Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Maternal high-fat diet (HFD) during pregnancy and lactation induces depression-like phenotype and provokes myelin-related changes in rat offspring in the prefrontal cortex (PFCTX), which persist even to adulthood.

Objective

Due to the plasticity of the developing brain, it was decided to analyze whether depression-like phenotype and myelin-related changes in the early lifetime induced by maternal HFD (60% energy from fat) could be reversed by the omega-3 fatty acid-enriched diet (Ω3D) given from the post-weaning period until adulthood (63rd day of life) in offspring.

Methods

We analyzed the effect of post-weaning Ω3D on the depressive-like phenotype (assessed by the forced swimming test) and myelin-related changes (measured using RT-qPCR, ELISA, and immunofluorescence staining) in the PFCTX of adult offspring.

Results

Ω3D reversed increased immobility time in adult offspring induced by maternal HFD, without affecting the animals' locomotor activity. Molecularly, Ω3D normalized the reduced expression levels of myelin-oligodendrocyte glycoprotein (MOG), as well as myelin and lymphocyte protein (MAL) in males and MOG in females in the PFCTX, changes initially induced by maternal HFD. Additionally, Ω3D normalized the quantity of oligodendrocyte precursor cells and mature oligodendrocytes in the prelimbic, infralimbic, and cingulate cortex in males, which were reduced following maternal HFD exposure. In females, the Ω3D effect was less pronounced, with normalization of oligodendrocyte precursors occurring only in the infralimbic cortex.

Conclusion

These findings suggest that Ω3D may play a significant role in correcting behavioral and neurobiological changes caused by adverse prenatal conditions.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241014164940
2024-11-01
2025-01-29
Loading full text...

Full text loading...

