Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Huntington's disease is a hereditary neurodegenerative disorder marked by severe neurodegeneration in the striatum and cortex. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It plays a crucial role in maintaining the survival and proper function of striatal neurons. Depletion of BDNF has been linked to impairment and death of striatal neurons, leading to the manifestation of motor, cognitive, and behavioral dysfunctions characteristic of Huntington's disease. This review highlights the current update on the neurobiology of BDNF in the pathogenesis of Huntington's disease. The molecular evidence and the affected signaling pathways are also discussed. In addition, the impact of experimental manipulation of BDNF levels and its pharmaceutical potential for Huntington's disease treatment are explicitly reviewed.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240530105516
2024-12-06
2025-03-30
Loading full text...

Full text loading...

References

  1. NovakMJU TabriziSJ Huntington’s disease.BMJ2010340jun30 4c310910.1136/bmj.c310920591965
    [Google Scholar]
  2. ChenK.P. HuaK.F. TsaiF.T. A selective inhibitor of the NLRP3 inflammasome as a potential therapeutic approach for neuroprotection in a transgenic mouse model of Huntington’s disease.J. Neuroinflammation20221915610.1186/s12974‑022‑02419‑9 35219323
    [Google Scholar]
  3. BaigS.S. StrongM. QuarrellO.W.J. The global prevalence of Huntington’s disease: A systematic review and discussion.Neurodegener. Dis. Manag.20166433134310.2217/nmt‑2016‑0008 27507223
    [Google Scholar]
  4. RawlinsM.D. WexlerN.S. WexlerA.R. The prevalence of Huntington’s disease.Neuroepidemiology201646214415310.1159/000443738 26824438
    [Google Scholar]
  5. QuarrellO O’DonovanKL BandmannO StrongM The prevalence of juvenile Huntington’s disease: A review of the literature and meta-analysis.PLoS Curr20124e4f8606b742ef310.1371/4f8606b742ef322953238
    [Google Scholar]
  6. FerreiraJ.J. RodriguesF.B. DuarteG.S. An MDS evidence‐based review on treatments for Huntington’s disease.Mov. Disord.2022371253510.1002/mds.28855 34842303
    [Google Scholar]
  7. HuangE.J. ReichardtL.F. Neurotrophins: roles in neuronal development and function.Annu. Rev. Neurosci.200124167773610.1146/annurev.neuro.24.1.677 11520916
    [Google Scholar]
  8. NobleE.E. BillingtonC.J. KotzC.M. WangC. The lighter side of BDNF.Am. J. Physiol. Regul. Integr. Comp. Physiol.20113005R1053R106910.1152/ajpregu.00776.2010 21346243
    [Google Scholar]
  9. BemelmansA.P. HorellouP. PradierL. BrunetI. ColinP. MalletJ. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer.Hum. Gene Ther.199910182987299710.1089/10430349950016393 10609659
    [Google Scholar]
  10. Pérez-NavarroE. AlberchJ. NeveuI. ArenasE. Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 differentially regulate the phenotype and prevent degenerative changes in striatal projection neurons after excitotoxicity in vivo.Neuroscience19999141257126410.1016/S0306‑4522(98)00723‑4 10391433
    [Google Scholar]
  11. BaydyukM. XuB. BDNF signaling and survival of striatal neurons.Front. Cell. Neurosci.2014825410.3389/fncel.2014.00254 25221473
    [Google Scholar]
  12. ZuccatoC. CiammolaA. RigamontiD. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease.Science2001293552949349810.1126/science.1059581 11408619
    [Google Scholar]
  13. SaylorA.J. McGintyJ.F. An intrastriatal brain-derived neurotrophic factor infusion restores striatal gene expression in Bdnf heterozygous mice.Brain Struct. Funct.201021529710410.1007/s00429‑010‑0282‑9 20938680
    [Google Scholar]
  14. GiampàC. MontagnaE. DatoC. MeloneM.A.B. BernardiG. FuscoF.R. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease.PLoS One201385e6403710.1371/journal.pone.0064037 23700454
    [Google Scholar]
  15. van DuijnE. KingmaE.M. van der MastR.C. Psychopathology in verified Huntington’s disease gene carriers.J. Neuropsychiatry Clin. Neurosci.200719444144810.1176/jnp.2007.19.4.441 18070848
    [Google Scholar]
  16. BatesG.P. DorseyR. GusellaJ.F. Huntington disease.Nat. Rev. Dis. Primers2015111500510.1038/nrdp.2015.5 27188817
    [Google Scholar]
  17. RoosR.A.C. Huntington’s disease: A clinical review.Orphanet J. Rare Dis.2010514010.1186/1750‑1172‑5‑40 21171977
    [Google Scholar]
  18. NanaA.L. KimE.H. ThuD.C.V. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington’s disease.J. Huntingtons Dis.201431456410.3233/JHD‑140092 25062764
    [Google Scholar]
  19. HassanzadehK. FeligioniM. ZareiM. Bioactive peptides in neurodegenerative diseases.In: Bioact pept from food sources, anal funct.CRC Press202239141410.1201/9781003106524‑25
    [Google Scholar]
