Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Angiogenesis, the formation of new vasculature from preexisting vasculature, is involved in the development of several diseases as well as various physiological processes. Strict cooperation of proangiogenic and antiangiogenic factors mediates the control of angiogenesis. The fundamental steps in angiogenesis include endothelial cell proliferation, migration, and invasion. Addictive substances, which are considered therapeutic candidates in research and medicine, are classified as natural substances, such as nicotine, or synthetic substances, such as synthetic cannabinoids. Addictive substances have been shown to either enhance or suppress angiogenesis. This review article provides an overview of recent studies concerning the effects of several addictive substances on the process of angiogenesis. Google Scholar and PubMed were used to collect the scientific literature used in this review. The addictive substances addressed in this review are nicotine, opioids such as morphine and heroin, alcohol, cocaine, methamphetamine, and cannabinoids. An accurate assessment of the influence of these substances on the angiogenic process may help to construct a potentially effective therapeutic protocol to control and treat several angiogenesis-related diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666240905125037
2024-09-06
2025-03-26
Loading full text...

Full text loading...

References

  1. CarmelietP. JainR.K. Molecular mechanisms and clinical applications of angiogenesis.Nature2011473734729830710.1038/nature1014421593862
    [Google Scholar]
  2. KurzykA. Angiogenesis - possibilities, problems and perspectives.Postepy Biochem.2015611253426281351
    [Google Scholar]
  3. SeddingD.G. BoyleE.C. DemandtJ.A.F. SluimerJ.C. DutzmannJ. HaverichA. BauersachsJ. Vasa vasorum angiogenesis: Key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease.Front. Immunol.2018970610.3389/fimmu.2018.0070629719532
    [Google Scholar]
  4. ElshabrawyH.A. ChenZ. VolinM.V. RavellaS. VirupannavarS. ShahraraS. The pathogenic role of angiogenesis in rheumatoid arthritis.Angiogenesis201518443344810.1007/s10456‑015‑9477‑226198292
    [Google Scholar]
  5. ShenodaB. BoselliJ. Vascular syndromes in liver cirrhosis.Clin. J. Gastroenterol.201912538739710.1007/s12328‑019‑00956‑030980261
    [Google Scholar]
  6. WalshD.A. PearsonC.I. Angiogenesis in the pathogenesis of inflammatory joint and lung diseases.Arthritis Res.20013314715310.1186/ar29211299055
    [Google Scholar]
  7. BeckH. PlateK.H. Angiogenesis after cerebral ischemia.Acta Neuropathol.2009117548149610.1007/s00401‑009‑0483‑619142647
    [Google Scholar]
  8. ZhangZ.G. ZhangL. JiangQ. ZhangR. DaviesK. PowersC. BruggenN. ChoppM. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.J. Clin. Invest.2000106782983810.1172/JCI936911018070
    [Google Scholar]
  9. ViallardC. LarrivéeB. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets.Angiogenesis201720440942610.1007/s10456‑017‑9562‑928660302
    [Google Scholar]
  10. VyawahareH. ShindeP. Age-related macular degeneration: Epidemiology, pathophysiology, diagnosis, and treatment.Cureus2022149e2958310.7759/cureus.2958336312607
    [Google Scholar]
  11. XuM. FanR. FanX. ShaoY. LiX. Progress and challenges of Anti-VEGF agents and their sustained-release strategies for retinal angiogenesis.Drug Des. Devel. Ther.2022163241326210.2147/DDDT.S38310136172053
    [Google Scholar]
  12. KarilaL. BenyaminaA. Addictions.Rev. Mal. Respir.201936223324010.1016/j.rmr.2018.12.00130686556
    [Google Scholar]
  13. KorpiE.R. den HollanderB. FarooqU. VashchinkinaE. RajkumarR. NuttD.J. Hyytiä P.; Dawe, G.S. Mechanisms of action and persistent neuroplasticity by drugs of abuse.Pharmacol. Rev.2015674872100410.1124/pr.115.01096726403687
    [Google Scholar]
  14. HorsemanC. MeyerA. Neurobiology of addiction.Clin. Obstet. Gynecol.201962111812710.1097/GRF.000000000000041630628917
    [Google Scholar]
  15. StephensR.C. Mind-Altering Drugs - Use, Abuse, and Treatment.Office of Justice Programs1987
    [Google Scholar]
  16. LucetC. OliéJ.P. Addictive behaviors: Clinical facts.Bull. Acad Natl. Med.2020204655156010.1016/j.banm.2020.04.00532296241
