Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Besides controlling several organellar functions, lysosomal channels also guide the catabolic “self-eating” process named autophagy, which is mainly involved in protein and organelle quality control. Neuronal cells are particularly sensitive to the rate of autophagic flux either under physiological conditions or during the degenerative process. Accordingly, neurodegeneration occurring in Parkinson’s (PD), Alzheimer’s (AD), and Huntington's Diseases (HD), and Amyotrophic Lateral Sclerosis (ALS) as well as Lysosomal Storage Diseases (LSD) is partially due to defective autophagy and accumulation of toxic aggregates. In this regard, dysfunction of lysosomal ionic homeostasis has been identified as a putative cause of aberrant autophagy. From a therapeutic perspective, Transient Receptor Potential Channel Mucolipin 1 (TRPML1) and Two-Pore Channel isoform 2 (TPC2), regulating lysosomal homeostasis, are now considered promising druggable targets in neurodegenerative diseases. Compelling evidence suggests that pharmacological modulation of TRPML1 and TPC2 may rescue the pathological phenotype associated with autophagy dysfunction in AD, PD, HD, ALS, and LSD. Although pharmacological repurposing has identified several already used drugs with the ability to modulate TPC2, and several tools are already available for the modulation of TRPML1, many efforts are necessary to design and test new entities with much higher specificity in order to reduce dysfunctional autophagy during neurodegeneration.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240517101846
2024-05-17
2025-03-30
Loading full text...

Full text loading...

References

  1. LevineB. KroemerG. Biological functions of autophagy genes: A disease perspective.Cell20191761-2114210.1016/j.cell.2018.09.048 30633901
    [Google Scholar]
  2. MizushimaN. LevineB. CuervoA.M. KlionskyD.J. Autophagy fights disease through cellular self-digestion.Nature200845171821069107510.1038/nature06639 18305538
    [Google Scholar]
  3. MenziesF.M. FlemingA. CaricasoleA. BentoC.F. AndrewsS.P. AshkenaziA. FüllgrabeJ. JacksonA. Jimenez SanchezM. KarabiyikC. LicitraF. Lopez RamirezA. PavelM. PuriC. RennaM. RickettsT. SchlotawaL. VicinanzaM. WonH. ZhuY. SkidmoreJ. RubinszteinD.C. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities.Neuron20179351015103410.1016/j.neuron.2017.01.022 28279350
    [Google Scholar]
  4. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a028035 28062563
    [Google Scholar]
  5. GanL. CooksonM.R. PetrucelliL. La SpadaA.R. Converging pathways in neurodegeneration, from genetics to mechanisms.Nat. Neurosci.201821101300130910.1038/s41593‑018‑0237‑7 30258237
    [Google Scholar]
  6. BakerM. MackenzieI.R. Pickering-BrownS.M. GassJ. RademakersR. LindholmC. SnowdenJ. AdamsonJ. SadovnickA.D. RollinsonS. CannonA. DwoshE. NearyD. MelquistS. RichardsonA. DicksonD. BergerZ. EriksenJ. RobinsonT. ZehrC. DickeyC.A. CrookR. McGowanE. MannD. BoeveB. FeldmanH. HuttonM. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17.Nature2006442710591691910.1038/nature05016 16862116
    [Google Scholar]
