Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Age-related neurodegenerative diseases (NDs) pose a formidable challenge to healthcare systems worldwide due to their complex pathogenesis, significant morbidity, and mortality.

Scope and Approach

This comprehensive review aims to elucidate the central role of the microbiota-gut-brain axis (MGBA) in ND pathogenesis. Specifically, it delves into the perturbations within the gut microbiota and its metabolomic landscape, as well as the structural and functional transformations of the gastrointestinal and blood-brain barrier interfaces in ND patients. Additionally, it provides a comprehensive overview of the recent advancements in medicinal and dietary interventions tailored to modulate the MGBA for ND therapy.

Conclusion

Accumulating evidence underscores the pivotal role of the gut microbiota in ND pathogenesis through the MGBA. Dysbiosis of the gut microbiota and associated metabolites instigate structural modifications and augmented permeability of both the gastrointestinal barrier and the blood-brain barrier (BBB). These alterations facilitate the transit of microbial molecules from the gut to the brain neural, endocrine, and immune pathways, potentially contributing to the etiology of NDs. Numerous investigational strategies, encompassing prebiotic and probiotic interventions, pharmaceutical trials, and dietary adaptations, are actively explored to harness the microbiota for ND treatment. This work endeavors to enhance our comprehension of the intricate mechanisms underpinning ND pathogenesis, offering valuable insights for the development of innovative therapeutic modalities targeting these debilitating disorders.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241101093436
2024-11-04
2025-04-07
Loading full text...

Full text loading...

References

  1. CottlerL.B. ZuntJ. WeissB. KamalA.K. VaddipartiK. Building global capacity for brain and nervous system disorders research.Nature20155277578S207S21310.1038/nature1603726580329
    [Google Scholar]
  2. ZhangH. ChenY. WangZ. XieG. LiuM. YuanB. ChaiH. WangW. ChengP. Implications of gut microbiota in neurodegenerative diseases.Front. Immunol.20221378564410.3389/fimmu.2022.78564435237258
    [Google Scholar]
  3. ChenW.W. ZhangX. HuangW.J. Role of neuroinflammation in neurodegenerative diseases (Review).Mol. Med. Rep.20161343391339610.3892/mmr.2016.494826935478
    [Google Scholar]
  4. PrzedborskiS. VilaM. Jackson-LewisV. Series introduction: Neurodegeneration: What is it and where are we?J. Clin. Invest.2003111131010.1172/JCI20031752212511579
    [Google Scholar]
  5. RossC.A. PoirierM.A. Protein aggregation and neurodegenerative disease.Nat. Med.200410Suppl.S10S1710.1038/nm1066
    [Google Scholar]
  6. ChangC.W. ShaoE. MuckeL. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies.Science20213716532eabb825510.1126/science.abb825533632820
    [Google Scholar]
  7. ClineE.N. BiccaM.A. ViolaK.L. KleinW.L. The amyloid-β oligomer hypothesis: Beginning of the third decade.J. Alzheimers Dis.201864s1S567S61010.3233/JAD‑17994129843241
    [Google Scholar]
  8. ElfawyH.A. DasB. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies.Life Sci.201921816518410.1016/j.lfs.2018.12.02930578866
    [Google Scholar]
  9. SotoC. Unfolding the role of protein misfolding in neurodegenerative diseases.Nat. Rev. Neurosci.200341496010.1038/nrn100712511861
    [Google Scholar]
  10. SotoC. PritzkowS. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases.Nat. Neurosci.201821101332134010.1038/s41593‑018‑0235‑930250260
    [Google Scholar]
  11. BrownG.C. The endotoxin hypothesis of neurodegeneration.J. Neuroinflammation201916118010.1186/s12974‑019‑1564‑731519175
    [Google Scholar]
  12. MulderD. AartsE. Arias VasquezA. BloemendaalM. A systematic review exploring the association between the human gut microbiota and brain connectivity in health and disease.Mol. Psychiatry202328125037506110.1038/s41380‑023‑02146‑437479779
    [Google Scholar]
  13. TanA.H. LimS.Y. LangA.E. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic.Nat. Rev. Neurol.202218847649510.1038/s41582‑022‑00681‑235750883
    [Google Scholar]
  14. ChenZ. MaqboolJ. SajidF. HussainG. SunT. Human gut microbiota and its association with pathogenesis and treatments of neurodegenerative diseases.Microb. Pathog.202115010467510.1016/j.micpath.2020.10467533352217
    [Google Scholar]
  15. GoyalD. AliS.A. SinghR.K. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease.Prog. Neuropsychopharmacol. Biol. Psychiatry202110611011210.1016/j.pnpbp.2020.11011232949638
    [Google Scholar]
  16. MegurA. BaltriukienėD. BukelskienėV. BurokasA. The microbiota–gut–brain axis and alzheimer’s disease: Neuroinflammation is to blame?Nutrients20201313710.3390/nu1301003733374235
    [Google Scholar]
  17. ChidambaramS.B. EssaM.M. RathipriyaA.G. BishirM. RayB. MahalakshmiA.M. TousifA.H. SakharkarM.K. KashyapR.S. FriedlandR.P. MonaghanT.M. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle.Pharmacol. Ther.202223110798810.1016/j.pharmthera.2021.10798834536490
    [Google Scholar]
  18. ZhuG. ZhaoJ. ZhangH. WangG. ChenW. Gut microbiota and its metabolites: Bridge of dietary nutrients and Alzheimer’s disease.Adv. Nutr.202314481983910.1016/j.advnut.2023.04.00537075947
    [Google Scholar]
  19. IntiliG. PaladinoL. RappaF. AlbertiG. PlicatoA. CalabròF. FucarinoA. CappelloF. BucchieriF. TomaselloG. CariniF. PitruzzellaA. From dysbiosis to neurodegenerative diseases through different communication pathways: An overview.Biology202312219510.3390/biology1202019536829474
    [Google Scholar]
  20. SorboniS.G. MoghaddamH.S. Jafarzadeh-EsfehaniR. SoleimanpourS. A comprehensive review on the role of the gut microbiome in human neurological disorders.Clin. Microbiol. Rev.2022351e00338e2010.1128/CMR.00338‑2034985325
    [Google Scholar]
  21. PostlerT.S. GhoshS. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system.Cell Metab.201726111013010.1016/j.cmet.2017.05.00828625867
    [Google Scholar]
