Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through post-translational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X21666230808111908
2024-01-01
2025-01-11
Loading full text...

Full text loading...

References

  1. Institute of Medicine (US) Committee on Advancing Pain Research, Care, and EducationRelieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and ResearchNational Academies Press (US): Washington (DC)2011
    [Google Scholar]
  2. KehletH. JensenT.S. WoolfC.J. Persistent postsurgical pain: Risk factors and prevention.Lancet200636795221618162510.1016/S0140‑6736(06)68700‑X16698416
    [Google Scholar]
  3. BasbaumA.I. BautistaD.M. ScherrerG. JuliusD. Cellular and molecular mechanisms of pain.Cell2009139226728410.1016/j.cell.2009.09.02819837031
    [Google Scholar]
  4. ReichlingD.B. GreenP.G. LevineJ.D. The fundamental unit of pain is the cell.Pain2013154Suppl. 1S2S910.1016/j.pain.2013.05.037
    [Google Scholar]
  5. GuanZ. HellmanJ. SchumacherM. Contemporary views on inflammatory pain mechanisms: Trping over innate and microglial pathways.F1000 Res.20165242510.12688/f1000research.8710.127781082
    [Google Scholar]
  6. ApkarianA.V. BushnellM.C. TreedeR.D. ZubietaJ.K. Human brain mechanisms of pain perception and regulation in health and disease.Eur. J. Pain20059446348410.1016/j.ejpain.2004.11.00115979027
    [Google Scholar]
  7. DworkinR.H. TurkD.C. BaschE. BergerA. CleelandC. FarrarJ.T. HaythornthwaiteJ.A. JensenM.P. KernsR.D. MarkmanJ. PorterL. RajaS.N. RossE. ToddK. WallaceM. WoolfC.J. Considerations for extrapolating evidence of acute and chronic pain analgesic efficacy.Pain201115281705170810.1016/j.pain.2011.02.02621396781
    [Google Scholar]
  8. De FeliceM. SanojaR. WangR. Vera-PortocarreroL. OyarzoJ. KingT. OssipovM.H. VanderahT.W. LaiJ. DussorG.O. FieldsH.L. PriceT.J. PorrecaF. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain.Pain2011152122701270910.1016/j.pain.2011.06.00821745713
    [Google Scholar]
  9. PiomelliD. SassoO. Peripheral gating of pain signals by endogenous lipid mediators.Nat. Neurosci.201417216417410.1038/nn.361224473264
    [Google Scholar]
  10. SextonJ.E. VernonJ. WoodJ.N. TRPs and Pain.Handb. Exp. Pharmacol.201422387389710.1007/978‑3‑319‑05161‑1_624961972
    [Google Scholar]
  11. AmayaF. Oh-hashiK. NaruseY. IijimaN. UedaM. ShimosatoG. TominagaM. TanakaY. TanakaM. Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons.Brain Res.20039631-219019610.1016/S0006‑8993(02)03972‑012560124
    [Google Scholar]
  12. AmayaF. ShimosatoG. NaganoM. UedaM. HashimotoS. TanakaY. SuzukiH. TanakaM. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia.Eur. J. Neurosci.20042092303231010.1111/j.1460‑9568.2004.03701.x15525272
    [Google Scholar]
  13. PetruskaJ.C. MendellL.M. The many functions of nerve growth factor: Multiple actions on nociceptors.Neurosci. Lett.20043611-316817110.1016/j.neulet.2003.12.01215135920
    [Google Scholar]
  14. AnandU. OttoW.R. FacerP. ZebdaN. SelmerI. GunthorpeM.J. ChessellI.P. SinisiM. BirchR. AnandP. TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons.Neurosci. Lett.2008438222122710.1016/j.neulet.2008.04.00718456404
    [Google Scholar]
  15. AnderssonD.A. GentryC. MossS. BevanS. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress.J. Neurosci.200828102485249410.1523/JNEUROSCI.5369‑07.200818322093