  7. Van DeerlinV.M. SleimanP.M.A. Martinez-LageM. Chen-PlotkinA. WangL.S. Graff-RadfordN.R. DicksonD.W. RademakersR. BoeveB.F. GrossmanM. ArnoldS.E. MannD.M.A. Pickering-BrownS.M. SeelaarH. HeutinkP. van SwietenJ.C. MurrellJ.R. GhettiB. SpinaS. GrafmanJ. HodgesJ. SpillantiniM.G. GilmanS. LiebermanA.P. KayeJ.A. WoltjerR.L. BigioE.H. MesulamM. al-SarrajS. TroakesC. RosenbergR.N. WhiteC.L.III FerrerI. LladóA. NeumannM. KretzschmarH.A. HuletteC.M. Welsh-BohmerK.A. MillerB.L. AlzualdeA. de MunainA.L. McKeeA.C. GearingM. LeveyA.I. LahJ.J. HardyJ. RohrerJ.D. LashleyT. MackenzieI.R.A. FeldmanH.H. HamiltonR.L. DekoskyS.T. van der ZeeJ. Kumar-SinghS. Van BroeckhovenC. MayeuxR. VonsattelJ.P.G. TroncosoJ.C. KrilJ.J. KwokJ.B.J. HallidayG.M. BirdT.D. InceP.G. ShawP.J. CairnsN.J. MorrisJ.C. McLeanC.A. DeCarliC. EllisW.G. FreemanS.H. FroschM.P. GrowdonJ.H. PerlD.P. SanoM. BennettD.A. SchneiderJ.A. BeachT.G. ReimanE.M. WoodruffB.K. CummingsJ. VintersH.V. MillerC.A. ChuiH.C. AlafuzoffI. HartikainenP. SeilheanD. GalaskoD. MasliahE. CotmanC.W. TuñónM.T. MartínezM.C.C. MunozD.G. CarrollS.L. MarsonD. RiedererP.F. BogdanovicN. SchellenbergG.D. HakonarsonH. TrojanowskiJ.Q. LeeV.M.Y. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions.Nat. Genet.201042323423910.1038/ng.536 20154673
    [Google Scholar]
  8. BellouE. Stevenson-HoareJ. Escott-PriceV. Polygenic risk and pleiotropy in neurodegenerative diseases.Neurobiol. Dis.202014210495310.1016/j.nbd.2020.104953 32445791
    [Google Scholar]
  9. WangC. TelpoukhovskaiaM.A. BahrB.A. ChenX. GanL. Endo-lysosomal dysfunction: A converging mechanism in neurodegenerative diseases.Curr. Opin. Neurobiol.201848525810.1016/j.conb.2017.09.005 29028540
    [Google Scholar]
  10. WainbergM. AndrewsS.J. TripathyS.J. Shared genetic risk loci between Alzheimer’s disease and related dementias, Parkinson’s disease, and amyotrophic lateral sclerosis.Alzheimers Res. Ther.202315111310.1186/s13195‑023‑01244‑3 37328865
    [Google Scholar]
  11. Martínez-GarcíaG.G. MariñoG. Autophagy role in environmental pollutants exposure.Prog. Mol. Biol. Transl. Sci.202017225729110.1016/bs.pmbts.2020.02.003 32620245
    [Google Scholar]
  12. WeiM. BaoG. LiS. YangZ. ChengC. LeW. PM2.5 exposure triggers cell death through lysosomal membrane permeabilization and leads to ferroptosis insensitivity via the autophagy dysfunction/p62-KEAP1-NRF2 activation in neuronal cells.Ecotoxicol. Environ. Saf.202224811433310.1016/j.ecoenv.2022.114333 36446170
    [Google Scholar]
  13. SapienzaS. TedeschiV. ApicellaB. PalestraF. RussoC. PiccialliI. PannaccioneA. LoffredoS. SecondoA. Size-based effects of anthropogenic ultrafine particles on lysosomal TRPML1 channel and autophagy in motoneuron-like cells.Int. J. Mol. Sci.202223211304110.3390/ijms232113041 36361823
    [Google Scholar]
  14. CotterK. StranskyL. McGuireC. ForgacM. Recent insights into the structure, regulation, and function of the V-ATPases.Trends Biochem. Sci.2015401061162210.1016/j.tibs.2015.08.005 26410601
    [Google Scholar]
  15. QinA. ChengT.S. PavlosN.J. LinZ. DaiK.R. ZhengM.H. V-ATPases in osteoclasts: Structure, function and potential inhibitors of bone resorption.Int. J. Biochem. Cell Biol.20124491422143510.1016/j.biocel.2012.05.014 22652318
    [Google Scholar]
