Skip to content
2000
image of Microbiota-Gut-Brain Axis in Age-Related Neurodegenerative Diseases

Abstract

Background

Age-related neurodegenerative diseases (NDs) pose a formidable challenge to healthcare systems worldwide due to their complex pathogenesis, significant morbidity, and mortality.

Scope and Approach

This comprehensive review aims to elucidate the central role of the microbiota-gut-brain axis (MGBA) in ND pathogenesis. Specifically, it delves into the perturbations within the gut microbiota and its metabolomic landscape, as well as the structural and functional transformations of the gastrointestinal and blood-brain barrier interfaces in ND patients. Additionally, it provides a comprehensive overview of the recent advancements in medicinal and dietary interventions tailored to modulate the MGBA for ND therapy.

Conclusion

Accumulating evidence underscores the pivotal role of the gut microbiota in ND pathogenesis through the MGBA. Dysbiosis of the gut microbiota and associated metabolites instigate structural modifications and augmented permeability of both the gastrointestinal barrier and the blood-brain barrier (BBB). These alterations facilitate the transit of microbial molecules from the gut to the brain neural, endocrine, and immune pathways, potentially contributing to the etiology of NDs. Numerous investigational strategies, encompassing prebiotic and probiotic interventions, pharmaceutical trials, and dietary adaptations, are actively explored to harness the microbiota for ND treatment. This work endeavors to enhance our comprehension of the intricate mechanisms underpinning ND pathogenesis, offering valuable insights for the development of innovative therapeutic modalities targeting these debilitating disorders.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241101093436
2024-11-04
2025-01-08
Loading full text...

Full text loading...

References

  1. Cottler L.B. Zunt J. Weiss B. Kamal A.K. Vaddiparti K. Building global capacity for brain and nervous system disorders research. Nature 2015 527 7578 S207 S213 10.1038/nature16037 26580329
    [Google Scholar]
  2. Zhang H. Chen Y. Wang Z. Xie G. Liu M. Yuan B. Chai H. Wang W. Cheng P. Implications of gut microbiota in neurodegenerative diseases. Front. Immunol. 2022 13 785644 10.3389/fimmu.2022.785644 35237258
    [Google Scholar]
  3. Chen W.W. Zhang X. Huang W.J. Role of neuroinflammation in neurodegenerative diseases (Review) Mol. Med. Rep. 2016 13 4 3391 3396 10.3892/mmr.2016.4948 26935478
    [Google Scholar]
  4. Przedborski S. Vila M. Jackson-Lewis V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest. 2003 111 1 3 10 10.1172/JCI200317522 12511579
    [Google Scholar]
  5. Ross C.A. Poirier M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004 10 Suppl. S10 S17 10.1038/nm1066
    [Google Scholar]
  6. Chang C.W. Shao E. Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021 371 6532 eabb8255 10.1126/science.abb8255 33632820
    [Google Scholar]
  7. Cline E.N. Bicca M.A. Viola K.L. Klein W.L. The amyloid-β oligomer hypothesis: Beginning of the third decade. J. Alzheimers Dis. 2018 64 s1 S567 S610 10.3233/JAD‑179941 29843241
    [Google Scholar]
  8. Elfawy H.A. Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci. 2019 218 165 184 10.1016/j.lfs.2018.12.029 30578866
    [Google Scholar]
  9. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003 4 1 49 60 10.1038/nrn1007 12511861
    [Google Scholar]
  10. Soto C. Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 2018 21 10 1332 1340 10.1038/s41593‑018‑0235‑9 30250260
    [Google Scholar]
  11. Brown G.C. The endotoxin hypothesis of neurodegeneration. J. Neuroinflammation 2019 16 1 180 10.1186/s12974‑019‑1564‑7 31519175
    [Google Scholar]
  12. Mulder D. Aarts E. Arias Vasquez A. Bloemendaal M. A systematic review exploring the association between the human gut microbiota and brain connectivity in health and disease. Mol. Psychiatry 2023 28 12 5037 5061 10.1038/s41380‑023‑02146‑4 37479779
    [Google Scholar]
  13. Tan A.H. Lim S.Y. Lang A.E. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nat. Rev. Neurol. 2022 18 8 476 495 10.1038/s41582‑022‑00681‑2 35750883
    [Google Scholar]
  14. Chen Z. Maqbool J. Sajid F. Hussain G. Sun T. Human gut microbiota and its association with pathogenesis and treatments of neurodegenerative diseases. Microb. Pathog. 2021 150 104675 10.1016/j.micpath.2020.104675 33352217
    [Google Scholar]
  15. Goyal D. Ali S.A. Singh R.K. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 106 110112 10.1016/j.pnpbp.2020.110112 32949638
    [Google Scholar]
  16. Megur A. Baltriukienė D. Bukelskienė V. Burokas A. The microbiota–gut–brain axis and alzheimer’s disease: Neuroinflammation is to blame? Nutrients 2020 13 1 37 10.3390/nu13010037 33374235
    [Google Scholar]
  17. Chidambaram S.B. Essa M.M. Rathipriya A.G. Bishir M. Ray B. Mahalakshmi A.M. Tousif A.H. Sakharkar M.K. Kashyap R.S. Friedland R.P. Monaghan T.M. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol. Ther. 2022 231 107988 10.1016/j.pharmthera.2021.107988 34536490
    [Google Scholar]
  18. Zhu G. Zhao J. Zhang H. Wang G. Chen W. Gut microbiota and its metabolites: Bridge of dietary nutrients and Alzheimer’s disease. Adv. Nutr. 2023 14 4 819 839 10.1016/j.advnut.2023.04.005 37075947
    [Google Scholar]
  19. Intili G. Paladino L. Rappa F. Alberti G. Plicato A. Calabrò F. Fucarino A. Cappello F. Bucchieri F. Tomasello G. Carini F. Pitruzzella A. From dysbiosis to neurodegenerative diseases through different communication pathways: An overview. Biology 2023 12 2 195 10.3390/biology12020195 36829474
    [Google Scholar]
  20. Sorboni S.G. Moghaddam H.S. Jafarzadeh-Esfehani R. Soleimanpour S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin. Microbiol. Rev. 2022 35 1 e00338 e20 10.1128/CMR.00338‑20 34985325
    [Google Scholar]
  21. Postler T.S. Ghosh S. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metab. 2017 26 1 110 130 10.1016/j.cmet.2017.05.008 28625867
    [Google Scholar]
  22. Needham B.D. Kaddurah-Daouk R. Mazmanian S.K. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 2020 21 12 717 731 10.1038/s41583‑020‑00381‑0 33067567
    [Google Scholar]
