaded PLGA nanoparticles in Alzheimer’s disease.
-
-
-
Flavonoids, the Family of Plant-Derived Antioxidants Making Inroads into Novel Therapeutic Design Against Ionizing Radiation-Induced Oxidative Stress in Parkinson’s Disease
Authors: Tapan Behl, Gagandeep Kaur, Aayush Sehgal, Gokhan Zengin, Sukhbir Singh, Amirhossein Ahmadi and Simona BungauBackground: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation- induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for indepth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
-
-
-
In Vitro, In Vivo and Ex Vivo Models for Peripheral Nerve Injury and Regeneration
Authors: Andrew Li, Clifford Pereira, Elise E. Hill, Olivia Vukcevich and Aijun WangPeripheral Nerve Injuries (PNI) frequently occur secondary to traumatic injuries. Recovery from these injuries can be expectedly poor, especially in proximal injuries. In order to study and improve peripheral nerve regeneration, scientists rely on peripheral nerve models to identify and test therapeutic interventions. In this review, we discuss the best described and most commonly used peripheral nerve models that scientists have and continue to use to study peripheral nerve physiology and function.
-
-
-
cGAS-STING-mediated IFN-I Response in Host Defense and Neuroinflammatory Diseases
Authors: Kai Chen, Chuan Lai, Ying Su, Wen D. Bao, Liu Nan Yang, Ping-Ping Xu and Ling-Qiang ZhuThe presence of foreign or misplaced nucleic acids is a dangerous signal that triggers innate immune responses by activating cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and binding to its downstream signaling effector stimulator of interferon genes (STING). Then the cGAS-STING pathway activation links nucleic acid-sensing to immune responses and pathogenic entities clearance. However, the overactivation of this signaling pathway leads to fatal immune disorders and contributes to the progression of many human inflammatory diseases. Therefore, optimal activation of this pathway is crucial for the elimination of invading pathogens and the maintenance of immune homeostasis. In this review, we will summarize its fundamental roles in initiating host defense against invading pathogens and discuss its pathogenic roles in multiple neuro-inflammatory diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and other neurodegenerative diseases.
-
-
-
Interleukin-17A in Alzheimer’s Disease: Recent Advances and Controversies
Authors: Xin-Zhu Yan, Laijun Lai, Qiang Ao, Xiao-Hong Tian and Yan-Hui ZhangAlzheimer’s disease (AD) is a progressive neurodegenerative disease that mainly affects older adults. Although the global burden of AD is increasing year by year, the causes of AD remain largely unknown. Numerous basic and clinical studies have shown that interleukin-17A (IL-17A) may play a significant role in the pathogenesis of AD. A comprehensive assessment of the role of IL-17A in AD would benefit the diagnosis, understanding of etiology and treatment. However, over the past decade, controversies remain regarding the expression level and role of IL-17A in AD. We have incorporated newly published researches and point out that IL-17A expression levels may vary along with the development of AD, exercising different roles at different stages of AD, although much more work remains to be done to support the potential role of IL-17A in AD-related pathology. Here, it is our intention to review the underlying mechanisms of IL-17A in AD and address the current controversies in an effort to clarify the results of existing research and suggest future studies.
-
-
-
Depression and Pain: Use of Antidepressants
Background: Emotional disorders are common comorbid affectations that exacerbate the severity and persistence of chronic pain. Specifically, depressive symptoms can lead to an excessive duration and intensity of pain. Clinical and preclinical studies have been focused on the underlying mechanisms of chronic pain and depression comorbidity and the use of antidepressants to reduce pain. Aim: This review provides an overview of the comorbid relationship of chronic pain and depression, the clinical and pre-clinical studies performed on the neurobiological aspects of pain and depression, and the use of antidepressants as analgesics. Methods: A systematic search of literature databases was conducted according to pre-defined criteria. The authors independently conducted a focused analysis of the full-text articles. Results: Studies suggest that pain and depression are highly intertwined and may co-exacerbate physical and psychological symptoms. One important biochemical basis for pain and depression focuses on the serotonergic and norepinephrine system, which have been shown to play an important role in this comorbidity. Brain structures that codify pain are also involved in mood. It is evident that using serotonergic and norepinephrine antidepressants are strategies commonly employed to mitigate pain Conclusion: Literature indicates that pain and depression impact each other and play a prominent role in the development and maintenance of other chronic symptoms. Antidepressants continue to be a major therapeutic tool for managing chronic pain. Tricyclic antidepressants (TCAs) are more effective in reducing pain than Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin- Noradrenaline Reuptake Inhibitors (SNRIs).
-
-
-
Changes in Histaminergic System in Neuropsychiatric Disorders and the Potential Treatment Consequences
Authors: Ling Shan and Dick F. SwaabIn contrast to that of other monoamine neurotransmitters, the association of the histaminergic system with neuropsychiatric disorders is not well documented. In the last two decades, several clinical studies involved in the development of drugs targeting the histaminergic system have been reported. These include the H3R-antagonist/inverse agonist, pitolisant, used for the treatment of excessive sleepiness in narcolepsy, and the H1R antagonist, doxepin, used to alleviate symptoms of insomnia. The current review summarizes reports from animal models, including genetic and neuroimaging studies, as well as human brain samples and cerebrospinal fluid measurements from clinical trials, on the possible role of the histaminergic system in neuropsychiatric disorders. These studies will potentially pave the way for novel histamine-related therapeutic strategies.