    [Google Scholar]
  16. AsgarJ. ZhangY. SalomanJ.L. WangS. ChungM.K. RoJ.Y. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats.Neuroscience201531020621510.1016/j.neuroscience.2015.09.04226393428
    [Google Scholar]
  17. BandellM. StoryG.M. HwangS.W. ViswanathV. EidS.R. PetrusM.J. EarleyT.J. PatapoutianA. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.Neuron200441684985710.1016/S0896‑6273(04)00150‑315046718
    [Google Scholar]
  18. BautistaD.M. JordtS.E. NikaiT. TsurudaP.R. ReadA.J. PobleteJ. YamoahE.N. BasbaumA.I. JuliusD. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.Cell200612461269128210.1016/j.cell.2006.02.02316564016
    [Google Scholar]
  19. BautistaD.M. PellegrinoM. TsunozakiM. TRPA1: A gatekeeper for inflammation.Annu. Rev. Physiol.201375118120010.1146/annurev‑physiol‑030212‑18381123020579
    [Google Scholar]
  20. BellJ.T. LoomisA.K. ButcherL.M. GaoF. ZhangB. HydeC.L. SunJ. WuH. WardK. HarrisJ. ScollenS. DaviesM.N. SchalkwykL.C. MillJ. AhmadiK.R. AinaliC. BarrettA. BatailleV. BellJ.T. BuilA. DeloukasP. DermitzakisE.T. DimasA.S. DurbinR. GlassD. GrundbergE. HassanaliN. HedmanA.K. IngleC. KnowlesD. KrestyaninovaM. LindgrenC.M. LoweC.E. McCarthyM.I. MeduriE. di MeglioP. MinJ.L. MontgomeryS.B. NestleF.O. NicaA.C. NisbetJ. O’RahillyS. PartsL. PotterS. SekowskaM. ShinS-Y. SmallK.S. SoranzoN. SpectorT.D. SurdulescuG. TraversM.E. TsaprouniL. TsokaS. WilkA. YangT-P. ZondervanK.T. WilliamsF.M.K. LiN. DeloukasP. BeckS. McMahonS.B. WangJ. JohnS.L. SpectorT.D. Differential methylation of the TRPA1 promoter in pain sensitivity.Nat. Commun.201451297810.1038/ncomms397824496475
    [Google Scholar]
  21. CattaruzzaF. JohnsonC. LeggitA. GradyE. SchenkA.K. CevikbasF. CedronW. BondadaS. KirkwoodR. MaloneB. SteinhoffM. BunnettN. KirkwoodK.S. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice.Am. J. Physiol. Gastrointest. Liver Physiol.201330411G1002G101210.1152/ajpgi.00005.201323558009
    [Google Scholar]
  22. da CostaD.S.M. MeottiF.C. AndradeE.L. LealP.C. MottaE.M. CalixtoJ.B. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation.Pain2010148343143710.1016/j.pain.2009.12.00220056530
    [Google Scholar]
  23. DiogenesA. AkopianA.N. HargreavesK.M. NGF up-regulates TRPA1: Implications for orofacial pain.J. Dent. Res.200786655055510.1177/15440591070860061217525356
    [Google Scholar]
  24. GregusA.M. DoolenS. DumlaoD.S. BuczynskiM.W. TakasusukiT. FitzsimmonsB.L. HuaX.Y. TaylorB.K. DennisE.A. YakshT.L. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors.Proc. Natl. Acad. Sci.2012109176721672610.1073/pnas.111046010922493235
    [Google Scholar]
  25. ZappiaK.J. O’HaraC.L. MoehringF. KwanK.Y. StuckyC.L. Sensory neuron-specific deletion of TRPA1 results in mechanical cutaneous sensory deficits.eNeuro201741ENEURO. 0069-16.201710.1523/ENEURO.0069‑16.201728303259
    [Google Scholar]
  26. BonnieR.J. Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid UsePhillips, J.K.; Ford, M.A.; Bonnie, R.J., Eds.; National Academies Press (US): Washington (DC)201710.17226/24781
    [Google Scholar]
  27. WoolfC.J. Central sensitization: Implications for the diagnosis and treatment of pain.Pain20111523S2S1510.1016/j.pain.2010.09.03020961685
    [Google Scholar]