  16. BrownD. PaunescuT.G. BretonS. MarshanskyV. Regulation of the V-ATPase in kidney epithelial cells: Dual role in acid–base homeostasis and vesicle trafficking.J. Exp. Biol.2009212111762177210.1242/jeb.028803 19448085
    [Google Scholar]
  17. StranskyL. CotterK. ForgacM. The function of V-ATPases in cancer.Physiol. Rev.20169631071109110.1152/physrev.00035.2015 27335445
    [Google Scholar]
  18. SchreckerM. KorobenkoJ. HiteR.K. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1.eLife20209e5955510.7554/eLife.59555 32749217
    [Google Scholar]
  19. CaoQ. ZhongX.Z. ZouY. ZhangZ. ToroL. DongX.P. BK channels alleviate lysosomal storage diseases by providing positive feedback regulation of lysosomal Ca2+ release.Dev. Cell201533442744110.1016/j.devcel.2015.04.010 25982675
    [Google Scholar]
  20. XiongJ. ZhuM.X. Regulation of lysosomal ion homeostasis by channels and transporters.Sci. China Life Sci.201659877779110.1007/s11427‑016‑5090‑x 27430889
    [Google Scholar]
  21. ZhongX.Z. SunX. CaoQ. DongG. SchiffmannR. DongX.P. BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases.Sci. Rep.2016613368410.1038/srep33684 27670435
    [Google Scholar]
  22. StereaA.M. AlmasiS. El HianiY. The hidden potential of lysosomal ion channels: A new era of oncogenes.Cell Calcium2018729110310.1016/j.ceca.2018.02.006 29748137
    [Google Scholar]
  23. WangY. ZengW. LinB. YaoY. LiC. HuW. WuH. HuangJ. ZhangM. XueT. RenD. QuL. CangC. CLN7 is an organellar chloride channel regulating lysosomal function.Sci. Adv.2021751eabj960810.1126/sciadv.abj9608 34910516
    [Google Scholar]
  24. MedinaD.L. Di PaolaS. PelusoI. ArmaniA. De StefaniD. VendittiR. MontefuscoS. Scotto-RosatoA. PreziosoC. ForresterA. SettembreC. WangW. GaoQ. XuH. SandriM. RizzutoR. De MatteisM.A. BallabioA. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB.Nat. Cell Biol.201517328829910.1038/ncb3114 25720963
    [Google Scholar]
  25. CaoQ. YangY. ZhongX.Z. DongX.P. The lysosomal Ca2+ release channel TRPML1 regulates lysosome size by activating calmodulin.J. Biol. Chem.2017292208424843510.1074/jbc.M116.772160 28360104
    [Google Scholar]
  26. LiY. SchönC. ChenC.C. YangZ. LieglR. MurenuE. SchwormB. KlugbauerN. GrimmC. Wahl-SchottC. MichalakisS. BielM. TPC2 promotes choroidal angiogenesis and inflammation in a mouse model of neovascular age-related macular degeneration.Life Sci. Alliance202148e20210104710.26508/lsa.202101047 34183443
    [Google Scholar]
  27. MartucciL.L. LaunayJ.M. KawakamiN. SicardC. DesvignesN. Dakouane-GiudicelliM. SpixB. TêtuM. GilmaireF.O. PaulcanS. CallebertJ. VaillendC. BracherF. GrimmC. FossierP. de la PorteS. SakamotoH. MorrisJ. GalioneA. GranonS. CancelaJ.M. Endolysosomal TPCs regulate social behavior by controlling oxytocin secretion.Proc. Natl. Acad. Sci.20231207e221368212010.1073/pnas.2213682120 36745816
    [Google Scholar]
  28. SteingrímssonE. CopelandN.G. JenkinsN.A. Melanocytes and the microphthalmia transcription factor network.Annu. Rev. Genet.200438136541110.1146/annurev.genet.38.072902.092717 15568981
    [Google Scholar]
  29. SardielloM. PalmieriM. di RonzaA. MedinaD.L. ValenzaM. GennarinoV.A. Di MaltaC. DonaudyF. EmbrioneV. PolishchukR.S. BanfiS. ParentiG. CattaneoE. BallabioA. A gene network regulating lysosomal biogenesis and function.Science2009325593947347710.1126/science.1174447 19556463
    [Google Scholar]