  23. Liu J. Tan Y. Cheng H. Zhang D. Feng W. Peng C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 2022 13 4 1106 1126 10.14336/AD.2022.0104 35855347
    [Google Scholar]
  24. Ning J. Huang S.Y. Chen S.D. Zhang Y.R. Huang Y.Y. Yu J.T. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: A mendelian randomization study. J. Alzheimers Dis. 2022 87 1 211 222 10.3233/JAD‑215411 35275534
    [Google Scholar]
  25. Guo B. Zhang J. Zhang W. Chen F. Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: A narrative review. Crit. Rev. Food Sci. Nutr. 2023 1 22 10.1080/10408398.2023.2272769 37897083
    [Google Scholar]
  26. Gao C. Li B. He Y. Huang P. Du J. He G. Zhang P. Tang H. Chen S. Early changes of fecal short‐chain fatty acid levels in patients with mild cognitive impairments. CNS Neurosci. Ther. 2023 29 11 3657 3666 10.1111/cns.14252 37144597
    [Google Scholar]
  27. Yan Y. Ren S. Duan Y. Lu C. Niu Y. Wang Z. Inglis B. Ji W. Zheng Y. Si W. Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson’s disease. NPJ Biofilms Microbiomes 2021 7 1 69 10.1038/s41522‑021‑00242‑3 34475403
    [Google Scholar]
  28. Huang T. Shi H. Xu Y. Ji L. The gut microbiota metabolite propionate ameliorates intestinal epithelial barrier dysfunction-mediated Parkinson’s disease via the AKT signaling pathway. Neuroreport 2021 32 3 244 251 10.1097/WNR.0000000000001585 33470765
    [Google Scholar]
  29. Kong G. Cao K.A.L. Judd L.M. Li S. Renoir T. Hannan A.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis. 2020 135 104268 10.1016/j.nbd.2018.09.001 30194046
    [Google Scholar]
  30. Zeng Q. Shen J. Chen K. Zhou J. Liao Q. Lu K. Yuan J. Bi F. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci. Rep. 2020 10 1 12998 10.1038/s41598‑020‑69845‑8 32747678
    [Google Scholar]
  31. Wang H. Yang F. Zhang S. Xin R. Sun Y. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis. 2021 7 1 70 10.1038/s41531‑021‑00213‑7 34381040
    [Google Scholar]
  32. Kim N. Jeon S.H. Ju I.G. Gee M.S. Do J. Oh M.S. Lee J.K. Transplantation of gut microbiota derived from Alzheimer’s disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav. Immun. 2021 98 357 365 10.1016/j.bbi.2021.09.002 34500036
    [Google Scholar]
  33. Parker A. Romano S. Ansorge R. Aboelnour A. Le Gall G. Savva G.M. Pontifex M.G. Telatin A. Baker D. Jones E. Vauzour D. Rudder S. Blackshaw L.A. Jeffery G. Carding S.R. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome 2022 10 1 68 10.1186/s40168‑022‑01243‑w 35501923
    [Google Scholar]
  34. Matheson J.A.T. Holsinger R.M.D. The role of fecal microbiota transplantation in the treatment of neurodegenerative diseases: A review. Int. J. Mol. Sci. 2023 24 2 1001 10.3390/ijms24021001 36674517
    [Google Scholar]
  35. Gubert C. Choo J.M. Love C.J. Kodikara S. Masson B.A. Liew J.J.M. Wang Y. Kong G. Narayana V.K. Renoir T. Lê Cao K.A. Rogers G.B. Hannan A.J. Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice. Brain Commun. 2022 4 4 fcac205 10.1093/braincomms/fcac205 36035436
    [Google Scholar]
  36. Huang H. Xu H. Luo Q. He J. Li M. Chen H. Tang W. Nie Y. Zhou Y. Fecal microbiota transplantation to treat Parkinson’s disease with constipation. Medicine 2019 98 26 e16163 10.1097/MD.0000000000016163 31261545
    [Google Scholar]
  37. Yang X. Qian Y. Xu S. Song Y. Xiao Q. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of parkinson’s disease. Front. Aging Neurosci. 2018 9 441 10.3389/fnagi.2017.00441 29358918
    [Google Scholar]
  38. Qian X. Liu X. Chen G. Chen S. Tang H. Injection of amyloid-β to lateral ventricle induces gut microbiota dysbiosis in association with inhibition of cholinergic anti-inflammatory pathways in Alzheimer’s disease. J. Neuroinflammation 2022 19 1 236 10.1186/s12974‑022‑02599‑4 36171620
    [Google Scholar]
  39. Zhu Z. Ma X. Wu J. Xiao Z. Wu W. Ding S. Zheng L. Liang X. Luo J. Ding D. Zhao Q. Altered gut microbiota and its clinical relevance in mild cognitive impairment and alzheimer’s disease: Shanghai aging study and shanghai memory study. Nutrients 2022 14 19 3959 10.3390/nu14193959 36235612
    [Google Scholar]
  40. Régnier M. Van Hul M. Knauf C. Cani P.D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J. Endocrinol. 2021 248 2 R67 R82 10.1530/JOE‑20‑0473 33295880
    [Google Scholar]
  41. Honarpisheh P. Reynolds C.R. Blasco Conesa M.P. Moruno Manchon J.F. Putluri N. Bhattacharjee M.B. Urayama A. McCullough L.D. Ganesh B.P. Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice. Int. J. Mol. Sci. 2020 21 5 1711 10.3390/ijms21051711 32138161
    [Google Scholar]
  42. Wang K. Zhang C. Zhang B. Li G. Shi G. Cai Q. Huang M. Gut dysfunction may be the source of pathological aggregation of alpha-synuclein in the central nervous system through Paraquat exposure in mice. Ecotoxicol. Environ. Saf. 2022 246 114152 10.1016/j.ecoenv.2022.114152 36201918
    [Google Scholar]
  43. Zuo L. Kuo W.T. Turner J.R. Tight junctions as targets and effectors of mucosal immune homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2020 10 2 327 340 10.1016/j.jcmgh.2020.04.001 32304780
    [Google Scholar]
  44. Jackson A. Engen P.A. Forsyth C.B. Shaikh M. Naqib A. Wilber S. Frausto D.M. Raeisi S. Green S.J. Bradaric B.D. Persons A.L. Voigt R.M. Keshavarzian A. Intestinal barrier dysfunction in the absence of systemic inflammation fails to exacerbate motor dysfunction and brain pathology in a mouse model of parkinson’s disease. Front. Neurol. 2022 13 882628 10.3389/fneur.2022.882628 35665034
    [Google Scholar]
  45. Roy Sarkar S. Banerjee S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol. 2019 328 98 104 10.1016/j.jneuroim.2019.01.004 30658292
    [Google Scholar]
  46. Lee J.Y. Wang Z.J. Moscatello A. Kingsbury C. Cozene B. Farooq J. Saft M. Sadanandan N. Gonzales-Portillo B. Zhang H. Salazar F.E. Toledo A.R.L. Monroy G.R. Berlet R. Sanberg C.D. Sanberg P.R. Borlongan C.V. Inflammatory gut as a pathologic and therapeutic target in Parkinson’s disease. Cell Death Discov. 2022 8 1 396 10.1038/s41420‑022‑01175‑2 36153318
    [Google Scholar]
  47. Parker A. James S.A. Purse C. Brion A. Goldson A. Telatin A. Baker D. Carding S.R. Absence of bacteria permits fungal gut-to-brain translocation and invasion in germfree mice but ageing alone does not drive pathobiont expansion in conventionally raised mice. Front. Aging Neurosci. 2022 14 828429 10.3389/fnagi.2022.828429 35923548