  28. McGreevyK. BottrosM.M. RajaS.N. Preventing chronic pain following acute pain: Risk factors, preventive strategies, and their efficacy.Eur. J. Pain Suppl.20115S236537610.1016/j.eujps.2011.08.01322102847
    [Google Scholar]
  29. LewinG.R. MendellL.M. Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat.J. Neurophysiol.199471394194910.1152/jn.1994.71.3.9418201434
    [Google Scholar]
  30. AndreevN.Y. DimitrievaN. KoltzenburgM. McMahonS.B. Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones.Pain199563110911510.1016/0304‑3959(95)00024‑M8577480
    [Google Scholar]
  31. KoltzenburgM. The changing sensitivity in the life of the nociceptor.Pain199982Suppl. 1S93S10210.1016/S0304‑3959(99)00142‑610491977
    [Google Scholar]
  32. MichaelG.J. PriestleyJ.V. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy.J. Neurosci.19991951844185410.1523/JNEUROSCI.19‑05‑01844.199910024368
    [Google Scholar]
  33. WoolfC.J. CostiganM. Transcriptional and posttranslational plasticity and the generation of inflammatory pain.Proc. Natl. Acad. Sci.199996147723773010.1073/pnas.96.14.772310393888
    [Google Scholar]
  34. LindsayR.M. HarmarA.J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons.Nature1989337620536236410.1038/337362a02911387
    [Google Scholar]
  35. McMahonS.B. NGF as a mediator of inflammatory pain.Philos. Trans. R. Soc. Lond. B Biol. Sci.1996351133843144010.1098/rstb.1996.00398730782
    [Google Scholar]
  36. JiR.R. SamadT.A. JinS.X. SchmollR. WoolfC.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia.Neuron2002361576810.1016/S0896‑6273(02)00908‑X12367506
    [Google Scholar]
  37. ZhangX. HuangJ. McNaughtonP.A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels.EMBO J.200524244211422310.1038/sj.emboj.760089316319926
    [Google Scholar]
  38. XueQ. JongB. ChenT. SchumacherM.A. Transcription of rat TRPV1 utilizes a dual promoter system that is positively regulated by nerve growth factor.J. Neurochem.2007101121222210.1111/j.1471‑4159.2006.04363.x17217411
    [Google Scholar]
  39. ChuC. ZavalaK. FahimiA. LeeJ. XueQ. EilersH. SchumacherM.A. Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons.Mol. Pain201171744-8069-74410.1186/1744‑8069‑7‑4421645329
    [Google Scholar]
  40. BonningtonJ.K. McNaughtonP.A. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor.J. Physiol.2003551243344610.1113/jphysiol.2003.03999012815188
    [Google Scholar]
  41. ChuangH. PrescottE.D. KongH. ShieldsS. JordtS.E. BasbaumA.I. ChaoM.V. JuliusD. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.Nature2001411684095796210.1038/3508208811418861
    [Google Scholar]
  42. RukwiedR. MayerA. KluschinaO. ObrejaO. SchleyM. SchmelzM. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin.Pain2010148340741310.1016/j.pain.2009.11.02220022698
    [Google Scholar]
  43. AmannR. SchuligoiR. HerzegG. DonnererJ. Intraplantar injection of nerve growth factor into the rat hind paw: Local edema and effects on thermal nociceptive threshold.Pain199664232332910.1016/0304‑3959(95)00120‑48740610
    [Google Scholar]
  44. CaterinaM.J. SchumacherM.A. TominagaM. RosenT.A. LevineJ.D. JuliusD. The capsaicin receptor: A heat-activated ion channel in the pain pathway.Nature1997389665381682410.1038/398079349813
    [Google Scholar]