  30. SettembreC. Di MaltaC. PolitoV.A. ArencibiaM.G. VetriniF. ErdinS. ErdinS.U. HuynhT. MedinaD. ColellaP. SardielloM. RubinszteinD.C. BallabioA. TFEB links autophagy to lysosomal biogenesis.Science201133260361429143310.1126/science.1204592 21617040
    [Google Scholar]
  31. PalmieriM. ImpeyS. KangH. di RonzaA. PelzC. SardielloM. BallabioA. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways.Hum. Mol. Genet.201120193852386610.1093/hmg/ddr306 21752829
    [Google Scholar]
  32. MedinaD.L. FraldiA. BoucheV. AnnunziataF. MansuetoG. SpampanatoC. PuriC. PignataA. MartinaJ.A. SardielloM. PalmieriM. PolishchukR. PuertollanoR. BallabioA. Transcriptional activation of lysosomal exocytosis promotes cellular clearance.Dev. Cell201121342143010.1016/j.devcel.2011.07.016 21889421
    [Google Scholar]
  33. SharmaJ. di RonzaA. LotfiP. SardielloM. Lysosomes and brain health.Annu. Rev. Neurosci.201841125527610.1146/annurev‑neuro‑080317‑061804 29661037
    [Google Scholar]
  34. NapolitanoG. BallabioA. TFEB at a glance.J. Cell Sci.201612913jcs.14636510.1242/jcs.14636527252382
    [Google Scholar]
  35. MedinaD.L. BallabioA. Lysosomal calcium regulates autophagy.Autophagy201511697097110.1080/15548627.2015.1047130 26000950
    [Google Scholar]
  36. Curcio-MorelliC. CharlesF.A. MicsenyiM.C. CaoY. VenugopalB. BrowningM.F. DobrenisK. CotmanS.L. WalkleyS.U. SlaugenhauptS.A. Macroautophagy is defective in mucolipin-1-deficient mouse neurons.Neurobiol. Dis.201040237037710.1016/j.nbd.2010.06.010 20600908
    [Google Scholar]
  37. WongC.O. LiR. MontellC. VenkatachalamK. Drosophila TRPML is required for TORC1 activation.Curr. Biol.201222171616162110.1016/j.cub.2012.06.055 22863314
    [Google Scholar]
  38. Scotto RosatoA. MontefuscoS. SoldatiC. Di PaolaS. CapuozzoA. MonfregolaJ. PolishchukE. AmabileA. GrimmC. LombardoA. De MatteisM.A. BallabioA. MedinaD.L. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway.Nat. Commun.2019101563010.1038/s41467‑019‑13572‑w 31822666
    [Google Scholar]
  39. SoyomboA.A. Tjon-Kon-SangS. RbaibiY. BashllariE. BiscegliaJ. MuallemS. KiselyovK. TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity.J. Biol. Chem.2006281117294730110.1074/jbc.M508211200 16361256
    [Google Scholar]
  40. WangH. WangR. XuS. LakshmanaM.K. Transcription factor EB is selectively reduced in the nuclear fractions of Alzheimer’s and amyotrophic lateral sclerosis brains.Neurosci. J.201620161810.1155/2016/4732837 27433468
    [Google Scholar]
  41. BargalR. AvidanN. OlenderT. Ben AsherE. ZeiglerM. Raas-RothschildA. FrumkinA. Ben-YosephO. FriedlenderY. LancetD. BachG. Mucolipidosis type IV: NovelMCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population.Hum. Mutat.200117539740210.1002/humu.1115 11317355
    [Google Scholar]
  42. BermanE.R. LivniN. ShapiraE. MerinS. LevijI.S. Congenital corneal clouding with abnormal systemic storage bodies: A new variant of mucolipidosis.J. Pediatr.197484451952610.1016/S0022‑3476(74)80671‑2 4365943
    [Google Scholar]
  43. FreiK.P. PatronasN.J. CrutchfieldK.E. AltarescuG. SchiffmannR. Mucolipidosis type IV.Neurology199851256556910.1212/WNL.51.2.565 9710036
    [Google Scholar]
  44. BassiM.T. ManzoniM. MontiE. PizzoM.T. BallabioA. BorsaniG. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV.Am. J. Hum. Genet.20006751110112010.1016/S0002‑9297(07)62941‑3 11013137