    [Google Scholar]
  17. MartinottiG. LupiM. MontemitroC. MiuliA. Di NataleC. SpanoM.C. ManciniV. LorussoM. StiglianoG. TambelliA. Di CarloF. Di CaprioL. FraticelliS. ChillemiE. PettorrusoM. SepedeG. di GiannantonioM. Transcranial direct current stimulation reduces craving in substance use disorders.J. ECT201935320721110.1097/YCT.000000000000058030844881
    [Google Scholar]
  18. MartinottiG. PettorrusoM. MontemitroC. SpagnoloP.A. Acuti MartellucciC. Di CarloF. FanellaF. di GiannantonioM. Repetitive transcranial magnetic stimulation in treatment-seeking subjects with cocaine use disorder: A randomized, double-blind, sham-controlled trial.Prog. Neuropsychopharmacol. Biol. Psychiatry202211611051310.1016/j.pnpbp.2022.11051335074451
    [Google Scholar]
  19. ShaoX.M. SunJ. JiangY.L. LiuB.Y. ShenZ. FangF. DuJ.Y. WuY.Y. WangJ.L. FangJ.Q. Inhibition of the cAMP/PKA/CREB pathway contributes to the analgesic effects of electroacupuncture in the anterior cingulate cortex in a rat pain memory model.Neural Plast.2016201611610.1155/2016/532064128090359
    [Google Scholar]
  20. SharmaR. DalgleishA. StewardW. O’ByrneK. Angiogenesis and the immune response as targets for the prevention and treatment of colorectal cancer (Review).Oncol. Rep.20031051625163110.3892/or.10.5.162512883750
    [Google Scholar]
  21. SridharS.S. ShepherdF.A. Targeting angiogenesis: A review of angiogenesis inhibitors in the treatment of lung cancer.Lung Cancer2003422Suppl. 1819110.1016/S0169‑5002(03)00308‑814611919
    [Google Scholar]
  22. MawallaB. YuanX. LuoX. ChalyaP.L. Treatment outcome of anti-angiogenesis through VEGF-pathway in the management of gastric cancer: A systematic review of phase II and III clinical trials.BMC Res. Notes20181112110.1186/s13104‑018‑3137‑829329598
    [Google Scholar]
  23. MasakiD. TsuchidaH. KitabayashiY. TaniN. FukuiK. Addictive behavior disorders.Nihon Arukoru Yakubutsu Igakkai Zasshi200742546947718051467
    [Google Scholar]
  24. MorrisP.D. NarracottA. von Tengg-KobligkH. SilvaS.D.A. HsiaoS. LunguA. EvansP. BressloffN.W. LawfordP.V. HoseD.R. GunnJ.P. Computational fluid dynamics modelling in cardiovascular medicine.Heart20161021182810.1136/heartjnl‑2015‑30804426512019
    [Google Scholar]
  25. OwenB. BojdoN. JivkovA. KeavneyB. RevellA. Structural modelling of the cardiovascular system.Biomech. Model. Mechanobiol.20181751217124210.1007/s10237‑018‑1024‑929911296
    [Google Scholar]
  26. MandicL. TraxlerD. GugerellA. ZlabingerK. LukovicD. PavoN. GoliaschG. SpannbauerA. WinklerJ. Gyöِngyöِsi, M. Molecular imaging of angiogenesis in cardiac regeneration.Curr. Cardiovasc. Imaging Rep.20169102710.1007/s12410‑016‑9389‑627683600
    [Google Scholar]
  27. Gianni-BarreraR. TraniM. ReginatoS. BanfiA. To sprout or to split? VEGF, Notch and vascular morphogenesis.Biochem. Soc. Trans.20113961644164810.1042/BST2011065022103501
    [Google Scholar]
  28. PotenteM. CarmelietP. The link between angiogenesis and endothelial metabolism.Annu. Rev. Physiol.2017791436610.1146/annurev‑physiol‑021115‑10513427992732
    [Google Scholar]
  29. De SmetF. SeguraI. De BockK. HohensinnerP.J. CarmelietP. Mechanisms of vessel branching: Filopodia on endothelial tip cells lead the way.Arterioscler. Thromb. Vasc. Biol.200929563964910.1161/ATVBAHA.109.18516519265031
    [Google Scholar]
  30. JakobssonL. BentleyK. GerhardtH. VEGFRs and Notch: A dynamic collaboration in vascular patterning.Biochem. Soc. Trans.20093761233123610.1042/BST037123319909253
    [Google Scholar]
  31. ArimaS. NishiyamaK. KoT. ArimaY. HakozakiY. SugiharaK. KosekiH. UchijimaY. KuriharaY. KuriharaH. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement.Development2011138214763477610.1242/dev.06802321965612
    [Google Scholar]
  32. NicholatosJ.W. FranciscoA.B. BenderC.A. YehT. LugayF.J. SalazarJ.E. GloriosoC. LibertS. Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6.Acta Neuropathol. Commun.20186112010.1186/s40478‑018‑0625‑y30409187
    [Google Scholar]
  33. Cunha-OliveiraT. RegoA.C. OliveiraC.R. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs.Brain Res. Brain Res. Rev.200858119220810.1016/j.brainresrev.2008.03.00218440072
    [Google Scholar]