  22. NeedhamB.D. Kaddurah-DaoukR. MazmanianS.K. Gut microbial molecules in behavioural and neurodegenerative conditions.Nat. Rev. Neurosci.2020211271773110.1038/s41583‑020‑00381‑033067567
    [Google Scholar]
  23. LiuJ. TanY. ChengH. ZhangD. FengW. PengC. Functions of gut microbiota metabolites, current status and future perspectives.Aging Dis.20221341106112610.14336/AD.2022.010435855347
    [Google Scholar]
  24. NingJ. HuangS.Y. ChenS.D. ZhangY.R. HuangY.Y. YuJ.T. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: A mendelian randomization study.J. Alzheimers Dis.202287121122210.3233/JAD‑21541135275534
    [Google Scholar]
  25. GuoB. ZhangJ. ZhangW. ChenF. LiuB. Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: A narrative review.Crit. Rev. Food Sci. Nutr.202312210.1080/10408398.2023.227276937897083
    [Google Scholar]
  26. GaoC. LiB. HeY. HuangP. DuJ. HeG. ZhangP. TangH. ChenS. Early changes of fecal short‐chain fatty acid levels in patients with mild cognitive impairments.CNS Neurosci. Ther.202329113657366610.1111/cns.1425237144597
    [Google Scholar]
  27. YanY. RenS. DuanY. LuC. NiuY. WangZ. InglisB. JiW. ZhengY. SiW. Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson’s disease.NPJ Biofilms Microbiomes2021716910.1038/s41522‑021‑00242‑334475403
    [Google Scholar]
  28. HuangT. ShiH. XuY. JiL. The gut microbiota metabolite propionate ameliorates intestinal epithelial barrier dysfunction-mediated Parkinson’s disease via the AKT signaling pathway.Neuroreport202132324425110.1097/WNR.000000000000158533470765
    [Google Scholar]
  29. KongG. CaoK.A.L. JuddL.M. LiS. RenoirT. HannanA.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease.Neurobiol. Dis.202013510426810.1016/j.nbd.2018.09.00130194046
    [Google Scholar]
  30. ZengQ. ShenJ. ChenK. ZhouJ. LiaoQ. LuK. YuanJ. BiF. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients.Sci. Rep.20201011299810.1038/s41598‑020‑69845‑832747678
    [Google Scholar]
  31. WangH. YangF. ZhangS. XinR. SunY. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation.NPJ Parkinsons Dis.2021717010.1038/s41531‑021‑00213‑734381040
    [Google Scholar]
  32. KimN. JeonS.H. JuI.G. GeeM.S. DoJ. OhM.S. LeeJ.K. Transplantation of gut microbiota derived from Alzheimer’s disease mouse model impairs memory function and neurogenesis in C57BL/6 mice.Brain Behav. Immun.20219835736510.1016/j.bbi.2021.09.00234500036
    [Google Scholar]
  33. ParkerA. RomanoS. AnsorgeR. AboelnourA. Le GallG. SavvaG.M. PontifexM.G. TelatinA. BakerD. JonesE. VauzourD. RudderS. BlackshawL.A. JefferyG. CardingS.R. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain.Microbiome20221016810.1186/s40168‑022‑01243‑w35501923
    [Google Scholar]
  34. MathesonJ.A.T. HolsingerR.M.D. The role of fecal microbiota transplantation in the treatment of neurodegenerative diseases: A review.Int. J. Mol. Sci.2023242100110.3390/ijms2402100136674517
    [Google Scholar]
  35. GubertC. ChooJ.M. LoveC.J. KodikaraS. MassonB.A. LiewJ.J.M. WangY. KongG. NarayanaV.K. RenoirT. Lê CaoK.A. RogersG.B. HannanA.J. Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice.Brain Commun.202244fcac20510.1093/braincomms/fcac20536035436
    [Google Scholar]
  36. HuangH. XuH. LuoQ. HeJ. LiM. ChenH. TangW. NieY. ZhouY. Fecal microbiota transplantation to treat Parkinson’s disease with constipation.Medicine 20199826e1616310.1097/MD.000000000001616331261545
    [Google Scholar]
  37. YangX. QianY. XuS. SongY. XiaoQ. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of parkinson’s disease.Front. Aging Neurosci.2018944110.3389/fnagi.2017.0044129358918
    [Google Scholar]
  38. QianX. LiuX. ChenG. ChenS. TangH. Injection of amyloid-β to lateral ventricle induces gut microbiota dysbiosis in association with inhibition of cholinergic anti-inflammatory pathways in Alzheimer’s disease.J. Neuroinflammation202219123610.1186/s12974‑022‑02599‑436171620
    [Google Scholar]
  39. ZhuZ. MaX. WuJ. XiaoZ. WuW. DingS. ZhengL. LiangX. LuoJ. DingD. ZhaoQ. Altered gut microbiota and its clinical relevance in mild cognitive impairment and alzheimer’s disease: Shanghai aging study and shanghai memory study.Nutrients20221419395910.3390/nu1419395936235612
    [Google Scholar]
  40. RégnierM. Van HulM. KnaufC. CaniP.D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases.J. Endocrinol.20212482R67R8210.1530/JOE‑20‑047333295880
    [Google Scholar]
  41. HonarpishehP. ReynoldsC.R. Blasco ConesaM.P. MorunoM.J.F. PutluriN. BhattacharjeeM.B. UrayamaA. McCulloughL.D. GaneshB.P. Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice.Int. J. Mol. Sci.2020215171110.3390/ijms2105171132138161
    [Google Scholar]
  42. WangK. ZhangC. ZhangB. LiG. ShiG. CaiQ. HuangM. Gut dysfunction may be the source of pathological aggregation of alpha-synuclein in the central nervous system through Paraquat exposure in mice.Ecotoxicol. Environ. Saf.202224611415210.1016/j.ecoenv.2022.11415236201918
    [Google Scholar]
  43. ZuoL. KuoW.T. TurnerJ.R. Tight junctions as targets and effectors of mucosal immune homeostasis.Cell. Mol. Gastroenterol. Hepatol.202010232734010.1016/j.jcmgh.2020.04.00132304780
    [Google Scholar]
  44. JacksonA. EngenP.A. ForsythC.B. ShaikhM. NaqibA. WilberS. FraustoD.M. RaeisiS. GreenS.J. BradaricB.D. PersonsA.L. VoigtR.M. KeshavarzianA. Intestinal barrier dysfunction in the absence of systemic inflammation fails to exacerbate motor dysfunction and brain pathology in a mouse model of parkinson’s disease.Front. Neurol.20221388262810.3389/fneur.2022.88262835665034
    [Google Scholar]
  45. Roy SarkarS. BanerjeeS. Gut microbiota in neurodegenerative disorders.J. Neuroimmunol.20193289810410.1016/j.jneuroim.2019.01.00430658292
    [Google Scholar]
  46. LeeJ.Y. WangZ.J. MoscatelloA. KingsburyC. CozeneB. FarooqJ. SaftM. SadanandanN. Gonzales-PortilloB. ZhangH. SalazarF.E. ToledoA.R.L. MonroyG.R. BerletR. SanbergC.D. SanbergP.R. BorlonganC.V. Inflammatory gut as a pathologic and therapeutic target in Parkinson’s disease.Cell Death Discov.20228139610.1038/s41420‑022‑01175‑236153318
    [Google Scholar]