    [Google Scholar]
  48. Stan T.L. Soylu-Kucharz R. Burleigh S. Prykhodko O. Cao L. Franke N. Sjögren M. Haikal C. Hållenius F. Björkqvist M. Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease. Sci. Rep. 2020 10 1 18270 10.1038/s41598‑020‑75229‑9 33106549
    [Google Scholar]
  49. Frausto D.M. Engen P.A. Naqib A. Jackson A. Tran L. Green S.J. Shaikh M. Forsyth C.B. Keshavarzian A. Voigt R.M. Impact of alcohol-induced intestinal microbiota dysbiosis in a rodent model of Alzheimer’s disease. Frontiers in Aging 2022 3 916336 10.3389/fragi.2022.916336 36046496
    [Google Scholar]
  50. Parker A. Fonseca S. Carding S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2020 11 2 135 157 10.1080/19490976.2019.1638722 31368397
    [Google Scholar]
  51. Boschetti E. Neri I. Follo M.Y. De Giorgio R. Cocco L.I. Manzoli L. Ratti S. Microbiota-gut-brain axis in neurological disorders: From leaky barriers microanatomical changes to biochemical processes. Mini Rev. Med. Chem. 2023 23 3 307 319 10.2174/1389557522666220622111501 35733303
    [Google Scholar]
  52. Mugisho O.O. Robilliard L.D. Nicholson L.F.B. Graham E.S. O’Carroll S.J. Bradykinin receptor‐1 activation induces inflammation and increases the permeability of human brain microvascular endothelial cells. Cell Biol. Int. 2020 44 1 343 351 10.1002/cbin.11232 31498530
    [Google Scholar]
  53. Xu G. Li Y. Ma C. Wang C. Sun Z. Shen Y. Liu L. Li S. Zhang X. Cong B. Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front. Mol. Neurosci. 2019 12 32 10.3389/fnmol.2019.00032 30814927
    [Google Scholar]
  54. Kalyan M. Tousif A.H. Sonali S. Vichitra C. Sunanda T. Praveenraj S.S. Ray B. Gorantla V.R. Rungratanawanich W. Mahalakshmi A.M. Qoronfleh M.W. Monaghan T.M. Song B.J. Essa M.M. Chidambaram S.B. Role of endogenous lipopolysaccharides in neurological disorders. Cells 2022 11 24 4038 10.3390/cells11244038 36552802
    [Google Scholar]
  55. Wei C. Jiang W. Wang R. Zhong H. He H. Gao X. Zhong S. Yu F. Guo Q. Zhang L. Schiffelers L.D.J. Zhou B. Trepel M. Schmidt F.I. Luo M. Shao F. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 2024 629 8013 893 900 10.1038/s41586‑024‑07314‑2 38632402
    [Google Scholar]
  56. Wenzel T.J. Gates E.J. Ranger A.L. Klegeris A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol. Cell. Neurosci. 2020 105 103493 10.1016/j.mcn.2020.103493 32333962
    [Google Scholar]
  57. Knox E.G. Aburto M.R. Tessier C. Nagpal J. Clarke G. O’Driscoll C.M. Cryan J.F. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience 2022 25 12 105648 10.1016/j.isci.2022.105648 36505934
    [Google Scholar]
  58. Hoyles L. Snelling T. Umlai U.K. Nicholson J.K. Carding S.R. Glen R.C. McArthur S. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome 2018 6 1 55 10.1186/s40168‑018‑0439‑y 29562936
    [Google Scholar]
  59. Corral-Jara K.F. Nuthikattu S. Rutledge J. Villablanca A. Fong R. Heiss C. Ottaviani J.I. Milenkovic D. Structurally related (−)-epicatechin metabolites and gut microbiota derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study. J. Proteomics 2022 263 104603 10.1016/j.jprot.2022.104603 35568144
    [Google Scholar]
  60. Johnson S.L. Kirk R.D. DaSilva N.A. Ma H. Seeram N.P. Bertin M.J. Polyphenol microbial metabolites exhibit gut and blood–brain barrier permeability and protect murine microglia against LPS-induced inflammation. Metabolites 2019 9 4 78 10.3390/metabo9040078 31010159
    [Google Scholar]
  61. Xiaoying L. Li T. Yu S. Jiusheng J. Jilin Z. Jiayi W. Dongxin L. Wengang F. Xinyue Z. Hao Y. Yuhua C. Deshu S. Resistin-inhibited neural stem cell-derived astrocyte differentiation contributes to permeability destruction of the blood–brain barrier. Neurochem. Res. 2019 44 4 905 916 10.1007/s11064‑019‑02726‑3 30690681
    [Google Scholar]
  62. Gray K.M. Katz D.B. Brown E.G. Stroka K.M. Quantitative phenotyping of cell–cell junctions to evaluate ZO-1 presentation in brain endothelial cells. Ann. Biomed. Eng. 2019 47 7 1675 1687 10.1007/s10439‑019‑02266‑5 30993538
    [Google Scholar]
  63. Wang H. Lv J.J. Zhao Y. Wei H.L. Zhang T.J. Yang H.J. Chen Z.N. Jiang J.L. Endothelial genetic deletion of CD147 induces changes in the dual function of the blood‐brain barrier and is implicated in Alzheimer’s disease. CNS Neurosci. Ther. 2021 27 9 1048 1063 10.1111/cns.13659 33987940
    [Google Scholar]
  64. Leite M. D.; Seifi, M.; Ruiz-Perez, L.; Nguemo, F.; Plomann, M.; Swinny, J.D.; Battaglia, G. Syndapin-2 mediated transcytosis of amyloid-β across the blood-brain barrier. Brain Commun. 2022 4 1 fcac039 10.1093/braincomms/fcac039 35233527
    [Google Scholar]
  65. Linville R.M. Nerenberg R.F. Grifno G. Arevalo D. Guo Z. Searson P.C. Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington’s disease. Fluids Barriers CNS 2022 19 1 54 10.1186/s12987‑022‑00347‑7 35773691
    [Google Scholar]
  66. Zamudio F. Loon A.R. Smeltzer S. Benyamine K. Navalpur Shanmugam N.K. Stewart N.J.F. Lee D.C. Nash K. Selenica M.L.B. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J. Neuroinflammation 2020 17 1 283 10.1186/s12974‑020‑01952‑9 32979923
    [Google Scholar]
  67. Paraiso H.C. Wang X. Kuo P.C. Furnas D. Scofield B.A. Chang F.L. Yen J.H. Yu I.C. Isolation of mouse cerebral microvasculature for molecular and single-cell analysis. Front. Cell. Neurosci. 2020 14 84 10.3389/fncel.2020.00084 32327974
    [Google Scholar]
  68. Knox E.G. Aburto M.R. Clarke G. Cryan J.F. O’Driscoll C.M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 2022 27 6 2659 2673 10.1038/s41380‑022‑01511‑z 35361905
    [Google Scholar]
  69. Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011 12 12 723 738 10.1038/nrn3114 22048062
    [Google Scholar]
  70. Montagne A. Nikolakopoulou A.M. Zhao Z. Sagare A.P. Si G. Lazic D. Barnes S.R. Daianu M. Ramanathan A. Go A. Lawson E.J. Wang Y. Mack W.J. Thompson P.M. Schneider J.A. Varkey J. Langen R. Mullins E. Jacobs R.E. Zlokovic B.V. RETRACTED ARTICLE: Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 2018 24 3 326 337 10.1038/nm.4482 29400711
    [Google Scholar]
  71. Nortley R. Korte N. Izquierdo P. Hirunpattarasilp C. Mishra A. Jaunmuktane Z. Kyrargyri V. Pfeiffer T. Khennouf L. Madry C. Gong H. Richard-Loendt A. Huang W. Saito T. Saido T.C. Brandner S. Sethi H. Attwell D. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 2019 365 6450 eaav9518 10.1126/science.aav9518 31221773