  20. de la MonteS.M. VonsattelJ.P. RichardsonE.P.Jr Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease.J. Neuropathol. Exp. Neurol.198847551652510.1097/00005072‑198809000‑00003 2971785
    [Google Scholar]
  21. KassubekJ. Bernhard LandwehrmeyerG. EckerD. Global cerebral atrophy in early stages of Huntingtonʼs disease: quantitative MRI study.Neuroreport200415236336510.1097/00001756‑200402090‑00030 15076769
    [Google Scholar]
  22. Fennema-NotestineC. ArchibaldS.L. JacobsonM.W. in vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease.Neurology200463698999510.1212/01.WNL.0000138434.68093.67 15452288
    [Google Scholar]
  23. BarrA.N. HeinzeW.J. DobbenG.D. ValvassoriG.E. SugarO. Bicaudate index in computerized tomography of Huntington disease and cerebral atrophy.Neurology197828111196120010.1212/WNL.28.11.1196 152416
    [Google Scholar]
  24. BarryJ. BuiM.T.N. LevineM.S. CepedaC. Synaptic pathology in Huntington’s disease: Beyond the corticostriatal pathway.Neurobiol. Dis.202216210557410.1016/j.nbd.2021.105574 34848336
    [Google Scholar]
  25. VonsattelJ.P.G. KellerC. Pilar AmayaM. Neuropathology of Huntington’s disease.Handb. Clin. Neurol.20088959961810.1016/S0072‑9752(07)01256‑0 18631782
    [Google Scholar]
  26. VonsattelJ.P. MyersR.H. StevensT.J. FerranteR.J. BirdE.D. RichardsonE.P.Jr Neuropathological classification of Huntington’s disease.J. Neuropathol. Exp. Neurol.198544655957710.1097/00005072‑198511000‑00003 2932539
    [Google Scholar]
  27. WaldvogelH.J. FaullR.L.M. The diversity of GABA(A) receptor subunit distribution in the normal and Huntington’s disease human brain.Adv. Pharmacol.20157322326410.1016/bs.apha.2014.11.010 25637443
    [Google Scholar]
  28. KowallN.W. FerranteR.J. MartinJ.B. Patterns of cell loss in Huntington’s disease.Trends Neurosci.1987101242910.1016/0166‑2236(87)90120‑2
    [Google Scholar]
  29. ReinerA. ShelbyE. WangH. Striatal parvalbuminergic neurons are lost in Huntington’s disease: implications for dystonia.Mov. Disord.201328121691169910.1002/mds.25624 24014043
    [Google Scholar]
  30. Seto-OhshimaA. LawsonE. EmsonP.C. MountjoyC.Q. CarrascoL.H. Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease.Lancet198833185971252125510.1016/S0140‑6736(88)92073‑9 2897519
    [Google Scholar]
  31. KiyamaH. Seto-OhshimaA. EmsonP.C. Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington’s disease.Brain Res.1990525220921410.1016/0006‑8993(90)90866‑A 2147568
    [Google Scholar]
  32. KimE.H. ThuD.C.V. TippettL.J. Cortical interneuron loss and symptom heterogeneity in Huntington disease.Ann. Neurol.201475571772710.1002/ana.24162 24771513
    [Google Scholar]
  33. Crevier-SorboG. RymarV.V. Crevier-SorboR. SadikotA.F. Thalamostriatal degeneration contributes to dystonia and cholinergic interneuron dysfunction in a mouse model of Huntington’s disease.Acta Neuropathol. Commun.2020811410.1186/s40478‑020‑0878‑0 32033588
    [Google Scholar]
  34. PicconiB. PassinoE. SgobioC. Plastic and behavioral abnormalities in experimental Huntington’s disease: A crucial role for cholinergic interneurons.Neurobiol. Dis.200622114315210.1016/j.nbd.2005.10.009 16326108
    [Google Scholar]
  35. JoshiP.R. WuN.P. AndréV.M. Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease.J. Neurosci.20092982414242710.1523/JNEUROSCI.5687‑08.2009 19244517
    [Google Scholar]
  36. MortonA.J. FaullR.L.M. EdwardsonJ.M. Abnormalities in the synaptic vesicle fusion machinery in Huntington’s disease.Brain Res. Bull.200156211111710.1016/S0361‑9230(01)00611‑6 11704347
    [Google Scholar]
  37. CepedaC. ArianoM.A. CalvertC.R. NMDA receptor function in mouse models of Huntington disease.J. Neurosci. Res.200166452553910.1002/jnr.1244 11746372
    [Google Scholar]
  38. DelvaA. MichielsL. KooleM. Van LaereK. VandenbergheW. Synaptic damage and its clinical correlates in people with early Huntington disease: A PET study.Neurology2022981e83e9410.1212/WNL.0000000000012969 34663644
    [Google Scholar]
  39. AndréV.M. CepedaC. FisherY.E. Differential electrophysiological changes in striatal output neurons in Huntington’s disease.J. Neurosci.20113141170118210.1523/JNEUROSCI.3539‑10.2011 21273402
    [Google Scholar]
  40. PetersenM.H. WillertC.W. AndersenJ.V. Progressive mitochondrial dysfunction of striatal synapses in R6/2 mouse model of Huntington’s disease.J. Huntingtons Dis.202211212114010.3233/JHD‑210518 35311711
    [Google Scholar]
  41. CepedaC. LevineM.S. Synaptic dysfunction in Huntington’s disease: lessons from genetic animal models.Neurosci202051073858420972662 33198566
    [Google Scholar]
  42. FoltranR.B. DiazS.L. BDNF isoforms: A round trip ticket between neurogenesis and serotonin?J. Neurochem.2016138220422110.1111/jnc.13658 27167299
    [Google Scholar]