-
-
-
SARS-Cov-2 Damage on the Nervous System and Mental Health
The World Health Organization declared the pandemic situation caused by SARSCoV- 2 (Severe Acute Respiratory Syndrome Coronavirus-2) in March 2020, but the detailed pathophysiological mechanisms of Coronavirus disease 2019 (COVID-19) are not yet completely understood. Therefore, to date, few therapeutic options are available for patients with mildmoderate or serious disease. In addition to systemic and respiratory symptoms, several reports have documented various neurological symptoms and impairments of mental health. The current review aims to provide the available evidence about the effects of SARS-CoV-2 infection on mental health. The present data suggest that SARS-CoV-2 produces a wide range of impairments and disorders of the brain. However, a limited number of studies investigated the neuroinvasive potential of SARS-CoV-2. Although the main features and outcomes of COVID-19 are linked to severe acute respiratory illness, the possible damages on the brain should be considered, too.
-
-
-
Do Naturally Occurring Antioxidants Protect Against Neurodegeneration of the Dopaminergic System? A Systematic Revision in Animal Models of Parkinson's Disease
Authors: Carmen Costas and Lilian R.F. FaroParkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by a significant decrease in dopamine levels, caused by progressive degeneration of the dopaminergic neurons in the nigrostriatal pathway. Multiple mechanisms have been implicated in its pathogenesis, including oxidative stress, neuroinflammation, protein aggregation, mitochondrial dysfunction, insufficient support for neurotrophic factors and cell apoptosis. The absence of treatments capable of slowing or stopping the progression of PD has increased the interest in the natural antioxidant substances present in the diet, since they have multiple beneficial properties and it is possible that they can influence the mechanisms responsible for the dysfunction and death of dopaminergic neurons. Thus, the purpose of this systematic review is to analyze the results obtained in a set of studies carried out in the last years, which describe the neuroprotective, antioxidant and regenerative functions of some naturally occurring antioxidants in experimental models of PD. The results show that the exogenous no enzymatic antioxidants can significantly modify the biochemical and behavioral mechanisms that contribute to the pathophysiology of Parkinsonism in experimental animals. Therefore, it is possible that they may contribute to effective neuroprotection by providing a significant improvement in neuropathological markers. In conclusion, the results of this review suggest that exogenous antioxidants can be promising therapeutic candidates for the prevention and treatment of PD.
-
-
-
Optimal Dose of Erenumab for Preventive Treatment of Episodic Migraine: A Systematic Review and Meta-Analysis
Authors: Yanbo Yang, Mingjia Chen, Da Wu, Yue Sun, Fan Jiang, Zhouqing Chen and Zhong WangBackground: Erenumab is a novel monoclonal calcitonin gene-related peptide receptor antibody that is used for the preventive treatment of migraine. Objectives: This study aimed to evaluate the overall safety, efficacy, and dose-response relationship of erenumab in patients with episodic migraine and patients with prior migraine treatment failures. Methods: We searched randomized clinical trials on PUBMED, EMBASE database, and Cochrane Library database. A pair-wise meta-analysis and Bayesian network analysis were performed. Results: For efficacy outcomes, the network meta-analysis suggests that in comparison to erenumab 70 mg, participants who received erenumab 140 mg reported a significant decrease in monthly acute Migraine-Specific Medication Days (MSMD) and 50% increase in response rate, and erenumab was most likely to be ranked first for Monthly Migraine Days (MMD), MSMD, and 50% response rate. For safety outcomes, the network meta-analysis has found no significant difference between the 70 mg group and the 140 mg group measured by adverse events and serious adverse events. In the 140 mg erenumab group, a significant decreased in MMD and MSMD and 50% and 75% increased in response rate were reported in patients with ≥ 2 treatment failures compared to placebo. For safety outcomes, no significant difference was found between the 140 mg erenumab group and the placebo group. Conclusion: Erenumab was effective in patients with episodic migraine. A total of 140 mg erenumab was associated with better efficacy outcomes without any increased risk for developing adverse events compared to 70 mg erenumab. Furthermore, 140 mg erenumab was effective in patients with prior migraine treatment failures.
-
-
-
Erratum
Due to an oversight, the title of an editorial was the same as the title of one of the manuscripts entitled as Current and Emerging Treatments for Methamphetamine Use Disorder, and now it has been replaced with the new one entitled “Insights Into the Complexity of Methamphetamine Actions in the Brain and Periphery in the Face of a 3rd Methamphetamine Abuse Epidemic, guest-edited by Dr. Anna Moszczynska, which was published in Current Neuropharmacology, 2021, Vol.19, No. 12.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)