Skip to content
2000
image of Early Enteral Feeding Restores Neurofilament Light Chain Serum Levels in Preterm Newborns

Abstract

Background

Positive effects of early nutritional strategies on neurological outcomes have been observed when nutrients were administered by the enteral route, especially during the first week of life. Evidence reports that serum neurofilament light chain (NfL), a structural protein of neurons, is a specific and reliable biomarker of neuronal damage.

Objective

The present study aimed to investigate the effect of early enteral nutrition (EN) in minimizing neuroaxonal damage and assessing NfL serum levels in preterm neonates.

Methods

Fifty-four preterm neonates without severe brain impairment and 20 full-term babies as controls were enrolled from the Neonatal Intensive Care Unit at the Policlinico Umberto I in Rome. We performed blood sampling at birth (day of life 0 - DoL 0) in 20 full-term newborns and in 19 pre-term infants. Furthermore, we executed blood sampling at DoL 28 in other 22 pre-term newborns who received early enteral nutrition (EN) within the third DoL (Early-EN) and in 13 other pre-term newborns who received EN after the third DoL (Late-EN).

Results

Serum levels of NfL were higher in preterm babies when compared to full-term neonates, at DoL 0 (48.81 ± 9.4 . 11.67 ± 1.4 pg/ml; = 0.007). Interestingly, at DoL 28, serum NfL was significantly decreased in the Early-EN newborns compared to the Late-EN groups (15.22 ± 2.0 . 50.05 ± 17.9 pg/ml; = 0.03).

Conclusions

It was shown that early enteral feeding, within the first week of life, could be a useful tool for limiting neurological impairment in pre-term neonates by restoring NfL.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666240920165612
2024-11-07
2025-01-02
Loading full text...

Full text loading...