  43. MowlaS.J. FarhadiH.F. PareekS. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor.J. Biol. Chem.200127616126601266610.1074/jbc.M008104200 11152678
    [Google Scholar]
  44. JeH.S. YangF. JiY. NagappanG. HempsteadB.L. LuB. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses.Proc. Natl. Acad. Sci.201210939159241592910.1073/pnas.1207767109 23019376
    [Google Scholar]
  45. VafadariB. SalamianA. KaczmarekL. MMP ‐9 in translation: from molecule to brain physiology, pathology, and therapy.J. Neurochem.2016139Suppl. 29111410.1111/jnc.13415 26525923
    [Google Scholar]
  46. DieniS. MatsumotoT. DekkersM. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons.J. Cell Biol.2012196677578810.1083/jcb.201201038 22412021
    [Google Scholar]
  47. YangJ.L. LinY.T. ChuangP.C. BohrV.A. MattsonM.P. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1.Neuromolecular Med.201416116117410.1007/s12017‑013‑8270‑x 24114393
    [Google Scholar]
  48. DeinhardtK ChaoMV Shaping neurons: Long and short range effects of mature and proBDNF signalling upon neuronal structure.Neuropharmacology201476 Pt C0 0603910.1016/j.neuropharm.2013.04.05423664813
    [Google Scholar]
  49. NykjaerA. WillnowT.E. Sortilin: A receptor to regulate neuronal viability and function.Trends Neurosci.201235426127010.1016/j.tins.2012.01.003 22341525
    [Google Scholar]
  50. SimmonsD.A. Modulating neurotrophin receptor signaling as a therapeutic strategy for Huntington’s disease.J. Huntingtons Dis.20176430332510.3233/JHD‑170275 29254102
    [Google Scholar]
  51. SongW. VolosinM. CragnoliniA.B. HempsteadB.L. FriedmanW.J. ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons.J. Neurosci.20103046156081561510.1523/JNEUROSCI.2581‑10.2010 21084616
    [Google Scholar]
  52. SandhyaV.K. RajuR. VermaR. A network map of BDNF/TRKB and BDNF/p75NTR signaling system.J. Cell Commun. Signal.20137430130710.1007/s12079‑013‑0200‑z 23606317
    [Google Scholar]
  53. Colucci-D’AmatoL. SperanzaL. VolpicelliF. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer.Int. J. Mol. Sci.20202120777710.3390/ijms21207777 33096634
    [Google Scholar]
  54. PanjaD. KenneyJ.W. D’AndreaL. Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK.Cell Rep.2014941430144510.1016/j.celrep.2014.10.016 25453757
    [Google Scholar]
  55. ZhaoH. AlamA. SanC.Y. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments.Brain Res.2017166512110.1016/j.brainres.2017.03.029 28396009
    [Google Scholar]
  56. MinichielloL. TrkB signalling pathways in LTP and learning.Nat. Rev. Neurosci.2009101285086010.1038/nrn2738 19927149
    [Google Scholar]
  57. GonzalezA. Moya-AlvaradoG. Gonzalez-BillautC. BronfmanF.C. Cellular and molecular mechanisms regulating neuronal growth by brain‐derived neurotrophic factor.Cytoskeleton2016731061262810.1002/cm.21312 27223597
    [Google Scholar]
  58. JaworskiJ. SpanglerS. SeeburgD.P. HoogenraadC.C. ShengM. Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway.J. Neurosci.20052549113001131210.1523/JNEUROSCI.2270‑05.2005 16339025
    [Google Scholar]
  59. LinG. BellaA.J. LueT.F. LinC.S. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part 2.J. Sex. Med.20063582182910.1111/j.1743‑6109.2006.00292.x 16942527
    [Google Scholar]
  60. SchulteJ. LittletonJ.T. The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology.Curr. Trends Neurol.201156578 22180703
    [Google Scholar]
  61. ParkH. Cortical axonal secretion of BDNF in the striatum is disrupted in the mutant-huntingtin knock-in mouse model of huntington’s disease.Exp. Neurobiol.201827321722510.5607/en.2018.27.3.217 30022873
    [Google Scholar]
  62. AltarC.A. CaiN. BlivenT. Anterograde transport of brain-derived neurotrophic factor and its role in the brain.Nature1997389665385686010.1038/39885 9349818
    [Google Scholar]
  63. GauthierL.R. CharrinB.C. Borrell-PagèsM. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules.Cell2004118112713810.1016/j.cell.2004.06.018 15242649
    [Google Scholar]
  64. LiotG. ZalaD. PlaP. MottetG. PielM. SaudouF. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites.J. Neurosci.201333156298630910.1523/JNEUROSCI.2033‑12.2013 23575829
    [Google Scholar]
  65. CanalsJ.M. PinedaJ.R. Torres-PerazaJ.F. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease.J. Neurosci.200424357727773910.1523/JNEUROSCI.1197‑04.2004 15342740
    [Google Scholar]
  66. ZuccatoC. LiberD. RamosC. Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery.Pharmacol. Res.200552213313910.1016/j.phrs.2005.01.001 15967378
    [Google Scholar]
  67. PinedaJ.R. CanalsJ.M. BoschM. Brain‐derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of Huntington’s disease.J. Neurochem.20059351057106810.1111/j.1471‑4159.2005.03047.x 15934928