References

  1. WrightI. MughalF. BowersG. Meiser-StedmanR. Dropout from randomised controlled trials of psychological treatments for depression in children and youth: A systematic review and meta-analyses.J. Affect. Disord.202028188089010.1016/j.jad.2020.11.039 33248810
    [Google Scholar]
  2. ShankarK. PivikR.T. JohnsonS.L. van OmmenB. DemmerE. MurrayR. Environmental forces that shape early development: What we know and still need to know.Curr. Dev. Nutr.201828nzx00210.3945/cdn.117.001826 30167570
    [Google Scholar]
  3. GawlińskiD. GawlińskaK. SmagaI. Maternal high-fat diet modulates Cnr1 gene expression in male rat offspring.Nutrients2021138288510.3390/nu13082885 34445045
    [Google Scholar]
  4. GawlińskaK. GawlińskiD. KorostyńskiM. BorczykM. FrankowskaM. PiechotaM. FilipM. PrzegalińskiE. Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring.Dev. Cogn. Neurosci.20214710087910.1016/j.dcn.2020.100879 33232913
    [Google Scholar]
  5. FrankowskaM. SurówkaP. GawlińskaK. BorczykM. KorostyńskiM. FilipM. SmagaI. A maternal high-fat diet during pregnancy and lactation induced depression-like behavior in offspring and myelin-related changes in the rat prefrontal cortex.Front. Mol. Neurosci.202416130371810.3389/fnmol.2023.1303718 38235150
    [Google Scholar]
  6. SmagaI. BystrowskaB. GawlińskiD. PrzegalińskiE. FilipM. The endocannabinoid/endovanilloid system and depression.Curr. Neuropharmacol.201412546247410.2174/1570159X12666140923205412 25426013
    [Google Scholar]
  7. SmagaI. NiedzielskaE. GawlikM. MoniczewskiA. KrzekJ. PrzegalińskiE. PeraJ. FilipM. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism.Pharmacol. Rep.201567356958010.1016/j.pharep.2014.12.015 25933971
    [Google Scholar]
  8. SmagaI. Understanding the links among maternal diet, myelination, and depression: Preclinical and clinical overview.Cells202211354010.3390/cells11030540 35159347
    [Google Scholar]
  9. YangY. ZhangY. LuoF. LiB. Chronic stress regulates NG2+ cell maturation and myelination in the prefrontal cortex through induction of death receptor 6.Exp. Neurol.201627720221410.1016/j.expneurol.2016.01.003 26772637
    [Google Scholar]
  10. YangY. ChengZ. TangH. JiaoH. SunX. CuiQ. LuoF. PanH. MaC. LiB. Neonatal maternal separation impairs prefrontal cortical myelination and cognitive functions in rats through activation of Wnt Signaling.Cereb. Cortex2016275bhw12110.1093/cercor/bhw121 27178192
    [Google Scholar]
  11. LiuJ. DietzK. HodesG.E. RussoS.J. CasacciaP. Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress.Dev. Neurobiol.201878215216210.1002/dneu.22533 28884925
    [Google Scholar]
  12. LehmannM.L. WeigelT.K. ElkahlounA.G. HerkenhamM. Chronic social defeat reduces myelination in the mouse medial prefrontal cortex.Sci. Rep.2017714654810.1038/srep46548 28418035
    [Google Scholar]
  13. BireyF. KlocM. ChavaliM. HusseinI. WilsonM. ChristoffelD.J. ChenT. FrohmanM.A. RobinsonJ.K. RussoS.J. MaffeiA. AguirreA. Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2.Neuron201588594195610.1016/j.neuron.2015.10.046 26606998
    [Google Scholar]
  14. SacchetM.D. GotlibI.H. Myelination of the brain in major depressive disorder: An in vivo quantitative magnetic resonance imaging study.Sci. Rep.201771220010.1038/s41598‑017‑02062‑y 28526817
    [Google Scholar]
  15. TakahashiK. KurokawaK. HongL. MiyagawaK. Mochida-SaitoA. TakedaH. TsujiM. Disturbance of prefrontal cortical myelination in olfactory bulbectomized mice is associated with depressive-like behavior.Neurochem. Int.202114810511210.1016/j.neuint.2021.105112 34171413
    [Google Scholar]
  16. DasU.N. Essential fatty acids: Biochemistry, physiology and pathology.Biotechnol. J.20061442043910.1002/biot.200600012 16892270
    [Google Scholar]
  17. KimO.Y. SongJ. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia.Life Sci.202433712235610.1016/j.lfs.2023.122356 38123015
    [Google Scholar]
  18. DiNicolantonioJ.J. O’KeefeJ.H. The importance of marine omega-3s for brain development and the prevention and treatment of behavior, mood, and other brain disorders.Nutrients2020128233310.3390/nu12082333 32759851
    [Google Scholar]
  19. LinP.Y. HuangS.Y. SuK.P. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression.Biol. Psychiatry201068214014710.1016/j.biopsych.2010.03.018 20452573
    [Google Scholar]