    [Google Scholar]
  45. VenkatachalamK. WongC.O. ZhuM.X. The role of TRPMLs in endolysosomal trafficking and function.Cell Calcium2015581485610.1016/j.ceca.2014.10.008 25465891
    [Google Scholar]
  46. DongX.P. ChengX. MillsE. DellingM. WangF. KurzT. XuH. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel.Nature2008455721599299610.1038/nature07311 18794901
    [Google Scholar]
  47. BachG. ZeeviD.A. FrumkinA. Kogot-LevinA. Mucolipidosis type IV and the mucolipins.Biochem. Soc. Trans.20103861432143510.1042/BST0381432 21118102
    [Google Scholar]
  48. Lloyd-EvansE. PlattF.M. Lysosomal Ca2+ homeostasis: Role in pathogenesis of lysosomal storage diseases.Cell Calcium201150220020510.1016/j.ceca.2011.03.010 21724254
    [Google Scholar]
  49. ShenD. WangX. LiX. ZhangX. YaoZ. DibbleS. DongX. YuT. LiebermanA.P. ShowalterH.D. XuH. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.Nat. Commun.20123173110.1038/ncomms1735 22415822
    [Google Scholar]
  50. WangW. GaoQ. YangM. ZhangX. YuL. LawasM. LiX. Bryant-GenevierM. SouthallN.T. MaruganJ. FerrerM. XuH. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation.Proc. Natl. Acad. Sci.201511211E1373E138110.1073/pnas.1419669112 25733853
    [Google Scholar]
  51. MillerA. SchaferJ. UpchurchC. SpoonerE. HuynhJ. HernandezS. McLaughlinB. OdenL. FaresH. Mucolipidosis type IV protein TRPML1-dependent lysosome formation.Traffic201516328429710.1111/tra.12249 25491304
    [Google Scholar]
  52. ChowC.Y. LandersJ.E. BergrenS.K. SappP.C. GrantA.E. JonesJ.M. EverettL. LenkG.M. McKenna-YasekD.M. WeismanL.S. FiglewiczD. BrownR.H. MeislerM.H. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS.Am. J. Hum. Genet.2009841858810.1016/j.ajhg.2008.12.010 19118816
    [Google Scholar]
  53. ZouJ. HuB. ArpagS. YanQ. HamiltonA. ZengY.S. VanoyeC.G. LiJ. Reactivation of lysosomal Ca 2+ efflux rescues abnormal lysosomal storage in FIG4-deficient cells.J. Neurosci.201535176801681210.1523/JNEUROSCI.4442‑14.2015 25926456
    [Google Scholar]
  54. TedeschiV. PetrozzielloT. SisalliM.J. BosciaF. CanzonieroL.M.T. SecondoA. The activation of Mucolipin TRP channel 1 (TRPML1) protects motor neurons from L-BMAA neurotoxicity by promoting autophagic clearance.Sci. Rep.2019911074310.1038/s41598‑019‑46708‑5 31341250
    [Google Scholar]
  55. DecressacM. MattssonB. WeikopP. LundbladM. JakobssonJ. BjörklundA. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity.Proc. Natl. Acad. Sci.201311019E1817E182610.1073/pnas.1305623110 23610405
    [Google Scholar]
  56. TsunemiT. Perez-RoselloT. IshiguroY. YoroisakaA. JeonS. HamadaK. RammonhanM. WongY.C. XieZ. AkamatsuW. MazzulliJ.R. SurmeierD.J. HattoriN. KraincD. Increased lysosomal exocytosis induced by lysosomal Ca 2+ channel agonists protects human dopaminergic neurons from α-synuclein toxicity.J. Neurosci.201939295760577210.1523/JNEUROSCI.3085‑18.2019 31097622
    [Google Scholar]
  57. WuL.K. AgarwalS. KuoC.H. KungY.L. DayC.H. LinP.Y. LinS.Z. HsiehD.J.Y. HuangC.Y. ChiangC.Y. Artemisia Leaf Extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson’s disease.Phytomedicine202210415425010.1016/j.phymed.2022.154250 35752074
    [Google Scholar]