    [Google Scholar]
  68. GriffioenK.J. WanR. BrownT.R. Aberrant heart rate and brainstem brain-derived neurotrophic factor (BDNF) signaling in a mouse model of Huntington’s disease.Neurobiol. Aging20123371481.e11481.e510.1016/j.neurobiolaging.2011.11.030 22209255
    [Google Scholar]
  69. YuC. LiC.H. ChenS. YooH. QinX. ParkH. Decreased BDNF release in cortical neurons of a knock-in mouse model of Huntington’s disease.Sci. Rep.2018811697610.1038/s41598‑018‑34883‑w 30451892
    [Google Scholar]
  70. ConfortiP. RamosC. ApostolB.L. Blood level of brain-derived neurotrophic factor mRNA is progressively reduced in rodent models of Huntington’s disease: Restoration by the neuroprotective compound CEP-1347.Mol. Cell. Neurosci.20083911710.1016/j.mcn.2008.04.012 18571429
    [Google Scholar]
  71. SamadiP. BoutetA. RymarV.V. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington’s disease.Genes Brain Behav.201312110812410.1111/j.1601‑183X.2012.00858.x 23006318
    [Google Scholar]
  72. DiógenesM.J. FernandesC.C. SebastiãoA.M. RibeiroJ.A. Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices.J. Neurosci.200424122905291310.1523/JNEUROSCI.4454‑03.2004 15044529
    [Google Scholar]
  73. PotenzaR.L. TebanoM.T. MartireA. Adenosine A2A receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease.Purinergic Signal.20073433333810.1007/s11302‑007‑9066‑y 18404446
    [Google Scholar]
  74. SeoH. SonntagK.C. KimW. CattaneoE. IsacsonO. Proteasome activator enhances survival of Huntington’s disease neuronal model cells.PLoS One200722e23810.1371/journal.pone.0000238 17327906
    [Google Scholar]
  75. SeoH. SonntagK.C. IsacsonO. Generalized brain and skin proteasome inhibition in Huntington’s disease.Ann. Neurol.200456331932810.1002/ana.20207 15349858
    [Google Scholar]
  76. SeoH. KimW. IsacsonO. Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington’s disease patients.Hum. Mol. Genet.200817203144315310.1093/hmg/ddn211 18640989
    [Google Scholar]
  77. NguyenK.Q. RymarV.V. SadikotA.F. Impaired TrkB signaling underlies reduced BDNF-mediated trophic support of striatal neurons in the R6/2 mouse model of huntington’s disease.Front. Cell. Neurosci.2016103710.3389/fncel.2016.00037 27013968
    [Google Scholar]
  78. MaQ. YangJ. LiT. MilnerT.A. HempsteadB.L. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington’s disease.Neurobiol. Dis.20158246647710.1016/j.nbd.2015.08.008 26282324
    [Google Scholar]
  79. PlotkinJ.L. DayM. PetersonJ.D. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease.Neuron201483117818810.1016/j.neuron.2014.05.032 24991961
    [Google Scholar]
  80. BritoV. PuigdellívolM. GiraltA. del ToroD. AlberchJ. GinésS. Imbalance of p75NTR/TrkB protein expression in Huntington’s disease: implication for neuroprotective therapies.Cell Death Dis.201344e595510.1038/cddis.2013.116 23598407
    [Google Scholar]
  81. AlberchJ. LópezM. BadenasC. Association between BDNF Val66Met polymorphism and age at onset in Huntington disease.Neurology200565696496510.1212/01.wnl.0000175977.57661.b1 16186551
    [Google Scholar]
  82. Di MariaE. MarascoA. TartariM. No evidence of association between BDNF gene variants and age-at-onset of Huntington’s disease.Neurobiol. Dis.200624227427910.1016/j.nbd.2006.07.002 16905325
    [Google Scholar]
  83. KishikawaS. LiJ.L. GillisT. Brain-derived neurotrophic factor does not influence age at neurologic onset of Huntington’s disease.Neurobiol. Dis.200624228028510.1016/j.nbd.2006.07.008 16962786
    [Google Scholar]
  84. MaiM. AkkadA.D. WieczorekS. No association between polymorphisms in the BDNF gene and age at onset in Huntington disease.BMC Med. Genet.2006717910.1186/1471‑2350‑7‑79 17096834
    [Google Scholar]
  85. GutierrezA. Corey-BloomJ. ThomasE.A. DesplatsP. Evaluation of biochemical and epigenetic measures of peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in Huntington’s disease patients.Front. Mol. Neurosci.20201233510.3389/fnmol.2019.00335 32038165
    [Google Scholar]
  86. ZuccatoC. MarulloM. ConfortiP. MacDonaldM.E. TartariM. CattaneoE. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease.Brain Pathol.200818222523810.1111/j.1750‑3639.2007.00111.x 18093249
    [Google Scholar]
  87. MüllerS. In silico analysis of regulatory networks underlines the role of miR-10b-5p and its target BDNF in huntington’s disease.Transl. Neurodegener.2014311710.1186/2047‑9158‑3‑17 25210621
    [Google Scholar]
  88. FerrerI. GoutanE. MarínC. ReyM.J. RibaltaT. Brain-derived neurotrophic factor in Huntington disease.Brain Res.20008661-225726110.1016/S0006‑8993(00)02237‑X 10825501
    [Google Scholar]
  89. CiammolaA. SassoneJ. CannellaM. Low brain‐derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2007144B457457710.1002/ajmg.b.30501 17427191