    [Google Scholar]
  72. Nikolakopoulou A.M. Montagne A. Kisler K. Dai Z. Wang Y. Huuskonen M.T. Sagare A.P. Lazic D. Sweeney M.D. Kong P. Wang M. Owens N.C. Lawson E.J. Xie X. Zhao Z. Zlokovic B.V. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 2019 22 7 1089 1098 10.1038/s41593‑019‑0434‑z 31235908
    [Google Scholar]
  73. Pan J. Ma N. Zhong J. Yu B. Wan J. Zhang W. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. Mol. Ther. Nucleic Acids 2021 26 970 986 10.1016/j.omtn.2021.08.030 34760339
    [Google Scholar]
  74. Lee R.L. Funk K.E. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front. Aging Neurosci. 2023 15 1144036 10.3389/fnagi.2023.1144036 37009464
    [Google Scholar]
  75. Song K. Han H.J. Kim S. Kwon J. Thymosin beta 4 attenuates PrP(106-126)-induced human brain endothelial cells dysfunction. Eur. J. Pharmacol. 2020 869 172891 10.1016/j.ejphar.2019.172891 31877278
    [Google Scholar]
  76. Choudhury S.P. Bano S. Sen S. Suchal K. Kumar S. Nikolajeff F. Dey S.K. Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson’s disease. NPJ Parkinsons Dis. 2022 8 1 66 10.1038/s41531‑022‑00324‑9 35650269
    [Google Scholar]
  77. Lai P.H. Wang T.H. Zhang N.Y. Wu K.C. Yao C.C.J. Lin C.J. Changes of blood-brain-barrier function and transfer of amyloid beta in rats with collagen-induced arthritis. J. Neuroinflammation 2021 18 1 35 10.1186/s12974‑021‑02086‑2 33516259
    [Google Scholar]
  78. Gorina Y.V. Komleva Y.K. Osipova E.D. Morgun A.V. Malinovskaya N.A. Lopatina O.L. Salmina A.B. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Bulletin of Siberian Medicine 2021 19 4 46 52 10.20538/1682‑0363‑2020‑4‑46‑52
    [Google Scholar]
  79. Nishimura Y. Fukuda Y. Okonogi T. Yoshikawa S. Karasuyama H. Osakabe N. Ikegaya Y. Sasaki T. Adachi T. Dual real-time in vivo monitoring system of the brain-gut axis. Biochem. Biophys. Res. Commun. 2020 524 2 340 345 10.1016/j.bbrc.2020.01.090 31996305
    [Google Scholar]
  80. Stopińska K. Radziwoń-Zaleska M. Domitrz I. The microbiota-gut-brain axis as a key to neuropsychiatric disorders: A mini review. J. Clin. Med. 2021 10 20 4640 10.3390/jcm10204640 34682763
    [Google Scholar]
  81. Naveed M. Zhou Q.G. Xu C. Taleb A. Meng F. Ahmed B. Zhang Y. Fukunaga K. Han F. Gut-brain axis: A matter of concern in neuropsychiatric disorders…! Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 104 110051 10.1016/j.pnpbp.2020.110051 32758517
    [Google Scholar]
  82. Margolis K.G. Cryan J.F. Mayer E.A. The microbiota-gut-brain axis: From motility to mood. Gastroenterology 2021 160 5 1486 1501 10.1053/j.gastro.2020.10.066 33493503
    [Google Scholar]
  83. Huang T.T. Lai J.B. Du Y.L. Xu Y. Ruan L.M. Hu S.H. Current understanding of gut microbiota in mood disorders: An update of human studies. Front. Genet. 2019 10 98 10.3389/fgene.2019.00098 30838027
    [Google Scholar]
  84. Bailey M.T. Dowd S.E. Galley J.D. Hufnagle A.R. Allen R.G. Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011 25 3 397 407 10.1016/j.bbi.2010.10.023 21040780
    [Google Scholar]
  85. Sun Y. Ho C.T. Liu Y. Zhan S. Wu Z. Zheng X. Zhang X. The modulatory effect of cyclocarya paliurus flavonoids on intestinal microbiota and hypothalamus clock genes in a circadian rhythm disorder mouse model. Nutrients 2022 14 11 2308 10.3390/nu14112308 35684108
    [Google Scholar]
  86. Chiu L.S. Anderton R.S. The role of the microbiota–gut–brain axis in long‐term neurodegenerative processes following traumatic brain injury. Eur. J. Neurosci. 2023 57 2 400 418 10.1111/ejn.15892 36494087
    [Google Scholar]
  87. Frej-Mądrzak M. Kołodziej P. Sarowska J. Jama-Kmiecik A. The influence of intestinal microbiota on the occurrence of mental disorders and neurodegenerative diseases. Postepy Hig. Med. Dosw. 2021 75 1 620 633 10.2478/ahem‑2021‑0021
    [Google Scholar]
  88. Isaiah S. Loots D.T. Solomons R. van der Kuip M. Tutu Van Furth A.M. Mason S. Overview of brain-to-gut axis exposed to chronic cns bacterial infection(s) and a predictive urinary metabolic profile of a brain infected by Mycobacterium tuberculosis. Front. Neurosci. 2020 14 296 10.3389/fnins.2020.00296 32372900
    [Google Scholar]
  89. Kaelberer M.M. Buchanan K.L. Klein M.E. Barth B.B. Montoya M.M. Shen X. Bohórquez D.V. A gut-brain neural circuit for nutrient sensory transduction. Science 2018 361 6408 eaat5236 10.1126/science.aat5236 30237325
    [Google Scholar]
  90. Liu J.Y.H. Sun M.Y.Y. Sommerville N. Ngan M.P. Ponomarev E.D. Lin G. Rudd J.A. Soy flavonoids prevent cognitive deficits induced by intra-gastrointestinal administration of beta-amyloid. Food Chem. Toxicol. 2020 141 111396 10.1016/j.fct.2020.111396 32417364
    [Google Scholar]
  91. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018 1693 Pt B 128 133 10.1016/j.brainres.2018.03.015
    [Google Scholar]
  92. Chen Y. Xu J. Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021 13 6 2099 10.3390/nu13062099 34205336
    [Google Scholar]
  93. Han Y. Wang B. Gao H. He C. Hua R. Liang C. Zhang S. Wang Y. Xin S. Xu J. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res. 2022 15 6213 6230 10.2147/JIR.S384949 36386584
    [Google Scholar]
  94. Singh A. de la Serre C. de Lartigue G. Gut microbiota sPARk vagus nerve excitation. J. Physiol. 2020 598 11 2043 2044 10.1113/JP279763 32187377
    [Google Scholar]
  95. Peterson C.T. Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: The promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics J. Evid. Based Integr. Med. 2020 25 2515690X20957225
    [Google Scholar]
  96. Khaspekov L.G. Current views on the role of stress in the pathogenesis of chronic neurodegenerative diseases. Biochemistry 2021 86 6 737 745 10.1134/S0006297921060110 34225596
    [Google Scholar]
  97. Soares N.M. Pereira G.M. Altmann V. de Almeida R.M.M. Rieder C.R.M. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson’s disease: A systematic review. J. Neural Transm. 2019 126 3 219 232 10.1007/s00702‑018‑1947‑4 30374595
    [Google Scholar]