References

  1. Hay W.W.J. Optimizing nutrition of the preterm infant. Zhongguo Dang Dai Er Ke Za Zhi 2017 19 1 1 21 28100316
    [Google Scholar]
  2. Tan J. Boskovic D. Angeles D. The energy costs of prematurity and the neonatal intensive care unit (NICU) experience. Antioxidants 2018 7 3 37 10.3390/antiox7030037 29498645
    [Google Scholar]
  3. Nava C. Di Gallo A. Biuso A. Daniele I. Lista G. Comberiati P. Peroni D. Zuccotti G.V. D’Auria E. Early-life nutrition in pre-term infants and risk of respiratory infections and wheezing: A scoping review. Nutrients 2023 15 13 3031 10.3390/nu15133031 37447356
    [Google Scholar]
  4. Casirati A. Somaschini A. Perrone M. Vandoni G. Sebastiani F. Montagna E. Somaschini M. Caccialanza R. Preterm birth and metabolic implications on later life: A narrative review focused on body composition. Front. Nutr. 2022 9 978271 10.3389/fnut.2022.978271 36185669
    [Google Scholar]
  5. Osborn E.K. Alshaikh E. Nelin L.D. Jadcherla S.R. A decade of evidence: Standardized feeding initiative targeting feeding milestones and predicting NICU stays in premature infants in an all-referral level IV NICU. J. Perinatol. 2023 43 9 1105 1112 10.1038/s41372‑023‑01675‑8 37117395
    [Google Scholar]
  6. Lau C. Smith E.O. A novel approach to assess oral feeding skills of preterm infants. Neonatology 2011 100 1 64 70 10.1159/000321987 21212698
    [Google Scholar]
  7. Assad M. Jerome M. Olyaei A. Nizich S. Hedges M. Gosselin K. Scottoline B. Dilemmas in establishing preterm enteral feeding: Where do we start and how fast do we go? J. Perinatol. 2023 43 9 1194 1199 10.1038/s41372‑023‑01665‑w 37169912
    [Google Scholar]
  8. Walsh V. Brown J.V.E. Copperthwaite B.R. Oddie S.J. McGuire W. Early full enteral feeding for preterm or low birth weight infants. Cochrane Database Syst. Rev. 2020 2020 10.1002/14651858.CD013542
    [Google Scholar]
  9. Boscarino G. Conti M.G. Di Chiara M. Bianchi M. Onestà E. Faccioli F. Deli G. Repole P. Oliva S. Cresi F. Terrin G. Early enteral feeding improves tolerance of parenteral nutrition in preterm newborns. Nutrients 2021 13 11 3886 10.3390/nu13113886 34836137
    [Google Scholar]
  10. Alturk M.R. Alkhdr M.O. Abo Zeed M.S. Singh K. Extended minimal enteral feeding and time to regain birth weight in extremely low-birth-weight infants. J. Neonatal Perinatal Med. 2023 16 2 293 299 10.3233/NPM‑221166 37092241
    [Google Scholar]
  11. Moyses H.E. Johnson M.J. Leaf A.A. Cornelius V.R. Early parenteral nutrition and growth outcomes in preterm infants: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013 97 4 816 826 10.3945/ajcn.112.042028 23446896
    [Google Scholar]
  12. Beghetti I. Barone M. Brigidi P. Sansavini A. Corvaglia L. Aceti A. Turroni S. Early-life gut microbiota and neurodevelopment in preterm infants: A narrative review. Front. Nutr. 2023 10 1241303 10.3389/fnut.2023.1241303 37614746
    [Google Scholar]
  13. De Nardo M.C. Petrella C. Di Chiara M. Di Mario C. Deli G. Travaglia E. Baldini L. Russo A. Parisi P. Fiore M. Terrin G. Early nutritional intake influences the serum levels of nerve growth factor (NGF) and brain-derived neurotrophic factor in preterm new-borns. Front. Neurol. 2022 13 988101 10.3389/fneur.2022.988101 36324384
    [Google Scholar]
  14. Blennow K. A review of fluid biomarkers for alzheimer’s disease: Moving from CSF to blood. Neurol. Ther. 2017 6 S1 Suppl. 1 15 24 10.1007/s40120‑017‑0073‑9 28733960
    [Google Scholar]
  15. Gafson A.R. Barthélemy N.R. Bomont P. Carare R.O. Durham H.D. Julien J.P. Kuhle J. Leppert D. Nixon R.A. Weller R.O. Zetterberg H. Matthews P.M. Neurofilaments: Neurobiological foundations for biomarker applications. Brain 2020 143 7 1975 1998 10.1093/brain/awaa098 32408345
    [Google Scholar]
  16. Shah D.K. Yip P.K. Barlas A. Tharmapoopathy P. Ponnusamy V. Michael-Titus A.T. Chisholm P. Raised plasma neurofilament light protein levels after rewarming are associated with adverse neurodevelopmental outcomes in newborns after therapeutic hypothermia. Front. Neurol. 2020 11 562510 10.3389/fneur.2020.562510 33192996
    [Google Scholar]
  17. Abdelhak A. Petermeier F. Benkert P. Schädelin S. Oechtering J. Maleska Maceski A. Kabesch M. Geis T. Laub O. Leipold G. Gobbi C. Zecca C. Green A. Tumani H. Willemse E. Wiendl H. Granziera C. Kappos L. Leppert D. Waubant E. Wellmann S. Kuhle J. Serum neurofilament light chain reference database for individual application in paediatric care: A retrospective modelling and validation study. Lancet Neurol. 2023 22 9 826 833 10.1016/S1474‑4422(23)00210‑7 37524100
    [Google Scholar]
  18. Goeral K. Hauck A. Atkinson A. Wagner M.B. Pimpel B. Fuiko R. Klebermass-Schrehof K. Leppert D. Kuhle J. Berger A. Olischar M. Wellmann S. Early life serum neurofilament dynamics predict neurodevelopmental outcome of preterm infants. J. Neurol. 2021 268 7 2570 2577 10.1007/s00415‑021‑10429‑5 33566157
    [Google Scholar]
  19. Neu J. Gastrointestinal development and meeting the nutritional needs of premature infants. Am. J. Clin. Nutr. 2007 85 2 629S 634S 10.1093/ajcn/85.2.629S 17284768
    [Google Scholar]
  20. Yaari M. Mankuta D. Harel- Gadassi, A.; Friedlander, E.; Bar-Oz, B.; Eventov-Friedman, S.; Maniv, N.; Zucker, D.; Yirmiya, N. Early developmental trajectories of preterm infants. Res. Dev. Disabil. 2018 81 12 23 10.1016/j.ridd.2017.10.018 29113755
    [Google Scholar]