  45. CaterinaM.J. LefflerA. MalmbergA.B. MartinW.J. TraftonJ. Petersen-ZeitzK.R. KoltzenburgM. BasbaumA.I. JuliusD. Impaired nociception and pain sensation in mice lacking the capsaicin receptor.Science2000288546430631310.1126/science.288.5464.30610764638
    [Google Scholar]
  46. DavisJ.B. GrayJ. GunthorpeM.J. HatcherJ.P. DaveyP.T. OverendP. HarriesM.H. LatchamJ. ClaphamC. AtkinsonK. HughesS.A. RanceK. GrauE. HarperA.J. PughP.L. RogersD.C. BinghamS. RandallA. SheardownS.A. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia.Nature2000405678318318710.1038/3501207610821274
    [Google Scholar]
  47. SchumacherM.A. Transient receptor potential channels in pain and inflammation: Therapeutic opportunities.Pain Pract.201010318520010.1111/j.1533‑2500.2010.00358.x20230457
    [Google Scholar]
  48. BlackshawL.A. Transient receptor potential cation channels in visceral sensory pathways.Br. J. Pharmacol.2014171102528253610.1111/bph.1264124641218
    [Google Scholar]
  49. LawtonS.K. XuF. TranA. WongE. PrakashA. SchumacherM. HellmanJ. WilhelmsenK. N -arachidonoyl dopamine modulates acute systemic inflammation via nonhematopoietic TRPV1.J. Immunol.201719941465147510.4049/jimmunol.160215128701511
    [Google Scholar]
  50. XueQ. YuY. TrilkS.L. JongB.E. SchumacherM.A. The genomic organization of the gene encoding the vanilloid receptor: Evidence for multiple splice variants.Genomics2001761-3142010.1006/geno.2001.658211549313
    [Google Scholar]
  51. SuppD.M. WitteD.P. BranfordW.W. SmithE.P. PotterS.S. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility.Dev. Biol.1996176228429910.1006/dbio.1996.01348660867
    [Google Scholar]
  52. SuskeG. The Sp-family of transcription factors.Gene1999238229130010.1016/S0378‑1119(99)00357‑1
    [Google Scholar]
  53. BouwmanP. PhilipsenS. Regulation of the activity of Sp1-related transcription factors.Mol. Cell. Endocrinol.20021951-2273810.1016/S0303‑7207(02)00221‑612354670
    [Google Scholar]
  54. LiL. HeS. SunJ.M. DavieJ.R. Gene regulation by Sp1 and Sp3.Biochem. Cell Biol.200482446047110.1139/o04‑04515284899
    [Google Scholar]
  55. SaiaG. LalondeJ. SunX. RamosB. GillG. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling.J. Neurochem.2014129474375210.1111/jnc.1265724475768
    [Google Scholar]
  56. PriyaA. JoharK. NairB. Wong-RileyM.T.T. Specificity protein 4 (Sp4) regulates the transcription of AMPA receptor subunit GluA2 (Gria2).Biochim. Biophys. Acta Mol. Cell Res.2014184361196120610.1016/j.bbamcr.2014.02.00824576410
    [Google Scholar]
  57. SunX. PinachoR. SaiaG. PunkoD. MeanaJ.J. RamosB. GillG. Transcription factor Sp4 regulates expression of nervous wreck 2 to control NMDAR1 levels and dendrite patterning.Dev. Neurobiol.20157519310810.1002/dneu.2221225045015
    [Google Scholar]
  58. NairB. JoharK. PriyaA. Wong-RileyM.T.T. Specificity protein 4 (Sp4) transcriptionally regulates inhibitory GABAergic receptors in neurons.Biochim. Biophys. Acta Mol. Cell Res.2016186311910.1016/j.bbamcr.2015.10.00526469128
    [Google Scholar]
  59. JoharK. PriyaA. DharS. LiuQ. Wong-RileyM.T.T. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.J. Neurochem.2013127449650810.1111/jnc.1243324032355
    [Google Scholar]
  60. JoharK. PriyaA. Wong-RileyM.T.T. Regulation of Na +/K + -ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons.Eur. J. Neurosci.201439456657810.1111/ejn.1241524219545
    [Google Scholar]