    [Google Scholar]
  90. PlintaK. PlewkaA. PawlickiK. The utility of bdnf detection in assessing severity of huntington’s disease.J. Clin. Med.20211021518110.3390/jcm10215181 34768699
    [Google Scholar]
  91. ZuccatoC. MarulloM. VitaliB. Brain-derived neurotrophic factor in patients with Huntington’s disease.PLoS One201168e2296610.1371/journal.pone.0022966 21857974
    [Google Scholar]
  92. OuZ.Y.A. ByrneL.M. RodriguesF.B. Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington’s disease.Sci. Rep.2021111348110.1038/s41598‑021‑83000‑x 33568689
    [Google Scholar]
  93. BettiL. PalegoL. UntiE. Brain-derived neurotrophic factor (BDNF) and serotonin transporter (SERT) in platelets of patients with mild Huntington’s disease: relationships with social cognition symptoms.Arch. Ital. Biol.20181561273910.12871/00039829201813 30039833
    [Google Scholar]
  94. MaB. CulverB.P. BajG. TongiorgiE. ChaoM.V. TaneseN. Localization of BDNF mRNA with the Huntington’s disease protein in rat brain.Mol. Neurodegener.2010512210.1186/1750‑1326‑5‑22 20507609
    [Google Scholar]
  95. SilvaA. NaiaL. DominguezA. Overexpression of BDNF and full-length Trkb receptor ameliorate striatal neural survival in Huntington’s disease.Neurodegener. Dis.201515420721810.1159/000375447 25896770
    [Google Scholar]
  96. del ToroD. CanalsJ.M. GinésS. KojimaM. EgeaG. AlberchJ. Mutant huntingtin impairs the post-Golgi trafficking of brain-derived neurotrophic factor but not its Val66Met polymorphism.J. Neurosci.20062649127481275710.1523/JNEUROSCI.3873‑06.2006 17151278
    [Google Scholar]
  97. HerL.S. GoldsteinL.S.B. Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin.J. Neurosci.20082850136621367210.1523/JNEUROSCI.4144‑08.2008 19074039
    [Google Scholar]
  98. NumakawaT. SuzukiS. KumamaruE. AdachiN. RichardsM. KunugiH. BDNF function and intracellular signaling in neurons.Histol. Histopathol.2010252237258 20017110
    [Google Scholar]
  99. MaloneyM.T. WangW. BhowmickS. Failure to thrive: Impaired BDNF transport along the cortical-striatal axis in mouse Q140 neurons of Huntington’s disease.Biology (Basel)202312215710.3390/biology12020157 36829435
    [Google Scholar]
  100. ZhouZ. ZhongS. ZhangR. Functional analysis of brain derived neurotrophic factor (BDNF) in Huntington’s disease.Aging20211346103611410.18632/aging.202603 33631722
    [Google Scholar]
  101. da FonsêcaV.S. da Silva CollaA.R. de Paula Nascimento-CastroC. Brain-derived neurotrophic factor prevents depressive-like behaviors in early-symptomatic YAC128 Huntington’s disease mice.Mol. Neurobiol.20185597201721510.1007/s12035‑018‑0890‑6 29388082
    [Google Scholar]
  102. ConnorB. SunY. von HieberD. TangS.K. JonesK.S. MauckschC. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington’s disease.Gene Ther.201623328329510.1038/gt.2015.113 26704721
    [Google Scholar]
  103. ArreguiL. BenítezJ.A. RazgadoL.F. VergaraP. SegoviaJ. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype.Cell. Mol. Neurobiol.20113181229124310.1007/s10571‑011‑9725‑y 21681558
    [Google Scholar]
  104. KellsA.P. FongD.M. DragunowM. DuringM.J. YoungD. ConnorB. AAV-Mediated gene delivery of BDNF or GDNF is neuroprotective in a model of huntington disease.Mol. Ther.20049568268810.1016/j.ymthe.2004.02.016 15120329
    [Google Scholar]
  105. GiraltA. FriedmanH.C. Caneda-FerrónB. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease.Gene Ther.201017101294130810.1038/gt.2010.71 20463759
    [Google Scholar]
  106. LiangX.S. SunZ.W. ThomasA.M. LiS. Mesenchymal stem cell therapy for Huntington disease: A meta-analysis.Stem Cells Int.20232023110996710.1155/2023/1109967
    [Google Scholar]
  107. DeyN.D. BombardM.C. RolandB.P. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease.Behav. Brain Res.2010214219320010.1016/j.bbr.2010.05.023 20493905
    [Google Scholar]
  108. PollockK. DahlenburgH. NelsonH. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models.Mol. Ther.201624596597710.1038/mt.2016.12 26765769
    [Google Scholar]
  109. OlsonS.D. PollockK. KambalA. Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington’s disease.Mol. Neurobiol.2012451879810.1007/s12035‑011‑8219‑8 22161544
    [Google Scholar]
  110. Pérez-NavarroE. CanudasA.M. ÅkerudP. AlberchJ. ArenasE. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease.J. Neurochem.20007552190219910.1046/j.1471‑4159.2000.0752190.x 11183872
    [Google Scholar]
  111. ZimmermannT. RemmersF. LutzB. LeschikJ. ESC-derived BDNF-overexpressing neural progenitors differentially promote recovery in Huntington’s disease models by enhanced striatal differentiation.Stem Cell Reports20167469370610.1016/j.stemcr.2016.08.018 27693427
    [Google Scholar]