  58. YuanJ. LiuH. ZhangH. WangT. ZhengQ. LiZ. Controlled activation of TRPV1 channels on microglia to boost their Autophagy for clearance of alpha‐synuclein and enhance therapy of parkinson’s disease.Adv. Mater.20223411210843510.1002/adma.202108435 35023596
    [Google Scholar]
  59. BjørkøyG. LamarkT. BrechA. OutzenH. PeranderM. ØvervatnA. StenmarkH. JohansenT. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.J. Cell Biol.2005171460361410.1083/jcb.200507002 16286508
    [Google Scholar]
  60. ScrivoA. BourdenxM. PampliegaO. CuervoA.M. Selective autophagy as a potential therapeutic target for neurodegenerative disorders.Lancet Neurol.201817980281510.1016/S1474‑4422(18)30238‑2 30129476
    [Google Scholar]
  61. AshkenaziA. BentoC.F. RickettsT. VicinanzaM. SiddiqiF. PavelM. SquitieriF. HardenbergM.C. ImarisioS. MenziesF.M. RubinszteinD.C. Polyglutamine tracts regulate beclin 1-dependent autophagy.Nature2017545765210811110.1038/nature22078 28445460
    [Google Scholar]
  62. ZhangL. FangY. ChengX. LianY. XuH. ZengZ. ZhuH. TRPML1 participates in the progression of Alzheimer’s disease by regulating the PPARγ/AMPK/Mtor signalling pathway.Cell. Physiol. Biochem.20174362446245610.1159/000484449 29131026
    [Google Scholar]
  63. BaeM. PatelN. XuH. LeeM. Tominaga-YamanakaK. NathA. GeigerJ. GorospeM. MattsonM.P. HaugheyN.J. Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection.J. Neurosci.20143434114851150310.1523/JNEUROSCI.0210‑14.2014 25143627
    [Google Scholar]
  64. HuiL. SolimanM.L. GeigerN.H. MillerN.M. AfghahZ. LakpaK.L. ChenX. GeigerJ.D. Acidifying endolysosomes prevented low-density lipoprotein-induced amyloidogenesis.J. Alzheimers Dis.201967139341010.3233/JAD‑180941 30594929
    [Google Scholar]
  65. SomogyiA. KirkhamE.D. Lloyd-EvansE. WinstonJ. AllenN.D. MackrillJ.J. AndersonK.E. HawkinsP.T. GardinerS.E. Waller-EvansH. SimsR. BolandB. O’NeillC. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system.J. Cell Sci.20231366jcs25987510.1242/jcs.259875 36825945
    [Google Scholar]
  66. XuH. RenD. Lysosomal physiology.Annu. Rev. Physiol.2015771578010.1146/annurev‑physiol‑021014‑071649 25668017
    [Google Scholar]
  67. GuoJ. ZengW. JiangY. Tuning the ion selectivity of two-pore channels.Proc. Natl. Acad. Sci.201711451009101410.1073/pnas.1616191114 28096396
    [Google Scholar]
  68. Scotto RosatoA. KrogsaeterE.K. JaślanD. AbrahamianC. MontefuscoS. SoldatiC. SpixB. PizzoM.T. GriecoG. BöckJ. WyattA. WünkhausD. PassonM. StieglitzM. KellerM. HermeyG. MarkmannS. Gruber-SchoffneggerD. CotmanS. JohannesL. CrusiusD. BoehmU. Wahl-SchottC. BielM. BracherF. De LeonibusE. PolishchukE. MedinaD.L. PaquetD. GrimmC. TPC2 rescues lysosomal storage in mucolipidosis type IV, NIEMANN-PICK type C1, and Batten disease.EMBO Mol. Med.2022149e1537710.15252/emmm.202115377 35929194
    [Google Scholar]
  69. Prat CastroS. KudrinaV. JaślanD. BöckJ. Scotto RosatoA. GrimmC. Neurodegenerative lysosomal storage disorders: TPC2 comes to the rescue!Cells20221118280710.3390/cells11182807 36139381
    [Google Scholar]
  70. KrogsaeterE. RosatoA.S. GrimmC. TRPMLs and TPCs: Targets for lysosomal storage and neurodegenerative disease therapy?Cell Calcium202210310255310.1016/j.ceca.2022.102553 35144097
    [Google Scholar]