  34. VargheseJ. Muntode GhardeP. A comprehensive review on the impacts of smoking on the health of an individual.Cureus20231510e4653210.7759/cureus.4653237927763
    [Google Scholar]
  35. OkorareO. EvbayekhaE.O. AdabaleO.K. DanielE. UbokudumD. OlusijiS.A. AntiaA.U. Smoking cessation and benefits to cardiovascular health: A review of literature.Cureus2023153e3596610.7759/cureus.3596637041912
    [Google Scholar]
  36. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  37. AredoJ.V. LuoS.J. GardnerR.M. SanyalN. ChoiE. HickeyT.P. RileyT.L. HuangW.Y. KurianA.W. LeungA.N. WilkensL.R. RobbinsH.A. RiboliE. KaaksR. Tjøّnneland,, A.; Vermeulen, R.C.H.; Panico, S.; Le Marchand, L.; Amos, C.I.; Hung, R.J.; Freedman, N.D.; Johansson, M.; Cheng, I.; Wakelee, H.A.; Han, S.S. Tobacco smoking and risk of second primary lung cancer.J. Thorac. Oncol.202116696897910.1016/j.jtho.2021.02.02433722709
    [Google Scholar]
  38. RuppertA.M. AmriouiF. FalletV. Risk factors and prevention of lung cancer.Rev. Prat.202070885285633739684
    [Google Scholar]
  39. MiechR. JohnstonL. O’MalleyP.M. BachmanJ.G. PatrickM.E. Trends in adolescent vaping, 2017–2019.N. Engl. J. Med.2019381151490149110.1056/NEJMc191073931532955
    [Google Scholar]
  40. DwyerJ.B. McQuownS.C. LeslieF.M. The dynamic effects of nicotine on the developing brain.Pharmacol. Ther.2009122212513910.1016/j.pharmthera.2009.02.00319268688
    [Google Scholar]
  41. RenM. LotfipourS. LeslieF. Unique effects of nicotine across the lifespan.Pharmacol. Biochem. Behav.202221417334310.1016/j.pbb.2022.17334335122768
    [Google Scholar]
  42. LiX.W. WangH. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization.Life Sci.200678161863187010.1016/j.lfs.2005.08.03116280133
    [Google Scholar]
  43. DomA.M. BuckleyA.W. BrownK.C. EgletonR.D. MarceloA.J. ProperN.A. WellerD.E. ShahY.H. LauJ.K. DasguptaP. The α7-nicotinic acetylcholine receptor and MMP-2/-9 pathway mediate the proangiogenic effect of nicotine in human retinal endothelial cells.Invest. Ophthalmol. Vis. Sci.20115274428443810.1167/iovs.10‑546120554619
    [Google Scholar]
  44. EgletonR.D. BrownK.C. DasguptaP. Angiogenic activity of nicotinic acetylcholine receptors: Implications in tobacco-related vascular diseases.Pharmacol. Ther.2009121220522310.1016/j.pharmthera.2008.10.00719063919
    [Google Scholar]
  45. HeeschenC. JangJ.J. WeisM. PathakA. KajiS. HuR.S. TsaoP.S. JohnsonF.L. CookeJ.P. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis.Nat. Med.20017783383910.1038/8996111433349
    [Google Scholar]
  46. TiwariR.K. SharmaV. PandeyR.K. ShuklaS.S. Nicotine addiction.Neurolanism. J. Pharmacopuncture20202311710.3831/KPI.2020.23.00132322429
    [Google Scholar]
  47. VillablancaA.C. Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells in vitro.J. Appl. Physiol.19988462089209810.1152/jappl.1998.84.6.2089
    [Google Scholar]
  48. HeeschenC. WeisM. AicherA. DimmelerS. CookeJ.P. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors.J. Clin. Invest.2002110452753610.1172/JCI021467612189247
    [Google Scholar]
  49. ParkY.J. LeeT. HaJ. JungI.M. ChungJ.K. KimS.J. Effect of nicotine on human umbilical vein endothelial cells (HUVECs) migration and angiogenesis.Vascul. Pharmacol.2008491323610.1016/j.vph.2008.05.00118571475
    [Google Scholar]
  50. HeeschenC. ChangE. AicherA. CookeJ.P. Endothelial progenitor cells participate in nicotine-mediated angiogenesis.J. Am. Coll. Cardiol.200648122553256010.1016/j.jacc.2006.07.06617174197
    [Google Scholar]
  51. BrownK.C. LauJ.K. DomA.M. WitteT.R. LuoH. CrabtreeC.M. ShahY.H. ShiflettB.S. MarceloA.J. ProperN.A. HardmanW.E. EgletonR.D. ChenY.C. MangiaruaE.I. DasguptaP. MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway.Angiogenesis20121519911410.1007/s10456‑011‑9246‑922198237
    [Google Scholar]
  52. SarverC. Opioids.Pain: A Review Guide. Abd-ElsayedA. ChamSpringer International Publishing201922523010.1007/978‑3‑319‑99124‑5_52
    [Google Scholar]
  53. BenyaminR. TrescotA.M. DattaS. BuenaventuraR. AdlakaR. SehgalN. GlaserS.E. VallejoR. Opioid complications and side effects.Pain Physician20082s11Suppl.S105S12010.36076/ppj.2008/11/S10518443635
    [Google Scholar]