  47. ParkerA. JamesS.A. PurseC. BrionA. GoldsonA. TelatinA. BakerD. CardingS.R. Absence of bacteria permits fungal gut-to-brain translocation and invasion in germfree mice but ageing alone does not drive pathobiont expansion in conventionally raised mice.Front. Aging Neurosci.20221482842910.3389/fnagi.2022.82842935923548
    [Google Scholar]
  48. StanT.L. Soylu-KucharzR. BurleighS. PrykhodkoO. CaoL. FrankeN. SjögrenM. HaikalC. HålleniusF. BjörkqvistM. Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease.Sci. Rep.20201011827010.1038/s41598‑020‑75229‑933106549
    [Google Scholar]
  49. FraustoD.M. EngenP.A. NaqibA. JacksonA. TranL. GreenS.J. ShaikhM. ForsythC.B. KeshavarzianA. VoigtR.M. Impact of alcohol-induced intestinal microbiota dysbiosis in a rodent model of Alzheimer’s disease.Front. Aging2022391633610.3389/fragi.2022.91633636046496
    [Google Scholar]
  50. ParkerA. FonsecaS. CardingS.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health.Gut Microbes202011213515710.1080/19490976.2019.163872231368397
    [Google Scholar]
  51. BoschettiE. NeriI. FolloM.Y. De GiorgioR. CoccoL.I. ManzoliL. RattiS. Microbiota-gut-brain axis in neurological disorders: From leaky barriers microanatomical changes to biochemical processes.Mini Rev. Med. Chem.202323330731910.2174/138955752266622062211150135733303
    [Google Scholar]
  52. MugishoO.O. RobilliardL.D. NicholsonL.F.B. GrahamE.S. O’CarrollS.J. Bradykinin receptor‐1 activation induces inflammation and increases the permeability of human brain microvascular endothelial cells.Cell Biol. Int.202044134335110.1002/cbin.1123231498530
    [Google Scholar]
  53. XuG. LiY. MaC. WangC. SunZ. ShenY. LiuL. LiS. ZhangX. CongB. Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats.Front. Mol. Neurosci.2019123210.3389/fnmol.2019.0003230814927
    [Google Scholar]
  54. KalyanM. TousifA.H. SonaliS. VichitraC. SunandaT. PraveenrajS.S. RayB. GorantlaV.R. RungratanawanichW. MahalakshmiA.M. QoronflehM.W. MonaghanT.M. SongB.J. EssaM.M. ChidambaramS.B. Role of endogenous lipopolysaccharides in neurological disorders.Cells20221124403810.3390/cells1124403836552802
    [Google Scholar]
  55. WeiC. JiangW. WangR. ZhongH. HeH. GaoX. ZhongS. YuF. GuoQ. ZhangL. SchiffelersL.D.J. ZhouB. TrepelM. SchmidtF.I. LuoM. ShaoF. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown.Nature2024629801389390010.1038/s41586‑024‑07314‑238632402
    [Google Scholar]
  56. WenzelT.J. GatesE.J. RangerA.L. KlegerisA. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells.Mol. Cell. Neurosci.202010510349310.1016/j.mcn.2020.10349332333962
    [Google Scholar]
  57. KnoxE.G. AburtoM.R. TessierC. NagpalJ. ClarkeG. O’DriscollC.M. CryanJ.F. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function.iScience2022251210564810.1016/j.isci.2022.10564836505934
    [Google Scholar]
  58. HoylesL. SnellingT. UmlaiU.K. NicholsonJ.K. CardingS.R. GlenR.C. McArthurS. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier.Microbiome2018615510.1186/s40168‑018‑0439‑y29562936
    [Google Scholar]
  59. Corral-JaraK.F. NuthikattuS. RutledgeJ. VillablancaA. FongR. HeissC. OttavianiJ.I. MilenkovicD. Structurally related (−)-epicatechin metabolites and gut microbiota derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study.J. Proteomics202226310460310.1016/j.jprot.2022.10460335568144
    [Google Scholar]
  60. JohnsonS.L. KirkR.D. DaSilvaN.A. MaH. SeeramN.P. BertinM.J. Polyphenol microbial metabolites exhibit gut and blood–brain barrier permeability and protect murine microglia against LPS-induced inflammation.Metabolites2019947810.3390/metabo904007831010159
    [Google Scholar]
  61. XiaoyingL. LiT. YuS. JiushengJ. JilinZ. JiayiW. DongxinL. WengangF. XinyueZ. HaoY. YuhuaC. DeshuS. Resistin-inhibited neural stem cell-derived astrocyte differentiation contributes to permeability destruction of the blood–brain barrier.Neurochem. Res.201944490591610.1007/s11064‑019‑02726‑330690681
    [Google Scholar]
  62. GrayK.M. KatzD.B. BrownE.G. StrokaK.M. Quantitative phenotyping of cell–cell junctions to evaluate ZO-1 presentation in brain endothelial cells.Ann. Biomed. Eng.20194771675168710.1007/s10439‑019‑02266‑530993538
    [Google Scholar]
  63. WangH. LvJ.J. ZhaoY. WeiH.L. ZhangT.J. YangH.J. ChenZ.N. JiangJ.L. Endothelial genetic deletion of CD147 induces changes in the dual function of the blood‐brain barrier and is implicated in Alzheimer’s disease.CNS Neurosci. Ther.20212791048106310.1111/cns.1365933987940
    [Google Scholar]
  64. M LeiteD.; Seifi, M.; Ruiz-Perez, L.; Nguemo, F.; Plomann, M.; Swinny, J.D.; Battaglia, G. Syndapin-2 mediated transcytosis of amyloid-β across the blood-brain barrier.Brain Commun.202241fcac03910.1093/braincomms/fcac03935233527
    [Google Scholar]
  65. LinvilleR.M. NerenbergR.F. GrifnoG. ArevaloD. GuoZ. SearsonP.C. Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington’s disease.Fluids Barriers CNS20221915410.1186/s12987‑022‑00347‑735773691
    [Google Scholar]
  66. ZamudioF. LoonA.R. SmeltzerS. BenyamineK. NavalpurS.N.K. StewartN.J.F. LeeD.C. NashK. SelenicaM.L.B. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model.J. Neuroinflammation202017128310.1186/s12974‑020‑01952‑932979923
    [Google Scholar]
  67. ParaisoH.C. WangX. KuoP.C. FurnasD. ScofieldB.A. ChangF.L. YenJ.H. YuI.C. Isolation of mouse cerebral microvasculature for molecular and single-cell analysis.Front. Cell. Neurosci.2020148410.3389/fncel.2020.0008432327974
    [Google Scholar]
  68. KnoxE.G. AburtoM.R. ClarkeG. CryanJ.F. O’DriscollC.M. The blood-brain barrier in aging and neurodegeneration.Mol. Psychiatry20222762659267310.1038/s41380‑022‑01511‑z35361905
    [Google Scholar]
  69. ZlokovicB.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders.Nat. Rev. Neurosci.2011121272373810.1038/nrn311422048062
    [Google Scholar]
  70. DingR. HaseY. Ameen-AliK.E. NdunguM. StevensonW. BarsbyJ. GourlayR. AkinyemiT. AkinyemiR. UemuraM.T. PolvikoskiT. Mukaetova-LadinskaE. IharaM. KalariaR.N. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease.Brain Pathol.20203061087110110.1111/bpa.1288832705757
    [Google Scholar]