  20. MartinsJ.G. BentsenH. PuriB.K. Eicosapentaenoic acid appears to be the key omega-3 fatty acid component associated with efficacy in major depressive disorder: A critique of Bloch and Hannestad and updated meta-analysis.Mol. Psychiatry201217121144114910.1038/mp.2012.25 22488258
    [Google Scholar]
  21. LiuC.W. LiaoK.H. TsengH. WuC.M. ChenH.Y. LaiT.W. Hypothermia but not NMDA receptor antagonism protects against stroke induced by distal middle cerebral arterial occlusion in mice.PLoS One2020153e022949910.1371/journal.pone.0229499 32126102
    [Google Scholar]
  22. LiS. LiR. HuX. ZhangY. WangD. GaoY. WangJ. WangQ. SongC. HuangS. ZhangE. ZhangJ. XiaZ. WanC. Omega-3 supplementation improves depressive symptoms, cognitive function and niacin skin flushing response in adolescent depression: A randomized controlled clinical trial.J. Affect. Disord.202434539440310.1016/j.jad.2023.10.151 38190276
    [Google Scholar]
  23. ZailaniH. WuS.K. YangK.J. MalauI.A. LiaoH.F. ChungY.L. ChangJ.P.C. ChiuW.C. SuK.P. Omega-3 polyunsaturated fatty acids in the prevention of relapse in patients with stable bipolar disorder: A 6-month pilot randomized controlled trial.Psychiatry Res.202433111563310.1016/j.psychres.2023.115633 38039650
    [Google Scholar]
  24. JinJ. XuZ. BeeversS.D. HuangJ. KellyF. LiG. Long-term ambient ozone, omega-3 fatty acid, genetic susceptibility, and risk of mental disorders among middle-aged and older adults in UK biobank.Environ. Res.202424311782510.1016/j.envres.2023.117825 38081346
    [Google Scholar]
  25. TatebayashiY. Nihonmatsu-KikuchiN. HayashiY. YuX. SomaM. IkedaK. Abnormal fatty acid composition in the frontopolar cortex of patients with affective disorders.Transl. Psychiatry2012212e20410.1038/tp.2012.132 23233023
    [Google Scholar]
  26. SmagaI. PomiernyB. KrzyżanowskaW. Pomierny-ChamiołoL. MiszkielJ. NiedzielskaE. OgórkaA. FilipM. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: Behavioral and biochemical analyses in rats.Prog. Neuropsychopharmacol. Biol. Psychiatry201239228028710.1016/j.pnpbp.2012.06.018 22820675
    [Google Scholar]
  27. PaxinosG. WatsonC. The Rat Brain in Stereotaxic Coordinates.San DiegoAcademic Press1998
    [Google Scholar]
  28. WangT. NiuK. FanA. BiN. TaoH. ChenX.T. WangH.L. Dietary intake of polyunsaturated fatty acids alleviates cognition deficits and depression-like behaviour via cannabinoid system in sleep deprivation rats.Behav. Brain Res.202038411254510.1016/j.bbr.2020.112545 32035867
    [Google Scholar]
  29. SongC. MankuM.S. HorrobinD.F. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats.J. Nutr.2008138595496310.1093/jn/138.5.954 18424607
    [Google Scholar]
  30. PengZ. ZhangC. YanL. ZhangY. YangZ. WangJ. SongC. EPA is More effective than DHA to improve depression-like behavior, glia cell dysfunction and hippcampal apoptosis signaling in a chronic stress-induced rat model of depression.Int. J. Mol. Sci.2020215176910.3390/ijms21051769 32150824
    [Google Scholar]
  31. LucasM. MirzaeiF. O’ReillyE.J. PanA. WillettW.C. KawachiI. KoenenK. AscherioA. Dietary intake of n-3 and n-6 fatty acids and the risk of clinical depression in women: A 10-y prospective follow-up study.Am. J. Clin. Nutr.20119361337134310.3945/ajcn.111.011817 21471279
    [Google Scholar]
  32. PuH. GuoY. ZhangW. HuangL. WangG. LiouA.K. ZhangJ. ZhangP. LeakR.K. WangY. ChenJ. GaoY. Omega-3 poly-unsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury.J. Cereb. Blood Flow Metab.20133391474148410.1038/jcbfm.2013.108 23801244
    [Google Scholar]
  33. SollyS.K. ThomasJ.L. MongeM. DemerensC. LubetzkiC. GardinierM.V. MatthieuJ.M. ZalcB. Myelin/oligodendrocyte glycoprotein (MOG) expression is associated with myelin deposition.Glia1996181394810.1002/(SICI)1098‑1136(199609)18:1<39:AID‑GLIA4>3.0.CO;2‑Z 8891690
    [Google Scholar]
  34. Vourc’hP. AndresC. Oligodendrocyte myelin glycoprotein (OMgp): Evolution, structure and function.Brain Res. Brain Res. Rev.200445211512410.1016/j.brainresrev.2004.01.003 15145622
    [Google Scholar]
  35. TanakaK. KezukaT. IshikawaH. TanakaM. SakimuraK. AbeM. KawamuraM. Pathogenesis, clinical features, and treatment of patients with Myelin Oligodendrocyte Glycoprotein (MOG) autoantibody-associated disorders focusing on optic neuritis with consideration of autoantibody-binding sites: A review.Int. J. Mol. Sci.202324171336810.3390/ijms241713368 37686172
    [Google Scholar]