  54. AttwellD. BuchanA.M. CharpakS. LauritzenM. MacVicarB.A. NewmanE.A. Glial and neuronal control of brain blood flow.Nature2010468732123224310.1038/nature0961321068832
    [Google Scholar]
  55. InturrisiC.E. SchultzM. ShinS. UmansJ.G. AngelL. SimonE.J. Evidence from opiate binding studies that heroin acts through its metabolites.Life Sci.198333Suppl. 177377610.1016/0024‑3205(83)90616‑16319928
    [Google Scholar]
  56. BaudF. Mechanisms of opioid-induced overdose: Experimental approach to clinical concerns.Ann. Pharm. Fr.2009675353359
    [Google Scholar]
  57. SelleyD.E. CaoC.C. SextonT. SchwegelJ.A. MartinT.J. ChildersS.R. μ Opioid receptor-mediated G-protein activation] by heroin metabolites: evidence for greater efficacy of] 6-monoacetylmorphine compared with morphine 11Abbreviations:] 6-MAM, 6-monoacetylmorphine; GTPγS, guanosine-5′-O-(γ-thio)-triphosphate; DAMGO, [d-Ala2,(N-Me)Phe4,Gly5(OH)]enkephalin; M-6-G, morphine-6-βd-glucuronide; and hMOR-C6, C6 rat glioma cells expressing human μ opioid receptors.Biochem. Pharmacol.200162444745510.1016/S0006‑2952(01)00689‑X11448454
    [Google Scholar]
  58. MatsumotoK. KinoshitaK. HijiokaM. KurauchiY. HisatsuneA. SekiT. MasudaT. OhtsukiS. KatsukiH. Nicotine promotes angiogenesis in mouse brain after intracerebral hemorrhage.Neurosci. Res.202117028429410.1016/j.neures.2020.07.00332673702
    [Google Scholar]
  59. StefanoG.B. PtáčekR. KuželováH. KreamR.M. Endogenous morphine: Up-to-date review 2011.Folia Biol.2012582495622578954
    [Google Scholar]
  60. KimJ. HamS. HongH. MoonC. ImH.I. Brain reward circuits in morphine addiction.Mol. Cells201639964565310.14348/molcells.2016.013727506251
    [Google Scholar]
  61. WigmoreT. Farquhar-SmithP. Opioids and cancer.Curr. Opin. Support. Palliat. Care201610210911810.1097/SPC.000000000000020826990052
    [Google Scholar]
  62. MahbubaW. LambertD. Opioids and neovascularization; Pro or anti?Oxford University Press2015821824
    [Google Scholar]
  63. Del VecchioG. SpahnV. SteinC. Novel opioid analgesics and side effects.ACS Publications201716381640
    [Google Scholar]
  64. GuptaM. PoonawalaT. FarooquiM. EricsonM.E. GuptaK. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats.J. Diabetes20157457358310.1111/1753‑0407.1222325266258
    [Google Scholar]
  65. FengT. ZengS. DingJ. ChenG. WangB. WangD. LiX. WangK. Comparative analysis of the effects of opioids in angiogenesis.BMC Anesthesiol.202121125710.1186/s12871‑021‑01475‑734702181
    [Google Scholar]
  66. ZhangK. HuangW. ChenW. ZhouQ. ZhangQ. WuX. XuY. LiD. XieT. LiuJ. Morphine stimulates angiogenesis through Akt/mTOR/eIF4E activation under serum deprivation or H2O2‐induced oxidative stress condition.Clin. Exp. Pharmacol. Physiol.202047222723510.1111/1440‑1681.1319131612523
    [Google Scholar]
  67. KoodieL. YuanH. PumperJ.A. YuH. CharboneauR. RamkrishnanS. RoyS. Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice.Am. J. Pathol.201418441073108410.1016/j.ajpath.2013.12.01924495739
    [Google Scholar]
  68. MackeyJ.R. KerbelR.S. GelmonK.A. McLeodD.M. ChiaS.K. RaysonD. VermaS. CollinsL.L. PatersonA.H.G. RobidouxA. PritchardK.I. Controlling angiogenesis in breast cancer: A systematic review of anti-angiogenic trials.Cancer Treat. Rev.201238667368810.1016/j.ctrv.2011.12.00222365657
    [Google Scholar]
  69. CaoL.H. LiH.T. LinW.Q. TanH.Y. XieL. ZhongZ.J. ZhouJ.H. Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts.Sci. Rep.2016611870610.1038/srep1870626729257
    [Google Scholar]
  70. KimJ.Y. AhnH.J. KimJ.K. KimJ. LeeS.H. ChaeH.B. Morphine suppresses lung cancer cell proliferation through the interaction with opioid growth factor receptor.Anesth. Analg.201612361429143610.1213/ANE.000000000000129327167686
    [Google Scholar]
  71. BimonteS. BarbieriA. ReaD. PalmaG. LucianoA. CuomoA. ArraC. IzzoF. Morphine promotes tumor angiogenesis and increases breast cancer progression.BioMed Res. Int.201520151810.1155/2015/16150826064880
    [Google Scholar]
  72. ChengS. GuoM. LiuZ. FuY. WuH. WangC. CaoM. Morphine promotes the angiogenesis of postoperative recurrent tumors and metastasis of dormant breast cancer cells.Pharmacology20191045-627628610.1159/00050210731494660
    [Google Scholar]