  112. KimH.S. JeonI. NohJ.E. Intracerebral transplantation of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) promotes migration, differentiation and functional recovery in a rodent model of Huntington’s disease.Exp. Neurobiol.202029213013710.5607/en20011 32408403
    [Google Scholar]
  113. GharamiK. XieY. AnJ.J. TonegawaS. XuB. Brain‐derived neurotrophic factor over‐expression in the forebrain ameliorates Huntington’s disease phenotypes in mice.J. Neurochem.2008105236937910.1111/j.1471‑4159.2007.05137.x 18086127
    [Google Scholar]
  114. XieY. HaydenM.R. XuB. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice.J. Neurosci.20103044147081471810.1523/JNEUROSCI.1637‑10.2010 21048129
    [Google Scholar]
  115. SmailS. BahgaD. McDoleB. GuthrieK. Increased olfactory bulb BDNF expression does not rescue deficits in olfactory neurogenesis in the Huntington’s disease R6/2 mouse.Chem. Senses201641322123210.1093/chemse/bjv076 26783111
    [Google Scholar]
  116. GiraltA. CarretónO. Lao-PeregrinC. MartínE.D. AlberchJ. Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction.Mol. Neurodegener.2011617110.1186/1750‑1326‑6‑71 21985529
    [Google Scholar]
  117. LynchG. KramarE.A. RexC.S. Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease.J. Neurosci.200727164424443410.1523/JNEUROSCI.5113‑06.2007 17442827
    [Google Scholar]
  118. MartireA. PepponiR. DomeniciM.R. FerranteA. ChiodiV. PopoliP. BDNF prevents NMDA ‐induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A 2A receptor is involved.J. Neurochem.2013125222523510.1111/jnc.12177 23363456
    [Google Scholar]
  119. Torres-CruzF.M. MendozaE. Vivar-CortésI.C. García-SierraF. Hernández-EcheagarayE. Do BDNF and NT‐4/5 exert synergistic or occlusive effects on corticostriatal transmission in a male mouse model of Huntington’s disease?J. Neurosci. Res.201997121665167710.1002/jnr.24507 31392756
    [Google Scholar]
  120. Van RaamsdonkJ.M. PearsonJ. BaileyC.D.C. Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease.J. Neurochem.200595121022010.1111/j.1471‑4159.2005.03357.x 16181425
    [Google Scholar]
  121. Borrell-PagèsM. CanalsJ.M. CordelièresF.P. Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase.J. Clin. Invest.200611651410142410.1172/JCI27607 16604191
    [Google Scholar]
  122. PengQ. MasudaN. JiangM. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model.Exp. Neurol.2008210115416310.1016/j.expneurol.2007.10.015 18096160
    [Google Scholar]
  123. SimmonsD.A. RexC.S. PalmerL. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice.Proc. Natl. Acad. Sci.2009106124906491110.1073/pnas.0811228106 19264961
    [Google Scholar]
  124. ReinerA. WangH.B. Del MarN. SakataK. YooW. DengY.P. BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington’s disease mice.Brain Res.2012147316117210.1016/j.brainres.2012.07.026 22820300
    [Google Scholar]
  125. WangH. Del MarN. DengY. ReinerA. Rescue of BDNF expression by the thalamic parafascicular nucleus with chronic treatment with the mGluR2/3 agonist LY379268 may contribute to the LY379268 rescue of enkephalinergic striatal projection neurons in R6/2 Huntington’s disease mice.Neurosci. Lett.202176313618010.1016/j.neulet.2021.136180 34416343
    [Google Scholar]
  126. IbrahimH.I. RabieM.A. MohamedR.A. NassarN.N. Adenosine A1 receptor agonist, N6-cyclohexyladenosine, attenuates Huntington’s disease via stimulation of TrKB/PI3K/Akt/CREB/BDNF pathway in 3-nitropropionic acid rat model.Chem. Biol. Interact.202336911028810.1016/j.cbi.2022.110288 36509115
    [Google Scholar]
  127. ZhaoX. ChenX.Q. HanE. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease.Proc. Natl. Acad. Sci.201611338E5655E566410.1073/pnas.1603020113 27601642
    [Google Scholar]
  128. El-ShamarkaM.E.S. El-SaharA.E. SaadM.A. AssafN. SayedR.H. Inosine attenuates 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway.Life Sci.202230012056910.1016/j.lfs.2022.120569 35472453
    [Google Scholar]
  129. Di PardoA. CastaldoS. AmicoE. Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood-brain barrier integrity and exerts therapeutic effect in an animal model of Huntington’s disease.Hum. Mol. Genet.201827142490250110.1093/hmg/ddy153 29688337
    [Google Scholar]
  130. SimmonsD.A. BelichenkoN.P. YangT. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease.J. Neurosci.20133348187121872710.1523/JNEUROSCI.1310‑13.2013 24285878
    [Google Scholar]
  131. JiangM. PengQ. LiuX. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease.Hum. Mol. Genet.201322122462247010.1093/hmg/ddt098 23446639
    [Google Scholar]
  132. ConfortiP. ZuccatoC. GaudenziG. Binding of the repressor complex REST‐ mSIN 3b by small molecules restores neuronal gene transcription in Huntington’s disease models.J. Neurochem.20131271223510.1111/jnc.12348 23800350