  98. Keskitalo A. Aatsinki A.K. Kortesluoma S. Pelto J. Korhonen L. Lahti L. Lukkarinen M. Munukka E. Karlsson H. Karlsson L. Gut microbiota diversity but not composition is related to saliva cortisol stress response at the age of 2.5 months. Stress 2021 24 5 551 560 10.1080/10253890.2021.1895110 33729084
    [Google Scholar]
  99. de Souza-Talarico J.N. Alves A.R. Brucki S.M.D. Nitrini R. Lupien S.J. Suchecki D. Cortisol reactivity to a psychosocial stressor significantly increases the risk of developing Cognitive Impairment no Dementia five years later. Psychoneuroendocrinology 2020 115 104601 10.1016/j.psyneuen.2020.104601 32087524
    [Google Scholar]
  100. Vagnerová K. Vodička M. Hermanová P. Ergang P. Šrůtková D. Klusoňová P. Balounová K. Hudcovic T. Pácha J. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic–pituitary–adrenal axis and the intestine of male mice. Front. Immunol. 2019 10 2655 10.3389/fimmu.2019.02655 31798585
    [Google Scholar]
  101. Niccolai E. Di Pilato V. Nannini G. Baldi S. Russo E. Zucchi E. Martinelli I. Menicatti M. Bartolucci G. Mandrioli J. Amedei A. The gut microbiota-immunity axis in ALS: A role in deciphering disease heterogeneity? Biomedicines 2021 9 7 753 10.3390/biomedicines9070753 34209688
    [Google Scholar]
  102. Campos-Acuña J. Elgueta D. Pacheco R. T-cell-driven inflammation as a mediator of the gut-brain axis involved in parkinson’s disease. Front. Immunol. 2019 10 239 10.3389/fimmu.2019.00239 30828335
    [Google Scholar]
  103. Keogh C.E. Rude K.M. Gareau M.G. Role of pattern recognition receptors and the microbiota in neurological disorders. J. Physiol. 2021 599 5 1379 1389 10.1113/JP279771 33404072
    [Google Scholar]
  104. Shukla P.K. Delotterie D.F. Xiao J. Pierre J.F. Rao R. McDonald M.P. Khan M.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of alzheimer’s disease. Cells 2021 10 4 779 10.3390/cells10040779 33916001
    [Google Scholar]
  105. Perez-Pardo P. Dodiya H.B. Engen P.A. Forsyth C.B. Huschens A.M. Shaikh M. Voigt R.M. Naqib A. Green S.J. Kordower J.H. Shannon K.M. Garssen J. Kraneveld A.D. Keshavarzian A. Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice. Gut 2019 68 5 829 843 10.1136/gutjnl‑2018‑316844 30554160
    [Google Scholar]
  106. Zhao Z. Ning J. Bao X. Shang M. Ma J. Li G. Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 2021 9 1 226 10.1186/s40168‑021‑01107‑9 34784980
    [Google Scholar]
  107. Bicknell B. Liebert A. Borody T. Herkes G. McLachlan C. Kiat H. Neurodegenerative and neurodevelopmental diseases and the gut-brain axis: The potential of therapeutic targeting of the microbiome. Int. J. Mol. Sci. 2023 24 11 9577 10.3390/ijms24119577 37298527
    [Google Scholar]
  108. Hill C. Guarner F. Reid G. Gibson G.R. Merenstein D.J. Pot B. Morelli L. Canani R.B. Flint H.J. Salminen S. Calder P.C. Sanders M.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014 11 8 506 514 10.1038/nrgastro.2014.66 24912386
    [Google Scholar]
  109. Gibson G.R. Hutkins R. Sanders M.E. Prescott S.L. Reimer R.A. Salminen S.J. Scott K. Stanton C. Swanson K.S. Cani P.D. Verbeke K. Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017 14 8 491 502 10.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  110. Swanson K.S. Gibson G.R. Hutkins R. Reimer R.A. Reid G. Verbeke K. Scott K.P. Holscher H.D. Azad M.B. Delzenne N.M. Sanders M.E. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020 17 11 687 701 10.1038/s41575‑020‑0344‑2 32826966
    [Google Scholar]
  111. Salminen S. Collado M.C. Endo A. Hill C. Lebeer S. Quigley E.M.M. Sanders M.E. Shamir R. Swann J.R. Szajewska H. Vinderola G. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021 18 9 649 667 10.1038/s41575‑021‑00440‑6 33948025
    [Google Scholar]
  112. Bashir B. Alam S. Khandale N. Birla D. Vishwas S. Pandey N.K. Gupta G. Paudel K.R. Dureja H. Kumar P. Singh T.G. Kuppusamy G. Zacconi F.C. Pinto T.J.A. Dhanasekaran M. Gulati M. Dua K. Singh S.K. Opening avenues for treatment of neurodegenerative disease using post-biotics: Breakthroughs and bottlenecks in clinical translation. Ageing Res. Rev. 2024 95 102236 10.1016/j.arr.2024.102236 38369026
    [Google Scholar]
  113. Xu M. Mo X. Huang H. Chen X. Liu H. Peng Z. Chen L. Rong S. Yang W. Xu S. Liu L. Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ1-42-induced AD-like mice. Int. J. Biol. Macromol. 2020 161 258 270 10.1016/j.ijbiomac.2020.05.180 32522544
    [Google Scholar]
  114. Liu Q. Xi Y. Wang Q. Liu J. Li P. Meng X. Liu K. Chen W. Liu X. Liu Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain Behav. Immun. 2021 95 330 343 10.1016/j.bbi.2021.04.005 33839232
    [Google Scholar]
  115. Li T. Yang S. Liu X. Li Y. Gu Z. Jiang Z. Dietary neoagarotetraose extends lifespan and impedes brain aging in mice via regulation of microbiota-gut-brain axis. J. Adv. Res. 2023 52 119 134 10.1016/j.jare.2023.04.014 37085001
    [Google Scholar]
  116. Ni Y. Yang X. Zheng L. Wang Z. Wu L. Jiang J. Yang T. Ma L. Fu Z. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol. Nutr. Food Res. 2019 63 22 1900603 10.1002/mnfr.201900603 31433910
    [Google Scholar]
  117. Mohammadi G. Dargahi L. Naserpour T. Mirzanejad Y. Alizadeh S.A. Peymani A. Nassiri-Asl M. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats. Int. Microbiol. 2019 22 3 317 323 10.1007/s10123‑018‑00051‑3 30810993
    [Google Scholar]
  118. Louzada E.R. Ribeiro S.M.L. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr. Neurosci. 2020 23 2 93 100 10.1080/1028415X.2018.1477349 29788823
    [Google Scholar]
  119. Lalitsuradej E. Sirilun S. Sittiprapaporn P. Sivamaruthi B.S. Pintha K. Tantipaiboonwong P. Khongtan S. Fukngoen P. Peerajan S. Chaiyasut C. The effects of synbiotics administration on stress-related parameters in thai subjects—A preliminary study. Foods 2022 11 5 759 10.3390/foods11050759 35267392
    [Google Scholar]
  120. Bulacios G.A. Cataldo P.G. Naja J.R. de Chaves E.P. Taranto M.P. Minahk C.J. Hebert E.M. Saavedra M.L. Improvement of key molecular events linked to alzheimer’s disease pathology using postbiotics. ACS Omega 2023 8 50 48042 48049 10.1021/acsomega.3c06805 38144080
    [Google Scholar]
  121. Chakraborty P. Gamage H.K.A.H. Laird A.S. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem. Int. 2024 176 105745 10.1016/j.neuint.2024.105745 38641025
    [Google Scholar]