  73. WangZ. JiangL. WangJ. ChaiZ. XiongW. Morphine promotes angiogenesis by activating PI3K/Akt/HIF-1α pathway and upregulating VEGF in hepatocellular carcinoma.J. Gastrointest. Oncol.20211241761177210.21037/jgo‑20‑39434532126
    [Google Scholar]
  74. MartinJ.L. CharboneauR. BarkeR.A. RoyS. Chronic morphine treatment inhibits LPS-induced angiogenesis: Implications in wound healing.Cell. Immunol.2010265213914510.1016/j.cellimm.2010.08.00220843508
    [Google Scholar]
  75. KoodieL. RamakrishnanS. RoyS. Morphine suppresses tumor angiogenesis through a HIF-1alpha/p38MAPK pathway.Am. J. Pathol.2010177298499710.2353/ajpath.2010.09062120616349
    [Google Scholar]
  76. LamC.F. LiuY.C. TsengF.L. SungY.H. HuangC.C. JiangM.J. TsaiY.C. High-dose morphine impairs vascular endothelial function by increased production of superoxide anions.Anesthesiology2007106353253710.1097/00000542‑200703000‑0001817325512
    [Google Scholar]
  77. ZhuE.C. SoundyT.J. HuY. Genetics of alcoholism.S. D. Med.201770522522728813755
    [Google Scholar]
  78. BagnardiV. BlangiardoM. La VecchiaC. CorraoG. Alcohol consumption and the risk of cancer: A meta-analysis.Alcohol Res. Health200125426327011910703
    [Google Scholar]
  79. SiegelS.D. BrooksM.M. Sims-MourtadaJ. SchugZ.T. LeonardD.J. PetrelliN. CurrieroF.C. A population health assessment in a community cancer center catchment area: Triple-negative breast cancer, alcohol use, and obesity in new castle county, delaware.Cancer Epidemiol. Biomarkers Prev.202231110811610.1158/1055‑9965.EPI‑21‑103134737210
    [Google Scholar]
  80. ChoiS.Y. KahyoH. Effect of cigarette smoking and alcohol consumption in the aetiology of cancer of the oral cavity, pharynx and larynx.Int. J. Epidemiol.199120487888510.1093/ije/20.4.8781800426
    [Google Scholar]
  81. FranceschiS. TalaminiR. BarraS. Baróَn, A.E.; Negri, E.; Bidoli, E.; Serraino, D.; La Vecchia, C. Smoking and drinking in relation to cancers of the oral cavity, pharynx, larynx, and esophagus in northern Italy.Cancer Res.19905020650265072208109
    [Google Scholar]
  82. NotaniP.N. Role of alcohol in cancers of the upper alimentary tract: Use of models in risk assessment.J. Epidemiol. Commun Health198842218719210.1136/jech.42.2.1873221170
    [Google Scholar]
  83. EllisonR.C. ZhangY. McLennanC.E. RothmanK.J. Exploring the relation of alcohol consumption to risk of breast cancer.Am. J. Epidemiol.2001154874074710.1093/aje/154.8.74011590087
    [Google Scholar]
  84. TeissedreP.L. Rasines-PereaZ. RufJ-C. StockleyC. AntoceA.O. RomanoR. FraderaU. KostiR.I. Effects of alcohol consumption in general, and wine in particular, on the risk of cancer development: A review.OENO One202054481383210.20870/oeno‑one.2020.54.4.3569
    [Google Scholar]
  85. TanW. BaileyA.P. ShparagoM. BusbyB. CovingtonJ. JohnsonJ.W. YoungE. GuJ.W. Chronic alcohol consumption stimulates VEGF expression, Tumor angiogenesis and progression of melanoma in mice.Cancer Biol. Ther.2007681222122810.4161/cbt.6.8.440617660711
    [Google Scholar]
  86. LuY. NiF. XuM. YangJ. ChenJ. ChenZ. WangX. LuoJ. WangS. Alcohol promotes mammary tumor growth through activation of VEGF-dependent tumor angiogenesis.Oncol. Lett.20148267367810.3892/ol.2014.214625009649
    [Google Scholar]
  87. WangS. XuM. LiF. WangX. BowerK.A. FrankJ.A. LuY. ChenG. ZhangZ. KeZ. ShiX. LuoJ. Ethanol promotes mammary tumor growth and angiogenesis: The involvement of chemoattractant factor MCP-1.Breast Cancer Res. Treat.201213331037104810.1007/s10549‑011‑1902‑722160640
    [Google Scholar]
  88. LiL.J. WangM.Z. YuanT.J. XuX.H. DadH.A. YuC.L. HouJ. PengL.H. The crude ethanol extract of Periplaneta americana L. stimulates wound healing in vitro & in vivo.Chin. Med.20191413310.1186/s13020‑019‑0259‑431548851
    [Google Scholar]
  89. RadekK.A. MatthiesA.M. BurnsA.L. HeinrichS.A. KovacsE.J. DiPietroL.A. Acute ethanol exposure impairs angiogenesis and the proliferative phase of wound healing.Am. J. Physiol. Heart Circ. Physiol.20052893H1084H109010.1152/ajpheart.00080.200515863463
    [Google Scholar]
  90. RadekK.A. KovacsE.J. GalloR.L. DiPietroL.A. Acute ethanol exposure disrupts VEGF receptor cell signaling in endothelial cells.Am. J. Physiol. Heart Circ. Physiol.20082951H174H18410.1152/ajpheart.00699.200718469146