  71. NortleyR. KorteN. IzquierdoP. HirunpattarasilpC. MishraA. JaunmuktaneZ. KyrargyriV. PfeifferT. KhennoufL. MadryC. GongH. Richard-LoendtA. HuangW. SaitoT. SaidoT.C. BrandnerS. SethiH. AttwellD. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes.Science20193656450eaav951810.1126/science.aav951831221773
    [Google Scholar]
  72. NikolakopoulouA.M. MontagneA. KislerK. DaiZ. WangY. HuuskonenM.T. SagareA.P. LazicD. SweeneyM.D. KongP. WangM. OwensN.C. LawsonE.J. XieX. ZhaoZ. ZlokovicB.V. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss.Nat. Neurosci.20192271089109810.1038/s41593‑019‑0434‑z31235908
    [Google Scholar]
  73. PanJ. MaN. ZhongJ. YuB. WanJ. ZhangW. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction.Mol. Ther. Nucleic Acids20212697098610.1016/j.omtn.2021.08.03034760339
    [Google Scholar]
  74. LeeR.L. FunkK.E. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease.Front. Aging Neurosci.202315114403610.3389/fnagi.2023.114403637009464
    [Google Scholar]
  75. SongK. HanH.J. KimS. KwonJ. Thymosin beta 4 attenuates PrP(106-126)-induced human brain endothelial cells dysfunction.Eur. J. Pharmacol.202086917289110.1016/j.ejphar.2019.17289131877278
    [Google Scholar]
  76. ChoudhuryS.P. BanoS. SenS. SuchalK. KumarS. NikolajeffF. DeyS.K. SharmaV. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson’s disease.NPJ Parkinsons Dis.2022816610.1038/s41531‑022‑00324‑935650269
    [Google Scholar]
  77. LaiP.H. WangT.H. ZhangN.Y. WuK.C. YaoC.C.J. LinC.J. Changes of blood-brain-barrier function and transfer of amyloid beta in rats with collagen-induced arthritis.J. Neuroinflammation20211813510.1186/s12974‑021‑02086‑233516259
    [Google Scholar]
  78. GorinaY.V. KomlevaY.K. OsipovaE.D. MorgunA.V. MalinovskayaN.A. LopatinaO.L. SalminaA.B. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease.Bulletin of Siberian Medicine2021194465210.20538/1682‑0363‑2020‑4‑46‑52
    [Google Scholar]
  79. NishimuraY. FukudaY. OkonogiT. YoshikawaS. KarasuyamaH. OsakabeN. IkegayaY. SasakiT. AdachiT. Dual real-time in vivo monitoring system of the brain-gut axis.Biochem. Biophys. Res. Commun.2020524234034510.1016/j.bbrc.2020.01.09031996305
    [Google Scholar]
  80. StopińskaK. Radziwoń-ZaleskaM. DomitrzI. The microbiota-gut-brain axis as a key to neuropsychiatric disorders: A mini review.J. Clin. Med.20211020464010.3390/jcm1020464034682763
    [Google Scholar]
  81. NaveedM. ZhouQ.G. XuC. TalebA. MengF. AhmedB. ZhangY. FukunagaK. HanF. Gut-brain axis: A matter of concern in neuropsychiatric disorders…!Prog. Neuropsychopharmacol. Biol. Psychiatry202110411005110.1016/j.pnpbp.2020.11005132758517
    [Google Scholar]
  82. MargolisK.G. CryanJ.F. MayerE.A. The microbiota-gut-brain axis: From motility to mood.Gastroenterology202116051486150110.1053/j.gastro.2020.10.06633493503
    [Google Scholar]
  83. HuangT.T. LaiJ.B. DuY.L. XuY. RuanL.M. HuS.H. Current understanding of gut microbiota in mood disorders: An update of human studies.Front. Genet.2019109810.3389/fgene.2019.0009830838027
    [Google Scholar]
  84. BaileyM.T. DowdS.E. GalleyJ.D. HufnagleA.R. AllenR.G. LyteM. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation.Brain Behav. Immun.201125339740710.1016/j.bbi.2010.10.02321040780
    [Google Scholar]
  85. SunY. HoC.T. LiuY. ZhanS. WuZ. ZhengX. ZhangX. The modulatory effect of cyclocarya paliurus flavonoids on intestinal microbiota and hypothalamus clock genes in a circadian rhythm disorder mouse model.Nutrients20221411230810.3390/nu1411230835684108
    [Google Scholar]
  86. ChiuL.S. AndertonR.S. The role of the microbiota–gut–brain axis in long‐term neurodegenerative processes following traumatic brain injury.Eur. J. Neurosci.202357240041810.1111/ejn.1589236494087
    [Google Scholar]
  87. Frej-MądrzakM. KołodziejP. SarowskaJ. Jama-KmiecikA. The influence of intestinal microbiota on the occurrence of mental disorders and neurodegenerative diseases.Postepy Hig. Med. Dosw.202175162063310.2478/ahem‑2021‑0021
    [Google Scholar]
  88. IsaiahS. LootsD.T. SolomonsR. van der KuipM. TutuV.F.A.M. MasonS. Overview of brain-to-gut axis exposed to chronic cns bacterial infection(s) and a predictive urinary metabolic profile of a brain infected by Mycobacterium tuberculosis.Front. Neurosci.20201429610.3389/fnins.2020.0029632372900
    [Google Scholar]
  89. KaelbererM.M. BuchananK.L. KleinM.E. BarthB.B. MontoyaM.M. ShenX. BohórquezD.V. A gut-brain neural circuit for nutrient sensory transduction.Science20183616408eaat523610.1126/science.aat523630237325
    [Google Scholar]
  90. LiuJ.Y.H. SunM.Y.Y. SommervilleN. NganM.P. PonomarevE.D. LinG. RuddJ.A. Soy flavonoids prevent cognitive deficits induced by intra-gastrointestinal administration of beta-amyloid.Food Chem. Toxicol.202014111139610.1016/j.fct.2020.11139632417364
    [Google Scholar]
  91. StrandwitzP. Neurotransmitter modulation by the gut microbiota.Brain Res.20181693Pt B12813310.1016/j.brainres.2018.03.015
    [Google Scholar]
  92. ChenY. XuJ. ChenY. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders.Nutrients2021136209910.3390/nu1306209934205336
    [Google Scholar]
  93. HanY. WangB. GaoH. HeC. HuaR. LiangC. ZhangS. WangY. XinS. XuJ. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases.J. Inflamm. Res.2022156213623010.2147/JIR.S38494936386584
    [Google Scholar]
  94. SinghA. de la SerreC. de LartigueG. Gut microbiota sPARk vagus nerve excitation.J. Physiol.2020598112043204410.1113/JP27976332187377
    [Google Scholar]
  95. PetersonC.T. Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: The promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics.J. Evid. Based Integr. Med.2020252515690X20957225
    [Google Scholar]
  96. KhaspekovL.G. Current views on the role of stress in the pathogenesis of chronic neurodegenerative diseases.Biochemistry202186673774510.1134/S000629792106011034225596
    [Google Scholar]
  97. SoaresN.M. PereiraG.M. AltmannV. de AlmeidaR.M.M. RiederC.R.M. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson’s disease: A systematic review.J. Neural Transm.2019126321923210.1007/s00702‑018‑1947‑430374595