  21. Øberg G.K. Campbell S.K. Girolami G.L. Ustad T. Jørgensen L. Kaaresen P.I. Study protocol: An early intervention program to improve motor outcome in preterm infants: A randomized controlled trial and a qualitative study of physiotherapy performance and pa-rental experiences. BMC Pediatr. 2012 12 1 15 10.1186/1471‑2431‑12‑15 22336194
    [Google Scholar]
  22. Terrin G. Berni Canani R. Passariello A. Messina F. Conti M.G. Caoci S. Smaldore A. Bertino E. De Curtis M. Zinc supplemen-tation reduces morbidity and mortality in very-low-birth-weight preterm neonates: A hospital-based randomized, placebo-controlled trial in an industrialized country. Am. J. Clin. Nutr. 2013 98 6 1468 1474 10.3945/ajcn.112.054478 24025633
    [Google Scholar]
  23. Terrin G. Boscarino G. Di Chiara M. Iacobelli S. Faccioli F. Greco C. Onestà E. Sabatini G. Pietravalle A. Oliva S. Conti M.G. Natale F. De Curtis M. Nutritional intake influences zinc levels in preterm newborns: An observational study. Nutrients 2020 12 2 529 10.3390/nu12020529 32093077
    [Google Scholar]
  24. Franz A.R. Pohlandt F. Bode H. Mihatsch W.A. Sander S. Kron M. Steinmacher J. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 2009 123 1 e101 e109 10.1542/peds.2008‑1352 19117831
    [Google Scholar]
  25. Chung E.H. Chou J. Brown K.A. Neurodevelopmental outcomes of preterm infants: A recent literature review. Transl. Pediatr. 2020 9 S1 Suppl. 1 S3 S8 10.21037/tp.2019.09.10 32206579
    [Google Scholar]
  26. Skinner A.M. Narchi H. Preterm nutrition and neurodevelopmental outcomes. World J. Methodol. 2021 11 6 278 293 10.5662/wjm.v11.i6.278 34888181
    [Google Scholar]
  27. De Nardo M.C. Mario C.D. Laccetta G. Boscarino G. Terrin G. Enteral and parenteral energy intake and neurodevelopment in pre-term infants: A systematic review. Nutrition 2022 97 111572 10.1016/j.nut.2021.111572 35306422
    [Google Scholar]
  28. Lucas A. Adrian T.E. Christofides N. Bloom S.R. Aynsley-Green A. Plasma motilin, gastrin, and enteroglucagon and feeding in the human newborn. Arch. Dis. Child. 1980 55 9 673 677 10.1136/adc.55.9.673 7436530
    [Google Scholar]
  29. Kim H. Bang K.S. The effects of enteral feeding improvement massage on premature infants: A randomised controlled trial. J. Clin. Nurs. 2018 27 1-2 92 101 10.1111/jocn.13850 28415135
    [Google Scholar]
  30. Indrio F. Neu J. Pettoello-Mantovani M. Marchese F. Martini S. Salatto A. Aceti A. Development of the gastrointestinal tract in newborns as a challenge for an appropriate nutrition: A narrative review. Nutrients 2022 14 7 1405 10.3390/nu14071405 35406018
    [Google Scholar]
  31. Khalil M. Teunissen C.E. Otto M. Piehl F. Sormani M.P. Gattringer T. Barro C. Kappos L. Comabella M. Fazekas F. Petzold A. Blennow K. Zetterberg H. Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018 14 10 577 589 10.1038/s41582‑018‑0058‑z 30171200
    [Google Scholar]
  32. Buhmann C. Magnus T. Choe C. Blood neurofilament light chain in Parkinson’s disease. J. Neural Transm. 2023 130 6 755 762 10.1007/s00702‑023‑02632‑7 37067597
    [Google Scholar]
  33. McInvale J.J. Canoll P. Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in ALZ-HEIMER’S disease and frontotemporal dementia. Brain Pathol. 2024 34 4 e13231 10.1111/bpa.13231 38246596
    [Google Scholar]
  34. Freedman M.S. Gnanapavan S. Booth R.A. Calabresi P.A. Khalil M. Kuhle J. Lycke J. Olsson T. Guidance for use of neurofila-ment light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. EBioMedicine 2024 101 104970 10.1016/j.ebiom.2024.104970 38354532
    [Google Scholar]
  35. Sjöbom U. Hellström W. Löfqvist C. Nilsson A.K. Holmström G. Pupp I.H. Ley D. Blennow K. Zetterberg H. Sävman K. Hellström A. Analysis of brain injury biomarker neurofilament light and neurodevelopmental outcomes and retinopathy of prematurity among preterm infants. JAMA Netw. Open 2021 4 4 e214138 10.1001/jamanetworkopen.2021.4138 33797551
    [Google Scholar]
  36. Toorell H. Zetterberg H. Blennow K. Sävman K. Hagberg H. Increase of neuronal injury markers Tau and neurofilament light pro-teins in umbilical blood after intrapartum asphyxia. J. Matern. Fetal Neonatal Med. 2018 31 18 2468 2472 10.1080/14767058.2017.1344964 28629249
    [Google Scholar]
  37. Shah D.K. Ponnusamy V. Evanson J. Kapellou O. Ekitzidou G. Gupta N. Clarke P. Michael-Titus A.T. Yip P.K. Raised plasma neurofilament light protein levels are associated with abnormal MRI outcomes in newborns undergoing therapeutic hypothermia. Front. Neurol. 2018 9 86 10.3389/fneur.2018.00086 29556208
    [Google Scholar]
  38. Boscarino G. Conti M.G. De Luca F. Di Chiara M. Deli G. Bianchi M. Favata P. Cardilli V. Di Nardo G. Parisi P. Terrin G. Intravenous lipid emulsions affect respiratory outcome in preterm newborn: A case-control study. Nutrients 2021 13 4 1243 10.3390/nu13041243 33918860
    [Google Scholar]
  39. Robinson D.T. Calkins K.L. Chen Y. Cober M.P. Falciglia G.H. Church D.D. Mey J. McKeever L. Sentongo T. Guidelines for parenteral nutrition in preterm infants: The american society for parenteral and enteral nutrition. JPEN J. Parenter. Enteral Nutr. 2023 47 7 830 858 10.1002/jpen.2550 37610837
    [Google Scholar]
  40. Stensvold H.J. Strommen K. Lang A.M. Abrahamsen T.G. Steen E.K. Pripp A.H. Ronnestad A.E. Early enhanced parenteral nutri-tion, hyperglycemia, and death among extremely low-birth-weight infants. JAMA Pediatr. 2015 169 11 1003 1010 10.1001/jamapediatrics.2015.1667 26348113
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666240920165612
Loading
/content/journals/cn/10.2174/1570159X23666240920165612
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test