    [Google Scholar]
  91. SchipaniE. MaesC. CarmelietG. SemenzaG.L. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF.J. Bone Miner. Res.20092481347135310.1359/jbmr.09060219558314
    [Google Scholar]
  92. TongX. ChenX. ZhangS. HuangM. ShenX. XuJ. ZouJ. The effect of exercise on the prevention of osteoporosis and bone angiogenesis.BioMed Res. Int.201920191810.1155/2019/817189731139653
    [Google Scholar]
  93. ZhangX. Intravital imaging to understand spatiotemporal regulation of osteogenesis and angiogenesis in cranial defect repair and regeneration.Methods Mol. Biol.2018184222923910.1007/978‑1‑4939‑8697‑2_1730196414
    [Google Scholar]
  94. YuH. WangK. LiuP. LuoP. ZhuD. YinJ. YangQ. HuangY. GaoJ. AiZ. ChenY. GaoY. miR‐4286 functions in osteogenesis and angiogenesis via targeting histone deacetylase 3 and alleviates alcohol‐induced bone loss in mice.Cell Prolif.2021546e1305410.1111/cpr.1305433973278
    [Google Scholar]
  95. PomaraC. CassanoT. D’ErricoS. BelloS. RomanoA.D. RiezzoI. ServiddioG. Data available on the extent of cocaine use and dependence: Biochemistry, pharmacologic effects and global burden of disease of cocaine abusers.Curr. Med. Chem.201219335647565710.2174/09298671280398881122856655
    [Google Scholar]
  96. SordoL. IndaveB.I. BarrioG. DegenhardtL. de la FuenteL. BravoM.J. Cocaine use and risk of stroke: A systematic review.Drug Alcohol Depend.201414211310.1016/j.drugalcdep.2014.06.04125066468
    [Google Scholar]
  97. O’LearyM.E. HancoxJ.C. Role of voltage‐gated sodium, potassium and calcium channels in the development of cocaine‐associated cardiac arrhythmias.Br. J. Clin. Pharmacol.201069542744210.1111/j.1365‑2125.2010.03629.x20573078
    [Google Scholar]
  98. YinW. ClareK. ZhangQ. VolkowN.D. DuC. Chronic cocaine induces HIF-VEGF pathway activation along with angiogenesis in the brain.PLoS One2017124e017549910.1371/journal.pone.017549928448515
    [Google Scholar]
  99. Sáez, C.G.; Olivares, P.; Pallavicini, J.; Panes, O.; Moreno, N.; Massardo, T.; Mezzano, D.; Pereira, J. Increased number of circulating endothelial cells and plasma markers of endothelial damage in chronic cocaine users.Thromb. Res.20111284e18e2310.1016/j.thromres.2011.04.01921601240
    [Google Scholar]
  100. CourtneyK.E. RayL.A. Methamphetamine: An update on epidemiology, pharmacology, clinical phenomenology, and treatment literature.Drug Alcohol Depend.2014143112110.1016/j.drugalcdep.2014.08.00325176528
    [Google Scholar]
  101. ChangL. ErnstT. SpeckO. GrobC.S. Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities.Am. J. Psychiatry2005162236136910.1176/appi.ajp.162.2.36115677602
    [Google Scholar]
  102. RamirezS.H. PotulaR. FanS. EidemT. PapuganiA. ReichenbachN. DykstraH. WekslerB.B. RomeroI.A. CouraudP.O. PersidskyY. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells.J. Cereb. Blood Flow Metab.200929121933194510.1038/jcbfm.2009.11219654589
    [Google Scholar]
  103. LiuL. YuJ. LiL. ZhangB. LiuL. WuC.H. JongA. MaoD.A. HuangS.H. Alpha7 nicotinic acetylcholine receptor is required for amyloid pathology in brain endothelial cells induced by Glycoprotein 120, methamphetamine and nicotine.Sci. Rep.2017714046710.1038/srep4046728074940
    [Google Scholar]
  104. Rosas-HernandezH. CuevasE. LantzS.M. RiceK.C. GannonB.M. FantegrossiW.E. GonzalezC. PauleM.G. AliS.F. Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells.Neurosci. Lett.201662912513010.1016/j.neulet.2016.06.02927320055
    [Google Scholar]
  105. NazariA. ZahmatkeshM. MortazE. HosseinzadehS. Effect of methamphetamine exposure on the plasma levels of endothelial-derived microparticles.Drug Alcohol Depend.201818621922510.1016/j.drugalcdep.2018.02.01529609134
    [Google Scholar]
  106. LeeM. LeskovaW. EshaqR.S. HarrisN.R. Retinal hypoxia and angiogenesis with methamphetamine.Exp. Eye Res.202120610854010.1016/j.exer.2021.10854033736986
    [Google Scholar]
  107. ConnorJ.P. StjepanovićD. Le FollB. HochE. BudneyA.J. HallW.D. Cannabis use and cannabis use disorder.Nat. Rev. Dis. Primers2021711610.1038/s41572‑021‑00247‑433627670
    [Google Scholar]
  108. BattleD.E. Diagnostic and statistical manual of mental disorders (DSM).CoDAS201325219119224413388