  61. ZhouX. TangW. GreenwoodT.A. GuoS. HeL. GeyerM.A. KelsoeJ.R. Transcription factor SP4 is a susceptibility gene for bipolar disorder.PLoS One200944e519610.1371/journal.pone.000519619401786
    [Google Scholar]
  62. ShiJ. PotashJ.B. KnowlesJ.A. WeissmanM.M. CoryellW. ScheftnerW.A. LawsonW.B. DePauloJ.R.Jr GejmanP.V. SandersA.R. JohnsonJ.K. AdamsP. ChaudhuryS. JancicD. EvgrafovO. ZvinyatskovskiyA. ErtmanN. GladisM. NeimanasK. GoodellM. HaleN. NeyN. VermaR. MirelD. HolmansP. LevinsonD.F. Genome-wide association study of recurrent early-onset major depressive disorder.Mol. Psychiatry201116219320110.1038/mp.2009.12420125088
    [Google Scholar]
  63. PinachoR. VillalmanzoN. LalondeJ. HaroJ.M. MeanaJ.J. GillG. RamosB. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium.Bipolar Disord.2011135-647448510.1111/j.1399‑5618.2011.00941.x22017217
    [Google Scholar]
  64. ChangW.C. ChenB.K. Transcription factor Sp1 functions as an anchor protein in gene transcription of human 12(S)-lipoxygenase.Biochem. Biophys. Res. Commun.2005338111712110.1016/j.bbrc.2005.08.01416122700
    [Google Scholar]
  65. ZhaoC. HeX. TianC. MengA. Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos.Biochem. Biophys. Res. Commun.2006342121422010.1016/j.bbrc.2006.01.13416472769
    [Google Scholar]
  66. ZhouX. QyangY. KelsoeJ.R. MasliahE. GeyerM.A. Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice.Genes Brain Behav.20076326927610.1111/j.1601‑183X.2006.00256.x16899055
    [Google Scholar]
  67. RamosB. GaudillièreB. BonniA. GillG. Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation.Proc. Natl. Acad. Sci. USA2007104239882988710.1073/pnas.070194610417535924
    [Google Scholar]
  68. RamosB. ValínA. SunX. GillG. Sp4-dependent repression of neurotrophin-3 limits dendritic branching.Mol. Cell. Neurosci.200942215215910.1016/j.mcn.2009.06.00819555762
    [Google Scholar]
  69. LernerL.E. GribanovaY.E. WhitakerL. KnoxB.E. FarberD.B. The rod cGMP-phosphodiesterase beta-subunit promoter is a specific target for Sp4 and is not activated by other Sp proteins or CRX.J. Biol. Chem.200227729258772588310.1074/jbc.M20140720011943774
    [Google Scholar]
  70. SheehanK. LeeJ. ChongJ. ZavalaK. SharmaM. PhilipsenS. MaruyamaT. XuZ. GuanZ. EilersH. KawamataT. SchumacherM. Transcription factor Sp4 is required for hyperalgesic state persistence.PLoS One2019142e021134910.1371/journal.pone.021134930811405
    [Google Scholar]
  71. MerchantJ.L. DuM. TodiscoA. Sp1 phosphorylation by Erk 2 stimulates DNA binding.Biochem. Biophys. Res. Commun.1999254245446110.1006/bbrc.1998.99649918860
    [Google Scholar]
  72. ChuS. FerroT.J. Sp1: Regulation of gene expression by phosphorylation.Gene200534811110.1016/j.gene.2005.01.01315777659
    [Google Scholar]
  73. LennertzR.C. KossyrevaE.A. SmithA.K. StuckyC.L. TRPA1 mediates mechanical sensitization in nociceptors during inflammation.PLoS One201278e4359710.1371/journal.pone.004359722927999
    [Google Scholar]
  74. BrierleyS.M. CastroJ. HarringtonA.M. HughesP.A. PageA.J. RychkovG.Y. BlackshawL.A. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity.J. Physiol.2011589143575359310.1113/jphysiol.2011.20678921558163
    [Google Scholar]
  75. PetrusM. PeierA.M. BandellM. HwangS.W. HuynhT. OlneyN. JeglaT. PatapoutianA. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition.Mol. Pain200731744-8069-34010.1186/1744‑8069‑3‑4018086313