    [Google Scholar]
  98. KeskitaloA. AatsinkiA.K. KortesluomaS. PeltoJ. KorhonenL. LahtiL. LukkarinenM. MunukkaE. KarlssonH. KarlssonL. Gut microbiota diversity but not composition is related to saliva cortisol stress response at the age of 2.5 months.Stress202124555156010.1080/10253890.2021.189511033729084
    [Google Scholar]
  99. de Souza-TalaricoJ.N. AlvesA.R. BruckiS.M.D. NitriniR. LupienS.J. SucheckiD. Cortisol reactivity to a psychosocial stressor significantly increases the risk of developing Cognitive Impairment no Dementia five years later.Psychoneuroendocrinology202011510460110.1016/j.psyneuen.2020.10460132087524
    [Google Scholar]
  100. VagnerováK. VodičkaM. HermanováP. ErgangP. ŠrůtkováD. KlusoňováP. BalounováK. HudcovicT. PáchaJ. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic–pituitary–adrenal axis and the intestine of male mice.Front. Immunol.201910265510.3389/fimmu.2019.0265531798585
    [Google Scholar]
  101. NiccolaiE. Di PilatoV. NanniniG. BaldiS. RussoE. ZucchiE. MartinelliI. MenicattiM. BartolucciG. MandrioliJ. AmedeiA. The gut microbiota-immunity axis in ALS: A role in deciphering disease heterogeneity?Biomedicines20219775310.3390/biomedicines907075334209688
    [Google Scholar]
  102. Campos-AcuñaJ. ElguetaD. PachecoR. T-cell-driven inflammation as a mediator of the gut-brain axis involved in parkinson’s disease.Front. Immunol.20191023910.3389/fimmu.2019.0023930828335
    [Google Scholar]
  103. KeoghC.E. RudeK.M. GareauM.G. Role of pattern recognition receptors and the microbiota in neurological disorders.J. Physiol.202159951379138910.1113/JP27977133404072
    [Google Scholar]
  104. ShuklaP.K. DelotterieD.F. XiaoJ. PierreJ.F. RaoR. McDonaldM.P. KhanM.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of alzheimer’s disease.Cells202110477910.3390/cells1004077933916001
    [Google Scholar]
  105. Perez-PardoP. DodiyaH.B. EngenP.A. ForsythC.B. HuschensA.M. ShaikhM. VoigtR.M. NaqibA. GreenS.J. KordowerJ.H. ShannonK.M. GarssenJ. KraneveldA.D. KeshavarzianA. Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice.Gut201968582984310.1136/gutjnl‑2018‑31684430554160
    [Google Scholar]
  106. ZhaoZ. NingJ. BaoX. ShangM. MaJ. LiG. ZhangD. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis.Microbiome20219122610.1186/s40168‑021‑01107‑934784980
    [Google Scholar]
  107. BicknellB. LiebertA. BorodyT. HerkesG. McLachlanC. KiatH. Neurodegenerative and neurodevelopmental diseases and the gut-brain axis: The potential of therapeutic targeting of the microbiome.Int. J. Mol. Sci.20232411957710.3390/ijms2411957737298527
    [Google Scholar]
  108. HillC. GuarnerF. ReidG. GibsonG.R. MerensteinD.J. PotB. MorelliL. CananiR.B. FlintH.J. SalminenS. CalderP.C. SandersM.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.6624912386
    [Google Scholar]
  109. GibsonG.R. HutkinsR. SandersM.E. PrescottS.L. ReimerR.A. SalminenS.J. ScottK. StantonC. SwansonK.S. CaniP.D. VerbekeK. ReidG. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.7528611480
    [Google Scholar]
  110. SwansonK.S. GibsonG.R. HutkinsR. ReimerR.A. ReidG. VerbekeK. ScottK.P. HolscherH.D. AzadM.B. DelzenneN.M. SandersM.E. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics.Nat. Rev. Gastroenterol. Hepatol.2020171168770110.1038/s41575‑020‑0344‑232826966
    [Google Scholar]
  111. SalminenS. ColladoM.C. EndoA. HillC. LebeerS. QuigleyE.M.M. SandersM.E. ShamirR. SwannJ.R. SzajewskaH. VinderolaG. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat. Rev. Gastroenterol. Hepatol.202118964966710.1038/s41575‑021‑00440‑633948025
    [Google Scholar]
  112. BashirB. AlamS. KhandaleN. BirlaD. VishwasS. PandeyN.K. GuptaG. PaudelK.R. DurejaH. KumarP. SinghT.G. KuppusamyG. ZacconiF.C. PintoT.J.A. DhanasekaranM. GulatiM. DuaK. SinghS.K. Opening avenues for treatment of neurodegenerative disease using post-biotics: Breakthroughs and bottlenecks in clinical translation.Ageing Res. Rev.20249510223610.1016/j.arr.2024.10223638369026
    [Google Scholar]
  113. XuM. MoX. HuangH. ChenX. LiuH. PengZ. ChenL. RongS. YangW. XuS. LiuL. Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ1-42-induced AD-like mice.Int. J. Biol. Macromol.202016125827010.1016/j.ijbiomac.2020.05.18032522544
    [Google Scholar]
  114. LiuQ. XiY. WangQ. LiuJ. LiP. MengX. LiuK. ChenW. LiuX. LiuZ. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis.Brain Behav. Immun.20219533034310.1016/j.bbi.2021.04.00533839232
    [Google Scholar]
  115. LiT. YangS. LiuX. LiY. GuZ. JiangZ. Dietary neoagarotetraose extends lifespan and impedes brain aging in mice via regulation of microbiota-gut-brain axis.J. Adv. Res.20235211913410.1016/j.jare.2023.04.01437085001
    [Google Scholar]
  116. NiY. YangX. ZhengL. WangZ. WuL. JiangJ. YangT. MaL. FuZ. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota.Mol. Nutr. Food Res.20196322190060310.1002/mnfr.20190060331433910
    [Google Scholar]
  117. MohammadiG. DargahiL. NaserpourT. MirzanejadY. AlizadehS.A. PeymaniA. Nassiri-AslM. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats.Int. Microbiol.201922331732310.1007/s10123‑018‑00051‑330810993
    [Google Scholar]
  118. LouzadaE.R. RibeiroS.M.L. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial.Nutr. Neurosci.20202329310010.1080/1028415X.2018.147734929788823
    [Google Scholar]
  119. LalitsuradejE. SirilunS. SittiprapapornP. SivamaruthiB.S. PinthaK. TantipaiboonwongP. KhongtanS. FukngoenP. PeerajanS. ChaiyasutC. The effects of synbiotics administration on stress-related parameters in thai subjects—A preliminary study.Foods202211575910.3390/foods1105075935267392
    [Google Scholar]
  120. BulaciosG.A. CataldoP.G. NajaJ.R. de ChavesE.P. TarantoM.P. MinahkC.J. HebertE.M. SaavedraM.L. Improvement of key molecular events linked to alzheimer’s disease pathology using postbiotics.ACS Omega2023850480424804910.1021/acsomega.3c0680538144080
    [Google Scholar]
  121. ChakrabortyP. GamageH.K.A.H. LairdA.S. Butyrate as a potential therapeutic agent for neurodegenerative disorders.Neurochem. Int.202417610574510.1016/j.neuint.2024.10574538641025