    [Google Scholar]
  109. DegenhardtL. CharlsonF. FerrariA. SantomauroD. ErskineH. Mantilla-HerraraA. WhitefordH. LeungJ. NaghaviM. GriswoldM. RehmJ. HallW. SartoriusB. ScottJ. VollsetS.E. KnudsenA.K. HaroJ.M. PattonG. KopecJ. Carvalho MaltaD. Topor-MadryR. McGrathJ. HaagsmaJ. AllebeckP. PhillipsM. SalomonJ. HayS. ForemanK. LimS. MokdadA. SmithM. GakidouE. MurrayC. VosT. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Psychiatry2018512987101210.1016/S2215‑0366(18)30337‑730392731
    [Google Scholar]
  110. UritsI. GressK. CharipovaK. LiN. BergerA.A. CornettE.M. HasoonJ. KassemH. KayeA.D. ViswanathO. Cannabis use and its association with psychological disorders.Psychopharmacol. Bull.2020502566732508368
    [Google Scholar]
  111. BujarskiS.J. GalangJ.N. ShortN.A. TraftonJ.A. GiffordE.V. KimerlingR. VujanovicA.A. McKeeL.G. Bonn-MillerM.O. Cannabis use disorder treatment barriers and facilitators among veterans with PTSD.Psychol. Addict. Behav.2016301738110.1037/adb000013126618794
    [Google Scholar]
  112. ZehraA. BurnsJ. LiuC.K. ManzaP. WiersC.E. VolkowN.D. WangG.J. Cannabis addiction and the brain: A review.J. Neuroimmune Pharmacol.201813443845210.1007/s11481‑018‑9782‑929556883
    [Google Scholar]
  113. BloomfieldM.A.P. AshokA.H. VolkowN.D. HowesO.D. The effects of Δ9-tetrahydrocannabinol on the dopamine system.Nature2016539762936937710.1038/nature2015327853201
    [Google Scholar]
  114. VandreyR. HaneyM. Pharmacotherapy for cannabis dependence: How close are we?CNS Drugs200923754355310.2165/00023210‑200923070‑0000119552483
    [Google Scholar]
  115. RicciV. CeciF. Di CarloF. Di MuzioI. CiavoniL. SantangeloM. Di SalvoG. PettorrusoM. MartinottiG. MainaG. First episode psychosis with and without the use of cannabis and synthetic cannabinoids: Psychopathology, global functioning and suicidal ideation.Psychiatry Res.202332011505310.1016/j.psychres.2023.11505336682093
    [Google Scholar]
  116. AtakanZ. Cannabis, a complex plant: Different compounds and different effects on individuals.Ther. Adv. Psychopharmacol.20122624125410.1177/204512531245758623983983
    [Google Scholar]
  117. ČerneK. Toxicological properties of Δ9-tetrahydrocannabinol and cannabidiol.Arch. Ind. Hyg. Toxicol.202071111110.2478/aiht‑2020‑71‑330132597140
    [Google Scholar]
  118. García-Gutiérre, M.S.; Navarrete, F.; Gasparyan, A.; Austrich-Olivares, A.; Sala, F.; Manzanares, J. Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders.Biomolecules20201011157510.3390/biom1011157533228239
    [Google Scholar]
  119. BlessingE.M. SteenkampM.M. ManzanaresJ. MarmarC.R. Cannabidiol as a potential treatment for anxiety disorders.Neurotherapeutics201512482583610.1007/s13311‑015‑0387‑126341731
    [Google Scholar]
  120. FilipiucL.E. AbabeiD.C. Alexa-StratulatT. PricopeC.V. BildV. StefanescuR. StanciuG.D. TambaB.I. Major phytocannabinoids and their related compounds: Should we only search for drugs that act on cannabinoid receptors?Pharmaceutics20211311182310.3390/pharmaceutics1311182334834237
    [Google Scholar]
  121. PertweeR.G. HowlettA.C. AboodM.E. AlexanderS.P.H. Di MarzoV. ElphickM.R. GreasleyP.J. HansenH.S. KunosG. MackieK. MechoulamR. RossR.A. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2.Pharmacol. Rev.201062458863110.1124/pr.110.00300421079038
    [Google Scholar]
  122. LiL.T. ZhaoF.F. JiaZ.M. QiL.Q. ZhangX.Z. ZhangL. LiY.Y. YangJ.J. WangS.J. LinH. LiuC.H. AnD.D. HuangY.Q. GaoX.L. Cannabinoid receptors promote chronic intermittent hypoxia-induced breast cancer metastasis via IGF-1R/AKT/GSK-3β.Mol. Ther. Oncolytics20212322023010.1016/j.omto.2021.09.00734729397
    [Google Scholar]
  123. KhanM.I. SobocińskaA.A. CzarneckaA.M. KrólM. BottaB. SzczylikC. The therapeutic aspects of the endocannabinoid system (ECS) for cancer and their development: From nature to laboratory.Curr. Pharm. Des.201622121756176610.2174/138161282266615121109490126654588
    [Google Scholar]
  124. PisantiS. PicardiP. ProtaL. ProtoM.C. LaezzaC. McGuireP.G. MorbidelliL. GazzerroP. ZicheM. DasA. BifulcoM. Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis.Blood2011117205541555010.1182/blood‑2010‑09‑30735521460248