    [Google Scholar]
  76. Jerić M.; Vukojević K.; Vuica, A.; Filipović N. Diabetes mellitus influences the expression of NPY and VEGF in neurons of rat trigeminal ganglion.Neuropeptides201762576410.1016/j.npep.2016.11.00127836326
    [Google Scholar]
  77. De LoguF. De PráS.D.T. de David AntoniazziC.T. KudsiS.Q. FerroP.R. LandiniL. RigoF.K. de Bem SilveiraG. SilveiraP.C.L. OliveiraS.M. MariniM. MatteiG. FerreiraJ. GeppettiP. NassiniR. TrevisanG. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I.Brain Behav. Immun.20208853554610.1016/j.bbi.2020.04.03732315759
    [Google Scholar]
  78. LiuX.J. LiuT. ChenG. WangB. YuX.L. YinC. JiR.R. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation.Sci. Rep.2016612818810.1038/srep2818827312666
    [Google Scholar]
  79. DansereauM.A. MidavaineÉ. Bégin-LavalléeV. BelkouchM. BeaudetN. LongpréJ.M. Mélik-ParsadaniantzS. SarretP. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity.J. Neuroinflammation20211817910.1186/s12974‑021‑02125‑y33757529
    [Google Scholar]
  80. JiR.R. ChamessianA. ZhangY.Q. Pain regulation by non-neuronal cells and inflammation.Science2016354631257257710.1126/science.aaf892427811267
    [Google Scholar]
  81. ConesaA. MadrigalP. TarazonaS. Gomez-CabreroD. CerveraA. McPhersonA. Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; Mortazavi, A. A survey of best practices for RNA-seq data analysis.Genome Biol.20161711310.1186/s13059‑016‑0881‑826813401
    [Google Scholar]
  82. KukurbaK.R. MontgomeryS.B. RNA sequencing and analysis.Cold Spring Harb. Protoc.2015201511pdb.top08497010.1101/pdb.top08497025870306
    [Google Scholar]
  83. HochbergY. BenjaminiY. More powerful procedures for multiple significance testing.Stat. Med.19909781181810.1002/sim.47800907102218183
    [Google Scholar]
  84. KoberK.M. SchumacherM. ConleyY.P. ToppK. MazorM. HammerM.J. PaulS.M. LevineJ.D. MiaskowskiC. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy.Mol. Pain20191510.1177/174480691987808831486345
    [Google Scholar]
  85. DowellD. HaegerichT.M. ChouR. CDC guideline for prescribing opioids for chronic pain—United States, 2016.JAMA2016315151624164510.1001/jama.2016.146426977696
    [Google Scholar]
  86. ElsC. JacksonT.D. HagtvedtR. KunykD. SonnenbergB. LappiV.G. StraubeS. High-dose opioids for chronic non-cancer pain: An overview of Cochrane Reviews.Cochrane Libr.201720181CD01229910.1002/14651858.CD012299.pub229084358
    [Google Scholar]
  87. ZavalaK. LeeJ. ChongJ. SharmaM. EilersH. SchumacherM.A. The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons.Neurosci. Lett.201457821121610.1016/j.neulet.2014.01.02124468003
    [Google Scholar]
  88. GómezK. SandovalA. Barragán-IglesiasP. Granados-SotoV. Delgado-LezamaR. FelixR. González-RamírezR. Transcription factor Sp1 regulates the expression of calcium channel α2δ-1 subunit in neuropathic pain.Neuroscience201941220721510.1016/j.neuroscience.2019.06.01131220545
    [Google Scholar]
/content/journals/cn/10.2174/1570159X21666230808111908
Loading
/content/journals/cn/10.2174/1570159X21666230808111908
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Chronic pain; inflammation; NGF; sensory neuron; transcription factor; TRPA1; TRPV1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test