  71. TongB.C.K. WuA.J. HuangA.S. DongR. MalampatiS. IyaswamyA. KrishnamoorthiS. SreenivasmurthyS.G. ZhuZ. SuC. LiuJ. SongJ. LuJ.H. TanJ. PanW. LiM. CheungK.H. Lysosomal TPCN (two pore segment channel) inhibition ameliorates beta-amyloid pathology and mitigates memory impairment in Alzheimer disease.Autophagy202218362464210.1080/15548627.2021.1945220 34313551
    [Google Scholar]
  72. TongB.C.K. HuangA.S. WuA.J. IyaswamyA. HoO.K.Y. KongA.H.Y. SreenivasmurthyS.G. ZhuZ. SuC. LiuJ. SongJ. LiM. CheungK.H. Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies.J. Biomed. Sci.20222918510.1186/s12929‑022‑00871‑6 36273169
    [Google Scholar]
  73. HockeyL.N. KilpatrickB.S. EdenE.R. Lin-MoshierY. BrailoiuG.C. BrailoiuE. FutterC.E. SchapiraA.H. MarchantJ.S. PatelS. Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel 2 inhibition.J. Cell Sci.20141282jcs.16415210.1242/jcs.16415225416817
    [Google Scholar]
  74. KilpatrickB.S. Connecting Ca2+ and lysosomes to Parkinson disease.Messenger201651768610.1166/msr.2016.1059 28529829
    [Google Scholar]
  75. LiuY. LevineB. Autosis and autophagic cell death: the dark side of autophagy.Cell Death Differ.201522336737610.1038/cdd.2014.143 25257169
    [Google Scholar]
  76. KimK.A. ShinD. KimJ.H. ShinY.J. RajanikantG.K. MajidA. BaekS.H. BaeO.N. Role of autophagy in endothelial damage and blood-brain barrier disruption in ischemic stroke.Stroke20184961571157910.1161/STROKEAHA.117.017287 29724893
    [Google Scholar]
  77. WeiN. YuS.P. GuX.H. ChenD.D. WhalinM.K. XuG.L. LiuX.F. WeiL. The involvement of autophagy pathway in exaggerated ischemic brain damage in diabetic mice.CNS Neurosci. Ther.2013191075376310.1111/cns.12123 23731488
    [Google Scholar]
  78. TedeschiV. VinciguerraA. SisalliM.J. PignataroG. SecondoA. Pharmacological inhibition of lysosomal two-pore channel 2 (TPC2) confers neuroprotection in stroke via autophagy regulation.Neurobiol. Dis.202317810602010.1016/j.nbd.2023.106020 36708960
    [Google Scholar]
  79. ZhangX. ChenW. LiP. CalvoR. SouthallN. HuX. Bryant-GenevierM. FengX. GengQ. GaoC. YangM. TangK. FerrerM. MaruganJ.J. XuH. Agonist-specific voltage-dependent gating of lysosomal two-pore Na+ channels.eLife20198e5142310.7554/eLife.51423 31825310
    [Google Scholar]
  80. PennyC.J. VassilevaK. JhaA. YuanY. CheeX. YatesE. MazzonM. KilpatrickB.S. MuallemS. MarshM. RahmanT. PatelS. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers.Biochim. Biophys. Acta Mol. Cell Res.2019186671151116110.1016/j.bbamcr.2018.10.022 30408544
    [Google Scholar]
  81. de ZelicourtA. FayssoilA. MansartA. ZarroukiF. KarouiA. PiquereauJ. LefebvreF. GerbaudP. MikaD. Dakouane-GiudicelliM. LanchecE. FengM. LeblaisV. BobeR. LaunayJ.M. GalioneA. GomezA.M. de la PorteS. CancelaJ.M. Two-pore channels (TPCs) acts as a hub for excitation-contraction coupling, metabolism and cardiac hypertrophy signalling.Cell Calcium202310283910.1016/j.ceca.2023.102839 38134531
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240517101846
Loading
/content/journals/cn/10.2174/1570159X22666240517101846
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AD; ALS; autophagy; HD; LSD; Lysosomal channels; neurodegenerative diseases; PD; TFEB; TPC2; TRPML1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test