    [Google Scholar]
  125. AL-Eitan, L.; Alhusban, A.; Alahmad, S. Effects of the synthetic cannabinoid XLR-11 on the viability and migration rates of human brain microvascular endothelial cells in a clinically-relevant model.Pharmacol. Rep.20207261717172410.1007/s43440‑020‑00123‑032632915
    [Google Scholar]
  126. AL-Eitan, L.; Alahmad, S. The expression analyses of GSK3B, VEGF, ANG1, and ANG2 in human brain microvascular endothelial cells treated with the synthetic cannabinoid XLR-11.Gene202387814758510.1016/j.gene.2023.14758537355149
    [Google Scholar]
  127. Al-EitanL.N. ZuhairS. KhairI.Y. AlghamdiM.A. Assessment of the proliferative and angiogenic effects of the synthetic cannabinoid (R)-5-fluoro ADB on human cerebral microvascular endothelial cells.Iran. J. Basic Med. Sci.202427330431038333752
    [Google Scholar]
  128. AL-Eitan, L.N.; Alahmad, S.Z.; ElMotasem, M.F.M.; Alghamdi, M.A. The synthetic cannabinoid 5F-MDMB-PICA enhances the metabolic activity and angiogenesis in human brain microvascular endothelial cells by upregulation of VEGF, ANG-1, and ANG-2.Toxicol. Res.202312579680610.1093/toxres/tfad06837915478
    [Google Scholar]
  129. AL-Eitan L.; Abusirdaneh, R. The synthetic cannabinoid 5-fluoro ABICA upregulates angiogenic markers and stimulates tube formation in human brain microvascular endothelial cells.J. Taibah Univ. Med. Sci.202419235937110.1016/j.jtumed.2024.01.00238357583
    [Google Scholar]
  130. AL-Eitan, L.; Abu Kharmah, H. The effect of the synthetic cannabinoid ab-chminaca on the roles of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in brain angiogenesis.Appl. In Vitro Toxicol.20239310411510.1089/aivt.2023.0003
    [Google Scholar]
  131. AL-Eitan, L.; Alkhawaldeh, M. MDMB-FUBINACA influences brain angiogenesis and the expression of VEGF, ANG-1, and ANG-2.Curr. Vasc. Pharmacol.202321535636510.2174/157016112166623091309344137711102
    [Google Scholar]
  132. AlipourA. PatelP.B. ShabbirZ. GabrielsonS. Review of the many faces of synthetic cannabinoid toxicities.Ment. Health Clin.201992939910.9740/mhc.2019.03.09330842917
    [Google Scholar]
  133. GuabirabaR. RussoR.C. CoelhoA.M. FerreiraM.A.N.D. LopesG.A.O. GomesA.K.C. AndradeS.P. BarcelosL.S. TeixeiraM.M. Blockade of cannabinoid receptors reduces inflammation, leukocyte accumulation and neovascularization in a model of sponge-induced inflammatory angiogenesis.Inflamm. Res.201362881182110.1007/s00011‑013‑0638‑823722450
    [Google Scholar]
  134. CasanovaM.L. Blázquez, C.; Martínez-Palacio, J.; Villanueva, C.; Fernández-Aceñero, M.J.; Huffman, J.W.; Jorcano, J.L.; Guzmán, M. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors.J. Clin. Invest.20031111435010.1172/JCI20031611612511587
    [Google Scholar]
  135. SolinasM. MassiP. CantelmoA.R. CattaneoM.G. CammarotaR. BartoliniD. CinquinaV. ValentiM. VicentiniL.M. NoonanD.M. AlbiniA. ParolaroD. Cannabidiol inhibits angiogenesis by multiple mechanisms.Br. J. Pharmacol.201216761218123110.1111/j.1476‑5381.2012.02050.x22624859
    [Google Scholar]
  136. Blázquez, C.; Casanova, M.L.; Planas, A.; Gómez del Pulgar, T.; Villanueva, C.; Fernández-Aceñero, M.J.; Aragonés, J.; Huffman, J.W.; Jorcano, J.L.; Guzmán, M. Inhibition of tumor angiogenesis by cannabinoids.FASEB J.200317311610.1096/fj.02‑0795fje12514108
    [Google Scholar]
  137. LingegowdaH. MillerJ.E. MarksR.M. SymonsL.K. AlwardT. LomaxA.E. KotiM. TayadeC. Synthetic cannabinoid agonist WIN 55212-2 targets proliferation, angiogenesis, and apoptosis via MAPK/AKT signaling in human endometriotic cell lines and a murine model of endometriosis. Frontiers in. Reproductive Health2021372693610.3389/frph.2021.72693636304004
    [Google Scholar]
  138. TracJ. KeckJ.M. DeweeseJ.E. Cannabidiol oxidation product HU-331 is a potential anticancer cannabinoid-quinone: A narrative review.J. Cannabis Res.2021311110.1186/s42238‑021‑00067‑z33892826
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666240905125037
Loading
/content/journals/cn/10.2174/1570159X23666240905125037
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alcohol; angiogenesis; cannabinoids; cocaine; methamphetamine; nicotine; opioid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test