    [Google Scholar]
  122. GeX. ZhengM. HuM. FangX. GengD. LiuS. WangL. ZhangJ. GuanL. ZhengP. XieY. PanW. ZhouM. ZhouL. TangR. ZhengK. YuY. HuangX.F. Butyrate ameliorates quinolinic acid–induced cognitive decline in obesity models.J. Clin. Invest.20231334e15461210.1172/JCI15461236787221
    [Google Scholar]
  123. SuH. ZhangC. ZouX. LuF. ZengY. GuanH. RenY. YuanF. XuL. ZhangM. DongH. Jiao-tai-wan inhibits inflammation of the gut-brain-axis and attenuates cognitive impairment in insomnic rats.J. Ethnopharmacol.202025011247810.1016/j.jep.2019.11247831843572
    [Google Scholar]
  124. LiD. YouH. HuG. YaoR. XieA. LiX. Mechanisms of the Ping-wei-san plus herbal decoction against Parkinson’s disease: Multiomics analyses.Front. Nutr.2023994535610.3389/fnut.2022.94535636687704
    [Google Scholar]
  125. XieZ. LuH. YangS. ZengY. LiW. WangL. LuoG. FangF. ZengT. ChengW. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis.Front. Pharmacol.20201156842310.3389/fphar.2020.56842333362539
    [Google Scholar]
  126. MengD. YangM. HuL. LiuT. ZhangH. SunX. WangX. ChenY. JinY. LiuR. Rifaximin protects against circadian rhythm disruption–induced cognitive impairment through preventing gut barrier damage and neuroinflammation.J. Neurochem.2022163540641810.1111/jnc.1570136189686
    [Google Scholar]
  127. KimH.Y. BaeC.H. KimJ. LeeY. JeonH. KimH. KimS. Rumex japonicus Houtt. Protects dopaminergic neurons by regulating mitochondrial function and gut–brain axis in in vitro and in vivo models of parkinson’s disease.Antioxidants202211114110.3390/antiox1101014135052645
    [Google Scholar]
  128. IsholaI.O. AwogbindinI.O. Olubodun-ObadunT.G. OluwafemiO.A. OnueluJ.E. AdeyemiO.O. Morin ameliorates rotenone-induced Parkinson disease in mice through antioxidation and anti-neuroinflammation: gut-brain axis involvement.Brain Res.2022178914795810.1016/j.brainres.2022.14795835654119
    [Google Scholar]
  129. ZhaoZ. LiF. NingJ. PengR. ShangJ. LiuH. ShangM. BaoX.Q. ZhangD. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF-κB pathway through microbiota–gut–brain axis.Acta Pharm. Sin. B20211192859287910.1016/j.apsb.2021.03.02034589401
    [Google Scholar]
  130. WangX. SunG. FengT. ZhangJ. HuangX. WangT. XieZ. ChuX. YangJ. WangH. ChangS. GongY. RuanL. ZhangG. YanS. LianW. DuC. YangD. ZhangQ. LinF. LiuJ. ZhangH. GeC. XiaoS. DingJ. GengM. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression.Cell Res.2019291078780310.1038/s41422‑019‑0216‑x31488882
    [Google Scholar]
  131. XiaoS. ChanP. WangT. HongZ. WangS. KuangW. HeJ. PanX. ZhouY. JiY. WangL. ChengY. PengY. YeQ. WangX. WuY. QuQ. ChenS. LiS. ChenW. XuJ. PengD. ZhaoZ. LiY. ZhangJ. DuY. ChenW. FanD. YanY. LiuX. ZhangW. LuoB. WuW. ShenL. LiuC. MaoP. WangQ. ZhaoQ. GuoQ. ZhouY. LiY. JiangL. RenW. OuyangY. WangY. LiuS. JiaJ. ZhangN. LiuZ. HeR. FengT. LuW. TangH. GaoP. ZhangY. ChenL. WangL. YinY. XuQ. XiaoJ. CongL. ChengX. ZhangH. GaoD. XiaM. LianT. PengG. ZhangX. JiaoB. HuH. ChenX. GuanY. CuiR. HuangQ. XinX. ChenH. DingY. ZhangJ. FengT. CantillonM. ChenK. CummingsJ.L. DingJ. GengM. ZhangZ. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia.Alzheimers Res. Ther.20211316210.1186/s13195‑021‑00795‑733731209
    [Google Scholar]
  132. ZhangM. ZhaoD. ZhouG. LiC. Dietary pattern, gut microbiota, and alzheimer’s disease.J. Agric. Food Chem.20206846128001280910.1021/acs.jafc.9b0830932090565
    [Google Scholar]
  133. ShiH. GeX. MaX. ZhengM. CuiX. PanW. ZhengP. YangX. ZhangP. HuM. HuT. TangR. ZhengK. HuangX.F. YuY. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites.Microbiome20219122310.1186/s40168‑021‑01172‑034758889
    [Google Scholar]
  134. ZhangM. SongS. ZhaoD. ShiJ. XuX. ZhouG. LiC. High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system.J. Nutr. Biochem.20208510848710.1016/j.jnutbio.2020.10848732827667
    [Google Scholar]
  135. ZhangH. TaoY. LengS.X. Ketogenic diet: An effective treatment approach for neurodegenerative diseases.Curr. Neuropharmacol.202220122303231910.2174/1570159X2066622083010262836043794
    [Google Scholar]
  136. ZhuH. BiD. ZhangY. KongC. DuJ. WuX. WeiQ. QinH. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations.Signal Transduct. Target. Ther.2022711110.1038/s41392‑021‑00831‑w35034957
    [Google Scholar]
  137. BisagliaM. Mediterranean diet and parkinson’s disease.Int. J. Mol. Sci.20222414210.3390/ijms2401004236613486
    [Google Scholar]
  138. ShiH. WangQ. ZhengM. HaoS. LumJ.S. ChenX. HuangX.F. YuY. ZhengK. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice.J. Neuroinflammation20201717710.1186/s12974‑020‑01760‑132127019
    [Google Scholar]
  139. ShiH. YuY. LinD. ZhengP. ZhangP. HuM. WangQ. PanW. YangX. HuT. LiQ. TangR. ZhouF. ZhengK. HuangX.F. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice.Microbiome20208114310.1186/s40168‑020‑00920‑y33008466
    [Google Scholar]
  140. LanY. MaZ. ChangL. PengJ. ZhangM. SunQ. QiaoR. HouX. DingX. ZhangQ. PengQ. DongJ. LiuX. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis.Int. J. Biol. Macromol.202323612379710.1016/j.ijbiomac.2023.12379736828095
    [Google Scholar]
  141. LiuQ. XieT. XiY. LiL. MoF. LiuX. LiuZ. GaoJ.M. YuanT. Sesamol attenuates amyloid peptide accumulation and cognitive deficits in APP/PS1 mice: The mediating role of the gut–brain axis.J. Agric. Food Chem.20216943127171272910.1021/acs.jafc.1c0468734669408
    [Google Scholar]
  142. WangN. FengB.N. HuB. ChengY.L. GuoY.H. QianH. Neuroprotection of chicoric acid in a mouse model of Parkinson’s disease involves gut microbiota and TLR4 signaling pathway.Food Funct.20221342019203210.1039/D1FO02216D35103734
    [Google Scholar]
  143. SultanaO.F. HiaR.A. ReddyP.H. A combinational therapy for preventing and delaying the onset of alzheimer’s disease: A focus on probiotic and vitamin co-supplementation.Antioxidants202413220210.3390/antiox1302020238397800
    [Google Scholar]
  144. YouM. WangK. PanY. TaoL. MaQ. ZhangG. HuF. Combined royal jelly 10-hydroxydecanoic acid and aspirin has a synergistic effect against memory deficit and neuroinflammation.Food Funct.20221342336235310.1039/D1FO02397G35142767