    [Google Scholar]
  133. SimmonsD.A. BelichenkoN.P. FordE.C. A small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice.Hum. Mol. Genet.2016252249204938 28171570
    [Google Scholar]
  134. PinedaJ.R. PardoR. ZalaD. YuH. HumbertS. SaudouF. Genetic and pharmacological inhibition of calcineurin corrects the BDNF transport defect in Huntington’s disease.Mol. Brain2009213310.1186/1756‑6606‑2‑33 19860865
    [Google Scholar]
  135. ReickC EllrichmannG TsaiT Expression of brain-derived neurotrophic factor in astrocytes : Beneficial effects of glatiramer 402 Current Neuropharmacology, 2025, Vol. 23, No. 4 Azman and Zakaria acetate in the R6/2 and YAC128 mouse models of Huntington’s disease.Exp Neurol2016285Pt A122310.1016/j.expneurol.2016.08.01227587303
    [Google Scholar]
  136. Corey-BloomJ. AikinA.M. GutierrezA.M. NadhemJ.S. HowellT.L. ThomasE.A. Beneficial effects of glatiramer acetate in Huntington’s disease mouse models: Evidence for BDNF-elevating and immunomodulatory mechanisms.Brain Res.2017167310211010.1016/j.brainres.2017.08.013 28823953
    [Google Scholar]
  137. SayedN.H. FathyN. KortamM.A. RabieM.A. MohamedA.F. KamelA.S. Vildagliptin attenuates Huntington’s disease through activation of GLP-1 receptor/PI3K/Akt/BDNF pathway in 3-nitropropionic acid rat model.Neurotherapeutics202017125226810.1007/s13311‑019‑00805‑5 31728850
    [Google Scholar]
  138. SarojP. BansalY. SinghR. Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington’s disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway.Inflammopharmacology202129249951110.1007/s10787‑020‑00787‑3 33517508
    [Google Scholar]
  139. PatnaikA. SpiombiE. FrascaA. LandsbergerN. ZagrebelskyM. KorteM. Fingolimod modulates dendritic architecture in a BDNF-dependent manner.Int. J. Mol. Sci.2020219307910.3390/ijms21093079 32349283
    [Google Scholar]
  140. Di PardoA. AmicoE. FavellatoM. FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease.Hum. Mol. Genet.20142392251226510.1093/hmg/ddt615 24301680
    [Google Scholar]
  141. MiguezA. GarcíaG. BritoV.I. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation.Hum. Mol. Genet.2014241749584970
    [Google Scholar]
  142. MiguezA. García-Díaz BarrigaG. BritoV. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75 NTR up-regulation and astrocyte-mediated inflammation.Hum. Mol. Genet.201524174958497010.1093/hmg/ddv218 26063761
    [Google Scholar]
  143. HutchinsonA.J. ChouC.L. IsraelD.D. XuW. ReganJ.W. Activation of EP2 prostanoid receptors in human glial cell lines stimulates the secretion of BDNF.Neurochem. Int.200954743944610.1016/j.neuint.2009.01.018 19428786
    [Google Scholar]
  144. Anglada-HuguetM. Vidal-SanchoL. GiraltA. García-Díaz BarrigaG. XifróX. AlberchJ. Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington’s disease by the induction of BDNF-dependent synaptic plasticity.Neurobiol. Dis.201695223410.1016/j.nbd.2015.09.001 26369879
    [Google Scholar]
  145. EddingsC.R. ArbezN. AkimovS. GevaM. HaydenM.R. RossC.A. Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor.Neurobiol. Dis.201912911812910.1016/j.nbd.2019.05.009 31108174
    [Google Scholar]
  146. FrancardoV. BezF. WielochT. NissbrandtH. RuscherK. CenciM.A. Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism.Brain201413771998201410.1093/brain/awu107 24755275
    [Google Scholar]
  147. IonescuA. GradusT. AltmanT. Targeting the sigma-1 receptor via pridopidine ameliorates central features of ALS pathology in a SOD1G93A model.Cell Death Dis.201910321010.1038/s41419‑019‑1451‑2 30824685
    [Google Scholar]
  148. NaiaL. LyP. MotaS.I. The sigma-1 receptor mediates pridopidine rescue of mitochondrial function in Huntington disease models.Neurotherapeutics20211821017103810.1007/s13311‑021‑01022‑9 33797036
    [Google Scholar]
  149. RyskampD WuJ GevaM The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease.Neurobiol Dis201797Pt A465910.1016/j.nbd.2016.10.00627818324
    [Google Scholar]
  150. RyskampD. WuL. WuJ. Pridopidine stabilizes mushroom spines in mouse models of Alzheimer’s disease by acting on the sigma-1 receptor.Neurobiol. Dis.201912448950410.1016/j.nbd.2018.12.022 30594810
    [Google Scholar]
  151. GevaM. KuskoR. SoaresH. Pridopidine activates neuroprotective pathways impaired in Huntington disease.Hum. Mol. Genet.201625183975398710.1093/hmg/ddw238 27466197
    [Google Scholar]
  152. SquitieriF. Di PardoA. FavellatoM. AmicoE. MaglioneV. FratiL. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model.J. Cell. Mol. Med.201519112540254810.1111/jcmm.12604 26094900
    [Google Scholar]