  122. Ge X. Zheng M. Hu M. Fang X. Geng D. Liu S. Wang L. Zhang J. Guan L. Zheng P. Xie Y. Pan W. Zhou M. Zhou L. Tang R. Zheng K. Yu Y. Huang X.F. Butyrate ameliorates quinolinic acid–induced cognitive decline in obesity models. J. Clin. Invest. 2023 133 4 e154612 10.1172/JCI154612 36787221
    [Google Scholar]
  123. Su H. Zhang C. Zou X. Lu F. Zeng Y. Guan H. Ren Y. Yuan F. Xu L. Zhang M. Dong H. Jiao-tai-wan inhibits inflammation of the gut-brain-axis and attenuates cognitive impairment in insomnic rats. J. Ethnopharmacol. 2020 250 112478 10.1016/j.jep.2019.112478 31843572
    [Google Scholar]
  124. Li D. You H. Hu G. Yao R. Xie A. Li X. Mechanisms of the Ping-wei-san plus herbal decoction against Parkinson’s disease: Multiomics analyses. Front. Nutr. 2023 9 945356 10.3389/fnut.2022.945356 36687704
    [Google Scholar]
  125. Xie Z. Lu H. Yang S. Zeng Y. Li W. Wang L. Luo G. Fang F. Zeng T. Cheng W. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis. Front. Pharmacol. 2020 11 568423 10.3389/fphar.2020.568423 33362539
    [Google Scholar]
  126. Meng D. Yang M. Hu L. Liu T. Zhang H. Sun X. Wang X. Chen Y. Jin Y. Liu R. Rifaximin protects against circadian rhythm disruption–induced cognitive impairment through preventing gut barrier damage and neuroinflammation. J. Neurochem. 2022 163 5 406 418 10.1111/jnc.15701 36189686
    [Google Scholar]
  127. Kim H.Y. Bae C.H. Kim J. Lee Y. Jeon H. Kim H. Kim S. Rumex japonicus Houtt. Protects dopaminergic neurons by regulating mitochondrial function and gut–brain axis in in vitro and in vivo models of parkinson’s disease. Antioxidants 2022 11 1 141 10.3390/antiox11010141 35052645
    [Google Scholar]
  128. Ishola I.O. Awogbindin I.O. Olubodun-Obadun T.G. Oluwafemi O.A. Onuelu J.E. Adeyemi O.O. Morin ameliorates rotenone-induced Parkinson disease in mice through antioxidation and anti-neuroinflammation: gut-brain axis involvement. Brain Res. 2022 1789 147958 10.1016/j.brainres.2022.147958 35654119
    [Google Scholar]
  129. Zhao Z. Li F. Ning J. Peng R. Shang J. Liu H. Shang M. Bao X.Q. Zhang D. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF-κB pathway through microbiota–gut–brain axis. Acta Pharm. Sin. B 2021 11 9 2859 2879 10.1016/j.apsb.2021.03.020 34589401
    [Google Scholar]
  130. Wang X. Sun G. Feng T. Zhang J. Huang X. Wang T. Xie Z. Chu X. Yang J. Wang H. Chang S. Gong Y. Ruan L. Zhang G. Yan S. Lian W. Du C. Yang D. Zhang Q. Lin F. Liu J. Zhang H. Ge C. Xiao S. Ding J. Geng M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019 29 10 787 803 10.1038/s41422‑019‑0216‑x 31488882
    [Google Scholar]
  131. Xiao S. Chan P. Wang T. Hong Z. Wang S. Kuang W. He J. Pan X. Zhou Y. Ji Y. Wang L. Cheng Y. Peng Y. Ye Q. Wang X. Wu Y. Qu Q. Chen S. Li S. Chen W. Xu J. Peng D. Zhao Z. Li Y. Zhang J. Du Y. Chen W. Fan D. Yan Y. Liu X. Zhang W. Luo B. Wu W. Shen L. Liu C. Mao P. Wang Q. Zhao Q. Guo Q. Zhou Y. Li Y. Jiang L. Ren W. Ouyang Y. Wang Y. Liu S. Jia J. Zhang N. Liu Z. He R. Feng T. Lu W. Tang H. Gao P. Zhang Y. Chen L. Wang L. Yin Y. Xu Q. Xiao J. Cong L. Cheng X. Zhang H. Gao D. Xia M. Lian T. Peng G. Zhang X. Jiao B. Hu H. Chen X. Guan Y. Cui R. Huang Q. Xin X. Chen H. Ding Y. Zhang J. Feng T. Cantillon M. Chen K. Cummings J.L. Ding J. Geng M. Zhang Z. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res. Ther. 2021 13 1 62 10.1186/s13195‑021‑00795‑7 33731209
    [Google Scholar]
  132. Zhang M. Zhao D. Zhou G. Li C. Dietary pattern, gut microbiota, and alzheimer’s disease. J. Agric. Food Chem. 2020 68 46 12800 12809 10.1021/acs.jafc.9b08309 32090565
    [Google Scholar]
  133. Shi H. Ge X. Ma X. Zheng M. Cui X. Pan W. Zheng P. Yang X. Zhang P. Hu M. Hu T. Tang R. Zheng K. Huang X.F. Yu Y. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 2021 9 1 223 10.1186/s40168‑021‑01172‑0 34758889
    [Google Scholar]
  134. Zhang M. Song S. Zhao D. Shi J. Xu X. Zhou G. Li C. High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. J. Nutr. Biochem. 2020 85 108487 10.1016/j.jnutbio.2020.108487 32827667
    [Google Scholar]
  135. Zhang H. Tao Y. Leng S.X. Ketogenic diet: An effective treatment approach for neurodegenerative diseases. Curr. Neuropharmacol. 2022 20 12 2303 2319 10.2174/1570159X20666220830102628 36043794
    [Google Scholar]
  136. Zhu H. Bi D. Zhang Y. Kong C. Du J. Wu X. Wei Q. Qin H. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 2022 7 1 11 10.1038/s41392‑021‑00831‑w 35034957
    [Google Scholar]
  137. Bisaglia M. Mediterranean diet and parkinson’s disease. Int. J. Mol. Sci. 2022 24 1 42 10.3390/ijms24010042 36613486
    [Google Scholar]
  138. Shi H. Wang Q. Zheng M. Hao S. Lum J.S. Chen X. Huang X.F. Yu Y. Zheng K. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J. Neuroinflammation 2020 17 1 77 10.1186/s12974‑020‑01760‑1 32127019
    [Google Scholar]
  139. Shi H. Yu Y. Lin D. Zheng P. Zhang P. Hu M. Wang Q. Pan W. Yang X. Hu T. Li Q. Tang R. Zhou F. Zheng K. Huang X.F. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome 2020 8 1 143 10.1186/s40168‑020‑00920‑y 33008466
    [Google Scholar]
  140. Lan Y. Ma Z. Chang L. Peng J. Zhang M. Sun Q. Qiao R. Hou X. Ding X. Zhang Q. Peng Q. Dong J. Liu X. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. Int. J. Biol. Macromol. 2023 236 123797 10.1016/j.ijbiomac.2023.123797 36828095
    [Google Scholar]
  141. Liu Q. Xie T. Xi Y. Li L. Mo F. Liu X. Liu Z. Gao J.M. Yuan T. Sesamol attenuates amyloid peptide accumulation and cognitive deficits in APP/PS1 mice: The mediating role of the gut–brain axis. J. Agric. Food Chem. 2021 69 43 12717 12729 10.1021/acs.jafc.1c04687 34669408
    [Google Scholar]
  142. Wang N. Feng B.N. Hu B. Cheng Y.L. Guo Y.H. Qian H. Neuroprotection of chicoric acid in a mouse model of Parkinson’s disease involves gut microbiota and TLR4 signaling pathway. Food Funct. 2022 13 4 2019 2032 10.1039/D1FO02216D 35103734
    [Google Scholar]
  143. Sultana O.F. Hia R.A. Reddy P.H. A combinational therapy for preventing and delaying the onset of alzheimer’s disease: A focus on probiotic and vitamin co-supplementation. Antioxidants 2024 13 2 202 10.3390/antiox13020202 38397800
    [Google Scholar]
  144. You M. Wang K. Pan Y. Tao L. Ma Q. Zhang G. Hu F. Combined royal jelly 10-hydroxydecanoic acid and aspirin has a synergistic effect against memory deficit and neuroinflammation. Food Funct. 2022 13 4 2336 2353 10.1039/D1FO02397G 35142767