    [Google Scholar]
  145. WenH. TianH. LiuC. ZhangX. PengY. YangX. ChenF. LiJ. Metformin and cyanidin 3-O-galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice.Food Funct.20211221109941100810.1039/D1FO02122B34657937
    [Google Scholar]
  146. MastropasquaL. AgnifiliL. FerranteC. SacchiM. FigusM. RossiG.C.M. BresciaL. AloiaR. OrlandoG. Citicoline/Coenzyme Q10/Vitamin B3 fixed combination exerts synergistic protective effects on neuronal cells exposed to oxidative stress.Nutrients20221414296310.3390/nu1414296335889920
    [Google Scholar]
  147. JayatungaD.P.W. HoneE. FernandoW.M.A.D.B. GargM.L. VerdileG. MartinsR.N. A synergistic combination of DHA, luteolin, and urolithin A against alzheimer’s disease.Front. Aging Neurosci.20221478060210.3389/fnagi.2022.78060235250535
    [Google Scholar]
  148. JayatungaD.P.W. HoneE. FernandoW.M.A.D.B. GargM.L. VerdileG. MartinsR.N. Mitoprotective effects of a synergistic nutraceutical combination: Basis for a prevention strategy against alzheimer’s disease.Front. Aging Neurosci.20221378146810.3389/fnagi.2021.78146835264941
    [Google Scholar]
  149. OoijevaarR.E. TerveerE.M. VerspagetH.W. KuijperE.J. KellerJ.J. Clinical application and potential of fecal microbiota transplantation.Annu. Rev. Med.201970133535110.1146/annurev‑med‑111717‑12295630403550
    [Google Scholar]
  150. PlutaR. Ułamek-KoziołM. JanuszewskiS. CzuczwarS.J. Gut microbiota and pro/prebiotics in Alzheimer’s disease.Aging20201265539555010.18632/aging.10293032191919
    [Google Scholar]
  151. ObrenovichM. JaworskiH. TadimallaT. MistryA. SykesL. PerryG. BonomoR. The role of the microbiota–gut–brain axis and antibiotics in ALS and neurodegenerative diseases.Microorganisms20208578410.3390/microorganisms805078432456229
    [Google Scholar]
  152. AroraK. GreenM. PrakashS. The microbiome and alzheimer’s disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations.Front. Bioeng. Biotechnol.2020853784710.3389/fbioe.2020.53784733384986
    [Google Scholar]
  153. TanL.Y. YeoX.Y. BaeH.G. LeeD.P.S. HoR.C. KimJ.E. JoD.G. JungS. Association of gut microbiome dysbiosis with neurodegeneration: Can gut microbe-modifying diet prevent or alleviate the symptoms of neurodegenerative diseases?Life202111769810.3390/life1107069834357070
    [Google Scholar]
  154. KoblinskyN.D. PowerK.A. MiddletonL. FerlandG. AndersonN.D. The role of the gut microbiome in diet and exercise effects on cognition: A review of the intervention literature.J. Gerontol. A Biol. Sci. Med. Sci.202378219520510.1093/gerona/glac16635977540
    [Google Scholar]
  155. LiuL. HuhJ.R. ShahK. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS.EBioMedicine20227710390810.1016/j.ebiom.2022.10390835255456
    [Google Scholar]
  156. Leclair-VisonneauL. NeunlistM. DerkinderenP. LebouvierT. The gut in Parkinson’s disease: Bottom‐up, top‐down, or neither?Neurogastroenterol. Motil.2020321e1377710.1111/nmo.1377731854093
    [Google Scholar]
  157. AvaglianoC. CorettiL. LamaA. PirozziC. De CaroC. De BiaseD. TurcoL. MollicaM.P. PacielloO. CalignanoA. MeliR. LemboF. MattaceR.G. Dual-hit model of parkinson’s disease: Impact of dysbiosis on 6-hydroxydopamine-insulted mice-neuroprotective and anti-inflammatory effects of butyrate.Int. J. Mol. Sci.20222312636710.3390/ijms2312636735742813
    [Google Scholar]
  158. RaimondiI. IzzoL. TunesiM. ComarM. AlbaniD. GiordanoC. Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut-brain axis in neurodegeneration.Front. Bioeng. Biotechnol.2020743510.3389/fbioe.2019.0043531998702
    [Google Scholar]
  159. ZhaoY. KucaK. WuW. WangX. NepovimovaE. MusilekK. WuQ. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases.Alzheimers Dement.202218115215810.1002/alz.1237034032377
    [Google Scholar]
  160. CryanJ.F. O’RiordanK.J. CowanC.S.M. SandhuK.V. BastiaanssenT.F.S. BoehmeM. CodagnoneM.G. CussottoS. FullingC. GolubevaA.V. GuzzettaK.E. JaggarM. Long-SmithC.M. LyteJ.M. MartinJ.A. Molinero-PerezA. MoloneyG. MorelliE. MorillasE. O’ConnorR. Cruz-PereiraJ.S. PetersonV.L. ReaK. RitzN.L. SherwinE. SpichakS. TeichmanE.M. van de WouwM. Ventura-SilvaA.P. Wallace-FitzsimonsS.E. HylandN. ClarkeG. DinanT.G. The microbiota-gut-brain axis.Physiol. Rev.20199941877201310.1152/physrev.00018.201831460832
    [Google Scholar]
  161. CeppaF.A. IzzoL. SardelliL. RaimondiI. TunesiM. AlbaniD. GiordanoC. Human gut-microbiota interaction in neurodegenerative disorders and current engineered tools for its modeling.Front. Cell. Infect. Microbiol.20201029710.3389/fcimb.2020.0029732733812
    [Google Scholar]
  162. KhodabakhshP. BazrgarM. DargahiL. MohagheghiF. Asgari TaeiA. ParvardehS. AhmadianiA. Does Alzheimer’s disease stem in the gastrointestinal system?Life Sci.202128712008810.1016/j.lfs.2021.12008834715145
    [Google Scholar]
  163. MakdissiS. ParsonsB.D. Di CaraF. Towards early detection of neurodegenerative diseases: A gut feeling.Front. Cell Dev. Biol.202311108709110.3389/fcell.2023.108709136824371
    [Google Scholar]
  164. TiloccaB. PieroniL. SoggiuA. BrittiD. BonizziL. RoncadaP. GrecoV. Gut–brain axis and neurodegeneration: State-of-the-art of meta-omics sciences for microbiota characterization.Int. J. Mol. Sci.20202111404510.3390/ijms2111404532516966
    [Google Scholar]
  165. JavedI. CuiX. WangX. MortimerM. AndrikopoulosN. LiY. DavisT.P. ZhaoY. KeP.C. ChenC. Implications of the human gut–brain and gut–cancer axes for future nanomedicine.ACS Nano20201411143911441610.1021/acsnano.0c0725833138351
    [Google Scholar]
  166. NguyenV.T.T. KönigS. EggertS. EndresK. KinsS. The role of mycotoxins in neurodegenerative diseases: Current state of the art and future perspectives of research.Biol. Chem.2022403132610.1515/hsz‑2021‑021434449171
    [Google Scholar]
  167. FerreiroA.L. ChoiJ. RyouJ. NewcomerE.P. ThompsonR. BollingerR.M. Hall-MooreC. NdaoI.M. SaxL. BenzingerT.L.S. StarkS.L. HoltzmanD.M. FaganA.M. SchindlerS.E. CruchagaC. ButtO.H. MorrisJ.C. TarrP.I. AncesB.M. DantasG. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease.Sci. Transl. Med.202315700eabo298410.1126/scitranslmed.abo298437315112