  153. LenoirS. LahayeR.A. VitetH. Pridopidine rescues BDNF/TrkB trafficking dynamics and synapse homeostasis in a Huntington disease brain-on-a-chip model.Neurobiol. Dis.202217310585710.1016/j.nbd.2022.105857 36075537
    [Google Scholar]
  154. TassetI. Sánchez-LópezF. AgüeraE. NGF and nitrosative stress in patients with Huntington’s disease.J. Neurol. Sci.20123151-213313610.1016/j.jns.2011.12.014 22251933
    [Google Scholar]
  155. CalabreseV. ColombritaC. GuaglianoE. Protective effect of carnosine during nitrosative stress in astroglial cell cultures.Neurochem. Res.2005306-779780710.1007/s11064‑005‑6874‑8 16187215
    [Google Scholar]
  156. MancusoC. CaponeC. RanieriS.C. Bilirubin as an endogenous modulator of neurotrophin redox signaling.J. Neurosci. Res.200886102235224910.1002/jnr.21665 18338802
    [Google Scholar]
  157. TucciP. LattanziR. SeveriniC. SasoL. Nrf2 pathway in huntington’s disease (hd): What is its role?Int. J. Mol. Sci.202223231527210.3390/ijms232315272 36499596
    [Google Scholar]
  158. Di RosaG. BrunettiG. ScutoM. Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models.Int. J. Mol. Sci.20202111389310.3390/ijms21113893 32486023
    [Google Scholar]
  159. CatinoS. PacielloF. MiceliF. Ferulic acid regulates the Nrf2/heme oxygenase-1 system and counteracts trimethyltin-induced neuronal damage in the human neuroblastoma cell line SH-SY5Y.Front. Pharmacol.2016630510.3389/fphar.2015.00305 26779023
    [Google Scholar]
  160. MorettiD. TamboneS. CerretaniM. NRF2 activation by reversible KEAP1 binding induces the antioxidant response in primary neurons and astrocytes of a Huntington’s disease mouse model.Free Radic. Biol. Med.202116224325410.1016/j.freeradbiomed.2020.10.022 33096251
    [Google Scholar]
  161. IbrahimW.W. Abdel RasheedN.O. Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington’s disease model in rats: emphasis on Sirt1/Nrf2 signaling pathway.Inflammopharmacology20223051745175810.1007/s10787‑022‑01004‑z 35639233
    [Google Scholar]
  162. GendyA.M. SoubhA. ElnagarM.R. New insights into the role of berberine against 3-nitropropionic acid-induced striatal neurotoxicity: Possible role of BDNF-TrkB-PI3K/Akt and NF-κB signaling.Food Chem. Toxicol.202317511372110.1016/j.fct.2023.113721 36907500
    [Google Scholar]
  163. MohamedO.E. AbdallahD.M. FayezA.M. MohamedR.A. El-AbharH.S. Morin post-treatment surpassed calpeptin in ameliorating] 3-NP-induced cortical neurotoxicity via modulation of glutamate/calpain axis, Kidins220, and BDNF/TrkB/AKT/CREB trajectory.Int. Immunopharmacol.202311610977110.1016/j.intimp.2023.109771 36736222
    [Google Scholar]
  164. García-Díaz BarrigaG. GiraltA. Anglada-HuguetM. 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington’s disease mouse model through specific activation of the PLCγ1 pathway.Hum. Mol. Genet.201726163144316010.1093/hmg/ddx198 28541476
    [Google Scholar]
  165. HathornT. Snyder-KellerA. MesserA. Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington’s disease.Neurobiol. Dis.2011411435010.1016/j.nbd.2010.08.017 20736066
    [Google Scholar]
  166. van DellenA. BlakemoreC. DeaconR. YorkD. HannanA.J. Delaying the onset of Huntington’s in mice.Nature2000404677972172210.1038/35008142 10783874
    [Google Scholar]
  167. HocklyE. CorderyP.M. WoodmanB. Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice.Ann. Neurol.200251223524210.1002/ana.10094 11835380
    [Google Scholar]
  168. SchillingG. SavonenkoA.V. CoonfieldM.L. Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice.Exp. Neurol.2004187113714910.1016/j.expneurol.2004.01.003 15081595
    [Google Scholar]
  169. SpiresT.L. GroteH.E. VarshneyN.K. Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism.J. Neurosci.20042492270227610.1523/JNEUROSCI.1658‑03.2004 14999077
    [Google Scholar]
  170. SullivanF.R. BirdE.D. AlpayM. ChaJ.H.J. Remotivation therapy and Huntington’s disease.J. Neurosci. Nurs.200133313614210.1097/01376517‑200106000‑00005 11413658
    [Google Scholar]
  171. ZajacM.S. PangT.Y.C. WongN. Wheel running and environmental enrichment differentially modify exon‐specific BDNF expression in the hippocampus of wild‐type and pre‐motor symptomatic male and female Huntington’s disease mice.Hippocampus201020562163610.1002/hipo.20658 19499586
    [Google Scholar]
  172. PangT.Y.C. StamN.C. NithianantharajahJ. HowardM.L. HannanA.J. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice.Neuroscience2006141256958410.1016/j.neuroscience.2006.04.013 16716524
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240530105516
Loading
/content/journals/cn/10.2174/1570159X22666240530105516
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BDNF; Huntington’s disease; neurodegeneration; neurotrophin; striatal neurons; striatum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test