    [Google Scholar]
  145. Wen H. Tian H. Liu C. Zhang X. Peng Y. Yang X. Chen F. Li J. Metformin and cyanidin 3-O-galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice. Food Funct. 2021 12 21 10994 11008 10.1039/D1FO02122B 34657937
    [Google Scholar]
  146. Mastropasqua L. Agnifili L. Ferrante C. Sacchi M. Figus M. Rossi G.C.M. Brescia L. Aloia R. Orlando G. Citicoline/Coenzyme Q10/Vitamin B3 fixed combination exerts synergistic protective effects on neuronal cells exposed to oxidative stress. Nutrients 2022 14 14 2963 10.3390/nu14142963 35889920
    [Google Scholar]
  147. Jayatunga D.P.W. Hone E. Fernando W.M.A.D.B. Garg M.L. Verdile G. Martins R.N. A synergistic combination of DHA, luteolin, and urolithin A against alzheimer’s disease. Front. Aging Neurosci. 2022 14 780602 10.3389/fnagi.2022.780602 35250535
    [Google Scholar]
  148. Jayatunga D.P.W. Hone E. Fernando W.M.A.D.B. Garg M.L. Verdile G. Martins R.N. Mitoprotective effects of a synergistic nutraceutical combination: Basis for a prevention strategy against alzheimer’s disease. Front. Aging Neurosci. 2022 13 781468 10.3389/fnagi.2021.781468 35264941
    [Google Scholar]
  149. Ooijevaar R.E. Terveer E.M. Verspaget H.W. Kuijper E.J. Keller J.J. Clinical application and potential of fecal microbiota transplantation. Annu. Rev. Med. 2019 70 1 335 351 10.1146/annurev‑med‑111717‑122956 30403550
    [Google Scholar]
  150. Pluta R. Ułamek-Kozioł M. Januszewski S. Czuczwar S.J. Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging 2020 12 6 5539 5550 10.18632/aging.102930 32191919
    [Google Scholar]
  151. Obrenovich M. Jaworski H. Tadimalla T. Mistry A. Sykes L. Perry G. Bonomo R. The role of the microbiota–gut–brain axis and antibiotics in ALS and neurodegenerative diseases. Microorganisms 2020 8 5 784 10.3390/microorganisms8050784 32456229
    [Google Scholar]
  152. Arora K. Green M. Prakash S. The microbiome and alzheimer’s disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front. Bioeng. Biotechnol. 2020 8 537847 10.3389/fbioe.2020.537847 33384986
    [Google Scholar]
  153. Tan L.Y. Yeo X.Y. Bae H.G. Lee D.P.S. Ho R.C. Kim J.E. Jo D.G. Jung S. Association of gut microbiome dysbiosis with neurodegeneration: Can gut microbe-modifying diet prevent or alleviate the symptoms of neurodegenerative diseases? Life 2021 11 7 698 10.3390/life11070698 34357070
    [Google Scholar]
  154. Koblinsky N.D. Power K.A. Middleton L. Ferland G. Anderson N.D. The role of the gut microbiome in diet and exercise effects on cognition: A review of the intervention literature. J. Gerontol. A Biol. Sci. Med. Sci. 2023 78 2 195 205 10.1093/gerona/glac166 35977540
    [Google Scholar]
  155. Liu L. Huh J.R. Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine 2022 77 103908 10.1016/j.ebiom.2022.103908 35255456
    [Google Scholar]
  156. Leclair-Visonneau L. Neunlist M. Derkinderen P. Lebouvier T. The gut in Parkinson’s disease: Bottom‐up, top‐down, or neither? Neurogastroenterol. Motil. 2020 32 1 e13777 10.1111/nmo.13777 31854093
    [Google Scholar]
  157. Avagliano C. Coretti L. Lama A. Pirozzi C. De Caro C. De Biase D. Turco L. Mollica M.P. Paciello O. Calignano A. Meli R. Lembo F. Mattace Raso G. Dual-hit model of parkinson’s disease: Impact of dysbiosis on 6-hydroxydopamine-insulted mice-neuroprotective and anti-inflammatory effects of butyrate. Int. J. Mol. Sci. 2022 23 12 6367 10.3390/ijms23126367 35742813
    [Google Scholar]
  158. Raimondi I. Izzo L. Tunesi M. Comar M. Albani D. Giordano C. Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut-brain axis in neurodegeneration. Front. Bioeng. Biotechnol. 2020 7 435 10.3389/fbioe.2019.00435 31998702
    [Google Scholar]
  159. Zhao Y. Kuca K. Wu W. Wang X. Nepovimova E. Musilek K. Wu Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement. 2022 18 1 152 158 10.1002/alz.12370 34032377
    [Google Scholar]
  160. Cryan J.F. O’Riordan K.J. Cowan C.S.M. Sandhu K.V. Bastiaanssen T.F.S. Boehme M. Codagnone M.G. Cussotto S. Fulling C. Golubeva A.V. Guzzetta K.E. Jaggar M. Long-Smith C.M. Lyte J.M. Martin J.A. Molinero-Perez A. Moloney G. Morelli E. Morillas E. O’Connor R. Cruz-Pereira J.S. Peterson V.L. Rea K. Ritz N.L. Sherwin E. Spichak S. Teichman E.M. van de Wouw M. Ventura-Silva A.P. Wallace-Fitzsimons S.E. Hyland N. Clarke G. Dinan T.G. The microbiota-gut-brain axis. Physiol. Rev. 2019 99 4 1877 2013 10.1152/physrev.00018.2018 31460832
    [Google Scholar]
  161. Ceppa F.A. Izzo L. Sardelli L. Raimondi I. Tunesi M. Albani D. Giordano C. Human gut-microbiota interaction in neurodegenerative disorders and current engineered tools for its modeling. Front. Cell. Infect. Microbiol. 2020 10 297 10.3389/fcimb.2020.00297 32733812
    [Google Scholar]
  162. Khodabakhsh P. Bazrgar M. Dargahi L. Mohagheghi F. Asgari Taei A. Parvardeh S. Ahmadiani A. Does Alzheimer’s disease stem in the gastrointestinal system? Life Sci. 2021 287 120088 10.1016/j.lfs.2021.120088 34715145
    [Google Scholar]
  163. Makdissi S. Parsons B.D. Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front. Cell Dev. Biol. 2023 11 1087091 10.3389/fcell.2023.1087091 36824371
    [Google Scholar]
  164. Tilocca B. Pieroni L. Soggiu A. Britti D. Bonizzi L. Roncada P. Greco V. Gut–brain axis and neurodegeneration: State-of-the-art of meta-omics sciences for microbiota characterization. Int. J. Mol. Sci. 2020 21 11 4045 10.3390/ijms21114045 32516966
    [Google Scholar]
  165. Javed I. Cui X. Wang X. Mortimer M. Andrikopoulos N. Li Y. Davis T.P. Zhao Y. Ke P.C. Chen C. Implications of the human gut–brain and gut–cancer axes for future nanomedicine. ACS Nano 2020 14 11 14391 14416 10.1021/acsnano.0c07258 33138351
    [Google Scholar]
  166. Nguyen V.T.T. König S. Eggert S. Endres K. Kins S. The role of mycotoxins in neurodegenerative diseases: Current state of the art and future perspectives of research. Biol. Chem. 2022 403 1 3 26 10.1515/hsz‑2021‑0214 34449171
    [Google Scholar]
  167. Ferreiro A.L. Choi J. Ryou J. Newcomer E.P. Thompson R. Bollinger R.M. Hall-Moore C. Ndao I.M. Sax L. Benzinger T.L.S. Stark S.L. Holtzman D.M. Fagan A.M. Schindler S.E. Cruchaga C. Butt O.H. Morris J.C. Tarr P.I. Ances B.M. Dantas G. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 2023 15 700 eabo2984 10.1126/scitranslmed.abo2984 37315112