  36. SibilleE. WangY. Joeyen-WaldorfJ. GaiteriC. SurgetA. OhS. BelzungC. TsengG.C. LewisD.A. A molecular signature of depression in the amygdala.Am. J. Psychiatry200916691011102410.1176/appi.ajp.2009.08121760 19605536
    [Google Scholar]
  37. AstonC. JiangL. SokolovB.P. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.Mol. Psychiatry200510330932210.1038/sj.mp.4001565 15303102
    [Google Scholar]
  38. BarleyK. DrachevaS. ByneW. Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder.Schizophr. Res.20091121-3546410.1016/j.schres.2009.04.019 19447584
    [Google Scholar]
  39. LiuJ. DietzK. DeLoyhtJ.M. PedreX. KelkarD. KaurJ. VialouV. LoboM.K. DietzD.M. NestlerE.J. DupreeJ. CasacciaP. Impaired adult myelination in the prefrontal cortex of socially isolated mice.Nat. Neurosci.201215121621162310.1038/nn.3263 23143512
    [Google Scholar]
  40. PiatekP. LewkowiczN. MichlewskaS. WieczorekM. BonikowskiR. ParchemK. LewkowiczP. NamiecinskaM. Natural fish oil improves the differentiation and maturation of oligodendrocyte precursor cells to oligodendrocytes in vitro after interaction with the blood-brain barrier.Front. Immunol.20221393238310.3389/fimmu.2022.932383 35935952
    [Google Scholar]
  41. TodorichB. PasquiniJ.M. GarciaC.I. PaezP.M. ConnorJ.R. Oligodendrocytes and myelination: The role of iron.Glia200957546747810.1002/glia.20784 18837051
    [Google Scholar]
  42. BonnefilV. DietzK. AmatrudaM. WentlingM. AubryA.V. DupreeJ.L. TempleG. ParkH.J. BurghardtN.S. CasacciaP. LiuJ. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice.eLife20198e4085510.7554/eLife.40855 31407664
    [Google Scholar]
  43. BordeleauM. Fernández de CossíoL. ChakravartyM.M. TremblayM.È. From maternal diet to neurodevelopmental disorders: A story of neuroinflammation.Front. Cell. Neurosci.20211461270510.3389/fncel.2020.612705 33536875
    [Google Scholar]
  44. BordeleauM. Fernández de CossíoL. LacabanneC. SavageJ.C. VernouxN. ChakravartyM. TremblayM.È. Maternal high-fat diet modifies myelin organization, microglial interactions, and results in social memory and sensorimotor gating deficits in adolescent mouse offspring.Brain, Behavior, &. Immunity -.Health20211510028110.1016/j.bbih.2021.100281 34589781
    [Google Scholar]
  45. BordeleauM. CominC.H. Fernández de CossíoL. LacabanneC. Freitas-AndradeM. González IbáñezF. Raman-NairJ. WakemM. ChakravartyM. CostaL.F. LacosteB. TremblayM.È. Maternal high-fat diet in mice induces cerebrovascular, microglial and long-term behavioural alterations in offspring.Commun. Biol.2022512610.1038/s42003‑021‑02947‑9 35017640
    [Google Scholar]
  46. OppedisanoF. MacrìR. GliozziM. MusolinoV. CarresiC. MaiuoloJ. BoscoF. NuceraS. Caterina ZitoM. GuarnieriL. ScaranoF. NicitaC. CoppolettaA.R. RugaS. ScicchitanoM. MollaceR. PalmaE. MollaceV. The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection.Biomedicines20208930610.3390/biomedicines8090306 32854210
    [Google Scholar]
  47. HadjighassemM. KamalidehghanB. ShekarrizN. BaseeratA. MolaviN. MehrpourM. JoghataeiM.T. TondarM. AhmadipourF. MengG.Y. Oral consumption of α-linolenic acid increases serum BDNF levels in healthy adult humans.Nutr. J.20151412010.1186/s12937‑015‑0012‑5 25889793
    [Google Scholar]
  48. VennaV.R. DeplanqueD. AlletC. BelarbiK. HamdaneM. BordetR. PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus.Psychoneuroendocrinology200934219921110.1016/j.psyneuen.2008.08.025 18848400
    [Google Scholar]
  49. CalderP.C. YaqoobP. HarveyD.J. WattsA. NewsholmeE.A. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity.Biochem. J.1994300Pt 250951810.1042/bj3000509 8002957
    [Google Scholar]
  50. VinesA. DelattreA.M. LimaM.M.S. RodriguesL.S. SucheckiD. MachadoR.B. TufikS. PereiraS.I.R. ZanataS.M. FerrazA.C. The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: A possible antide-pressant mechanism.Neuropharmacology201262118419110.1016/j.neuropharm.2011.06.017 21740919
    [Google Scholar]
  51. ChalonS. Delion-VancasselS. BelzungC. GuilloteauD. LeguisquetA.M. BesnardJ.C. DurandG. Dietary fish oil affects monoaminergic neurotransmission and behavior in rats.J. Nutr.1998128122512251910.1093/jn/128.12.2512 9868201
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241014164940
Loading
/content/journals/cn/10.2174/1570159X23666241014164940
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Depression; high-fat diet; maternal diet; myelination; offspring; omega-3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test