    [Google Scholar]
  168. BorsomE.M. ConnK. KeefeC.R. HermanC. OrsiniG.M. HirschA.H. PalmaA.M. TestoG. JaramilloS.A. BolyenE. LeeK. CaporasoJ.G. CopeE.K. Predicting neurodegenerative disease using prepathology gut microbiota composition: A longitudinal study in mice modeling Alzheimer’s disease pathologies.Microbiol. Spectr.2023112e03458e2210.1128/spectrum.03458‑2236877047
    [Google Scholar]
  169. ZhuJ. LiuS. ZhangH. ZhaoW. DingJ. DaiR. XuK. HeC. LiuJ. YangL. MengH. Dynamic distribution of gut microbiota during Alzheimer’s disease progression in a mice model.Acta Pathol. Microbiol. Scand. Suppl.2023131948049010.1111/apm.1333937365713
    [Google Scholar]
  170. FaveroF. BarberisE. GagliardiM. EspinozaS. ContuL. GustincichS. BoccafoschiF. BorsottiC. LimD. RubinoV. MignoneF. PasolliE. ManfrediM. ZucchelliS. CoràD. CorazzariM. A Metabologenomic approach reveals alterations in the gut microbiota of a mouse model of Alzheimer’s disease.PLoS One2022178e027303610.1371/journal.pone.027303636001607
    [Google Scholar]
  171. ChenY. FangL. ChenS. ZhouH. FanY. LinL. LiJ. XuJ. ChenY. MaY. ChenY. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of alzheimer’s disease.BioMed Res. Int.2020202011510.1155/2020/845659632596386
    [Google Scholar]
  172. VascellariS. PalmasV. MelisM. PisanuS. CusanoR. UvaP. PerraD. MadauV. SarchiotoM. OppoV. SimolaN. MorelliM. SantoruM.L. AtzoriL. MelisM. CossuG. ManzinA. Gut microbiota and metabolome alterations associated with parkinson’s disease.mSystems202055e00561e2010.1128/mSystems.00561‑2032934117
    [Google Scholar]
  173. YanJ. FengX. ZhouX. ZhaoM. XiaoH. LiR. ShenH. Identification of gut metabolites associated with Parkinson’s disease using bioinformatic analyses.Front. Aging Neurosci.20221492762510.3389/fnagi.2022.92762535959296
    [Google Scholar]
  174. MurrosK.E. HuynhV.A. TakalaT.M. SarisP.E.J. Desulfovibrio bacteria are associated with parkinson’s disease.Front. Cell. Infect. Microbiol.20211165261710.3389/fcimb.2021.65261734012926
    [Google Scholar]
  175. ChongthamA. YooJ.H. ChinT.M. AkingbesoteN.D. HudaA. MarshJ.L. KhoshnanA. Gut bacteria regulate the pathogenesis of huntington’s disease in Drosophila model.Front. Neurosci.20221690220510.3389/fnins.2022.90220535757549
    [Google Scholar]
  176. NicholsonK. BjornevikK. Abu-AliG. ChanJ. CorteseM. DediB. JeonM. XavierR. HuttenhowerC. AscherioA. BerryJ.D. The human gut microbiota in people with amyotrophic lateral sclerosis.Amyotroph. Lateral Scler. Frontotemporal Degener.2021223-418619410.1080/21678421.2020.182847533135936
    [Google Scholar]
  177. SchepiciG. SilvestroS. BramantiP. MazzonE. The gut microbiota in multiple sclerosis: An overview of clinical trials.Cell Transplant.201928121507152710.1177/096368971987389031512505
    [Google Scholar]
  178. MolesL. EgimendiaA. Osorio-QuerejetaI. IparraguirreL. AlberroA. SuárezJ. SepúlvedaL. Castillo-TriviñoT. Muñoz-CullaM. Ramos-CabrerP. OtaeguiD. Gut microbiota changes in experimental autoimmune encephalomyelitis and cuprizone mice models.ACS Chem. Neurosci.202112589390510.1021/acschemneuro.0c0069533566588
    [Google Scholar]
  179. TanF.H.P. LiuG. LauS.Y.A. JaafarM.H. ParkY.H. AzzamG. LiY. LiongM.T. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye.Benef. Microbes2020111799010.3920/BM2019.008632066253
    [Google Scholar]
  180. PatelC. PandeS. AcharyaS. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice.Naunyn Schmiedebergs Arch. Pharmacol.2020393101955196210.1007/s00210‑020‑01904‑332448977
    [Google Scholar]
  181. SongX. ZhaoZ. ZhaoY. JinQ. LiS. Protective effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-induced cognitive decline, oxidative stress and neuroinflammation.J. Microbiol. Biotechnol.202232221221910.4014/jmb.2111.1103134954699
    [Google Scholar]
  182. BeltagyD.M. NawarN.F. MohamedT.M. ToussonE. El-KeeyM.M. Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer’s disease.J. Complement. Integr. Med.202118476176710.1515/jcim‑2020‑015633781011
    [Google Scholar]
  183. FangX. ZhouX. MiaoY. HanY. WeiJ. ChenT. Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer’s disease and Parkinson’s disease.AMB Express20201018010.1186/s13568‑020‑01014‑632333225
    [Google Scholar]
  184. Alipour NosraniE. TamtajiO.R. AlibolandiZ. SarkarP. GhazanfariM. Azami TamehA. TaghizadehM. BanikazemiZ. HadaviR. Naderi TaheriM. Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study.J. Immunoassay Immunochem.202142210612010.1080/15321819.2020.183391733078659
    [Google Scholar]
  185. CastelliV. d’AngeloM. LombardiF. AlfonsettiM. AntonosanteA. CatanesiM. BenedettiE. PalumboP. CifoneM.G. GiordanoA. DesideriG. CiminiA. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson’s disease models.Aging20201254641465910.18632/aging.10292732155131
    [Google Scholar]
  186. SrivastavS. NeupaneS. BhurtelS. KatilaN. MaharjanS. ChoiH. HongJ.T. ChoiD.Y. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity.J. Nutr. Biochem.201969738610.1016/j.jnutbio.2019.03.02131063918
    [Google Scholar]
  187. YueM. WeiJ. ChenW. HongD. ChenT. FangX. Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on parkinson’s disease via inhibiting ferroptosis.Nutrients20221422488610.3390/nu1422488636432569
    [Google Scholar]
  188. ZhouL. HanD. WangX. ChenZ. Probiotic formulation VSL#3 interacts with mesenchymal stromal cells to protect dopaminergic neurons via centrally and peripherally suppressing NOD-like receptor protein 3 inflammasome-mediated inflammation in Parkinson’s disease mice.Microbiol. Spectr.2023112e03208e0322210.1128/spectrum.03208‑2236728426
    [Google Scholar]
  189. LiaoJ.F. ChengY.F. YouS.T. KuoW.C. HuangC.W. ChiouJ.J. HsuC.C. Hsieh-LiH.M. WangS. TsaiY.C. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease.Brain Behav. Immun.202090264610.1016/j.bbi.2020.07.03632739365
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241101093436
Loading
/content/journals/cn/10.2174/1570159X23666241101093436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test