    [Google Scholar]
  168. Borsom E.M. Conn K. Keefe C.R. Herman C. Orsini G.M. Hirsch A.H. Palma Avila M. Testo G. Jaramillo S.A. Bolyen E. Lee K. Caporaso J.G. Cope E.K. Predicting neurodegenerative disease using prepathology gut microbiota composition: A longitudinal study in mice modeling Alzheimer’s disease pathologies. Microbiol. Spectr. 2023 11 2 e03458 e22 10.1128/spectrum.03458‑22 36877047
    [Google Scholar]
  169. Zhu J. Liu S. Zhang H. Zhao W. Ding J. Dai R. Xu K. He C. Liu J. Yang L. Meng H. Dynamic distribution of gut microbiota during Alzheimer’s disease progression in a mice model. Acta Pathol. Microbiol. Scand. Suppl. 2023 131 9 480 490 10.1111/apm.13339 37365713
    [Google Scholar]
  170. Favero F. Barberis E. Gagliardi M. Espinoza S. Contu L. Gustincich S. Boccafoschi F. Borsotti C. Lim D. Rubino V. Mignone F. Pasolli E. Manfredi M. Zucchelli S. Corà D. Corazzari M. A Metabologenomic approach reveals alterations in the gut microbiota of a mouse model of Alzheimer’s disease. PLoS One 2022 17 8 e0273036 10.1371/journal.pone.0273036 36001607
    [Google Scholar]
  171. Chen Y. Fang L. Chen S. Zhou H. Fan Y. Lin L. Li J. Xu J. Chen Y. Ma Y. Chen Y. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of alzheimer’s disease. BioMed Res. Int. 2020 2020 1 15 10.1155/2020/8456596 32596386
    [Google Scholar]
  172. Vascellari S. Palmas V. Melis M. Pisanu S. Cusano R. Uva P. Perra D. Madau V. Sarchioto M. Oppo V. Simola N. Morelli M. Santoru M.L. Atzori L. Melis M. Cossu G. Manzin A. Gut microbiota and metabolome alterations associated with parkinson’s disease. mSystems 2020 5 5 e00561 e20 10.1128/mSystems.00561‑20 32934117
    [Google Scholar]
  173. Yan J. Feng X. Zhou X. Zhao M. Xiao H. Li R. Shen H. Identification of gut metabolites associated with Parkinson’s disease using bioinformatic analyses. Front. Aging Neurosci. 2022 14 927625 10.3389/fnagi.2022.927625 35959296
    [Google Scholar]
  174. Murros K.E. Huynh V.A. Takala T.M. Saris P.E.J. Desulfovibrio bacteria are associated with parkinson’s disease. Front. Cell. Infect. Microbiol. 2021 11 652617 10.3389/fcimb.2021.652617 34012926
    [Google Scholar]
  175. Chongtham A. Yoo J.H. Chin T.M. Akingbesote N.D. Huda A. Marsh J.L. Khoshnan A. Gut bacteria regulate the pathogenesis of huntington’s disease in Drosophila model. Front. Neurosci. 2022 16 902205 10.3389/fnins.2022.902205 35757549
    [Google Scholar]
  176. Nicholson K. Bjornevik K. Abu-Ali G. Chan J. Cortese M. Dedi B. Jeon M. Xavier R. Huttenhower C. Ascherio A. Berry J.D. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 2021 22 3-4 186 194 10.1080/21678421.2020.1828475 33135936
    [Google Scholar]
  177. Schepici G. Silvestro S. Bramanti P. Mazzon E. The gut microbiota in multiple sclerosis: An overview of clinical trials. Cell Transplant. 2019 28 12 1507 1527 10.1177/0963689719873890 31512505
    [Google Scholar]
  178. Moles L. Egimendia A. Osorio-Querejeta I. Iparraguirre L. Alberro A. Suárez J. Sepúlveda L. Castillo-Triviño T. Muñoz-Culla M. Ramos-Cabrer P. Otaegui D. Gut microbiota changes in experimental autoimmune encephalomyelitis and cuprizone mice models. ACS Chem. Neurosci. 2021 12 5 893 905 10.1021/acschemneuro.0c00695 33566588
    [Google Scholar]
  179. Tan F.H.P. Liu G. Lau S.Y.A. Jaafar M.H. Park Y.H. Azzam G. Li Y. Liong M.T. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef. Microbes 2020 11 1 79 90 10.3920/BM2019.0086 32066253
    [Google Scholar]
  180. Patel C. Pande S. Acharya S. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 10 1955 1962 10.1007/s00210‑020‑01904‑3 32448977
    [Google Scholar]
  181. Song X. Zhao Z. Zhao Y. Jin Q. Li S. Protective effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-induced cognitive decline, oxidative stress and neuroinflammation. J. Microbiol. Biotechnol. 2022 32 2 212 219 10.4014/jmb.2111.11031 34954699
    [Google Scholar]
  182. Beltagy D.M. Nawar N.F. Mohamed T.M. Tousson E. El-Keey M.M. Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer’s disease. J. Complement. Integr. Med. 2021 18 4 761 767 10.1515/jcim‑2020‑0156 33781011
    [Google Scholar]
  183. Fang X. Zhou X. Miao Y. Han Y. Wei J. Chen T. Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer’s disease and Parkinson’s disease. AMB Express 2020 10 1 80 10.1186/s13568‑020‑01014‑6 32333225
    [Google Scholar]
  184. Alipour Nosrani E. Tamtaji O.R. Alibolandi Z. Sarkar P. Ghazanfari M. Azami Tameh A. Taghizadeh M. Banikazemi Z. Hadavi R. Naderi Taheri M. Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study. J. Immunoassay Immunochem. 2021 42 2 106 120 10.1080/15321819.2020.1833917 33078659
    [Google Scholar]
  185. Castelli V. d’Angelo M. Lombardi F. Alfonsetti M. Antonosante A. Catanesi M. Benedetti E. Palumbo P. Cifone M.G. Giordano A. Desideri G. Cimini A. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson’s disease models. Aging 2020 12 5 4641 4659 10.18632/aging.102927 32155131
    [Google Scholar]
  186. Srivastav S. Neupane S. Bhurtel S. Katila N. Maharjan S. Choi H. Hong J.T. Choi D.Y. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 2019 69 73 86 10.1016/j.jnutbio.2019.03.021 31063918
    [Google Scholar]
  187. Yue M. Wei J. Chen W. Hong D. Chen T. Fang X. Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on parkinson’s disease via inhibiting ferroptosis. Nutrients 2022 14 22 4886 10.3390/nu14224886 36432569
    [Google Scholar]
  188. Zhou L. Han D. Wang X. Chen Z. Probiotic formulation VSL#3 interacts with mesenchymal stromal cells to protect dopaminergic neurons via centrally and peripherally suppressing NOD-like receptor protein 3 inflammasome-mediated inflammation in Parkinson’s disease mice. Microbiol. Spectr. 2023 11 2 e03208 e03222 10.1128/spectrum.03208‑22 36728426
    [Google Scholar]
  189. Liao J.F. Cheng Y.F. You S.T. Kuo W.C. Huang C.W. Chiou J.J. Hsu C.C. Hsieh-Li H.M. Wang S. Tsai Y.C. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav. Immun. 2020 90 26 46 10.1016/j.bbi.2020.07.036 32739365
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241101093436
Loading
/content/journals/cn/10.2174/1570159X23666241101093436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test