Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Central sensitization is an increased responsiveness of nociceptive neurons in the central nervous system to their normal or subthreshold afferent input.

To explain how the notion of central sensitization has changed our understanding of pain conditions, discuss how this knowledge can be used to improve the management of pain, and highlight knowledge gaps that future research needs to address.

Overview of definitions, assessment methods, and clinical implications.

Human pain models, and functional and molecular imaging have provided converging evidence that central sensitization occurs and is clinically relevant. Measures to assess central sensitization in patients are available; however, their ability to discriminate sensitization of central from peripheral neurons is unclear. Treatments that attenuate central sensitization are available, but the limited understanding of molecular and functional mechanisms hampers the development of target-specific treatments. The origin of central sensitization in human pain conditions that are not associated with tissue damage remains unclear.

The knowledge of central sensitization has revolutionized our neurobiological understanding of pain. Despite the limitations of clinical assessment in identifying central sensitization, it is appropriate to use the available tools to guide clinical decisions towards treatments that attenuate central sensitization. Future research that elucidates the causes, molecular and functional mechanisms of central sensitization would provide crucial progress towards the development of treatments that target specific mechanisms of central sensitization.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X20666221012112725
2024-01-01
2024-10-13
Loading full text...

Full text loading...

References

  1. International Association for the Study of Pain (IASP). IASP Terminology. 2017. Available from: https://www.iasp-pain.org/terminology?navItemNumber=576
  2. WoolfC.J. Evidence for a central component of post-injury pain hypersensitivity.Nature1983306594468668810.1038/306686a06656869
    [Google Scholar]
  3. WoolfC.J. Central sensitization: Implications for the diagnosis and treatment of pain.Pain20111523Suppl.S2S1510.1016/j.pain.2010.09.03020961685
    [Google Scholar]
  4. NijsJ. GeorgeS.Z. ClauwD.J. Fernández-de-las-PeñasC. KosekE. IckmansK. Fernández-CarneroJ. PolliA. KapreliE. HuysmansE. Cuesta-VargasA.I. ManiR. LundbergM. LeysenL. RiceD. SterlingM. CuratoloM. Central sensitisation in chronic pain conditions: Latest discoveries and their potential for precision medicine.Lancet Rheumatol.202135e383e39210.1016/S2665‑9913(21)00032‑1
    [Google Scholar]
  5. GebhartG.F. Descending modulation of pain.Neurosci. Biobehav. Rev.200427872973710.1016/j.neubiorev.2003.11.00815019423
    [Google Scholar]
  6. GraceP.M. HutchinsonM.R. MaierS.F. WatkinsL.R. Pathological pain and the neuroimmune interface.Nat. Rev. Immunol.201414421723110.1038/nri362124577438
    [Google Scholar]
  7. KunerR. Central mechanisms of pathological pain.Nat. Med.201016111258126610.1038/nm.223120948531
    [Google Scholar]
  8. KunerR. Spinal excitatory mechanisms of pathological pain.Pain2015156Suppl. 1S11S1710.1097/j.pain.000000000000011825789427
    [Google Scholar]
  9. LatremoliereA. WoolfC.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity.J. Pain200910989592610.1016/j.jpain.2009.06.01219712899
    [Google Scholar]
  10. SuM. YuS. Chronic migraine: A process of dysmodulation and sensitization.Mol. Pain2018174480691876769710.1177/174480691876769729642749
    [Google Scholar]
  11. QuesadaC. KostenkoA. HoI. LeoneC. NochiZ. StouffsA. WittayerM. CaspaniO. Brix FinnerupN. MourauxA. PickeringG. TraceyI. TruiniA. TreedeR.D. Garcia-LarreaL. Human surrogate models of central sensitization: A critical review and practical guide.Eur. J. Pain20212571389142810.1002/ejp.176833759294
    [Google Scholar]
  12. Arendt-NielsenL. CuratoloM. DrewesA. Human experimental pain models in drug development: Translational pain research.Curr. Opin. Investig. Drugs200781415317263184
    [Google Scholar]
  13. Arendt-NielsenL. CuratoloM. Mechanistic, translational, quantitative pain assessment tools in profiling of pain patients and for development of new analgesic compounds.Scand. J. Pain20134422623010.1016/j.sjpain.2013.07.02629913625
    [Google Scholar]
  14. BiurrunM.J.A. SchliessbachJ. VuilleumierP.H. MüllerM. MusshoffF. StamerU. StüberF. Arendt-NielsenL. CuratoloM. Anti‐nociceptive effects of oxytocin receptor modulation in healthy volunteers a randomized, double‐blinded, placebo‐controlled study.Eur. J. Pain20212581723173810.1002/ejp.178133884702
    [Google Scholar]
  15. VuilleumierP.H. BessonM. DesmeulesJ. Arendt-NielsenL. CuratoloM. Evaluation of anti-hyperalgesic and analgesic effects of two benzodiazepines in human experimental pain: A randomized placebo-controlled study.PLoS One201383e4389610.1371/journal.pone.004389623554851
    [Google Scholar]
  16. O’NeillS. MannicheC. Graven-NielsenT. Arendt-NielsenL. Generalized deep-tissue hyperalgesia in patients with chronic low-back pain.Eur. J. Pain200711441542010.1016/j.ejpain.2006.05.00916815054
    [Google Scholar]
  17. Arendt-NielsenL. NieH. LaursenM.B. LaursenB.S. MadeleineP. SimonsenO.H. Graven-NielsenT. Sensitization in patients with painful knee osteoarthritis.Pain2010149357358110.1016/j.pain.2010.04.00320418016
    [Google Scholar]
  18. GerberR.K.H. NieH. Arendt-NielsenL. CuratoloM. Graven-NielsenT. Local pain and spreading hyperalgesia induced by intramuscular injection of nerve growth factor are not reduced by local anesthesia of the muscle.Clin. J. Pain201127324024710.1097/AJP.0b013e318204848121178592
    [Google Scholar]
  19. SvenssonP. CairnsB.E. WangK. Arendt-NielsenL. Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia.Pain2003104124124710.1016/S0304‑3959(03)00012‑512855334
    [Google Scholar]
  20. BabenkoV. Graven-NielsenT. SvenssonP. DrewesA.M. JensenT.S. Arendt-NielsenL. Experimental human muscle pain and muscular hyperalgesia induced by combinations of serotonin and bradykinin.Pain19998211810.1016/S0304‑3959(99)00026‑310422653
    [Google Scholar]
  21. CuratoloM. Petersen-FelixS. GerberA. Arendt-NielsenL. Remifentanil inhibits muscular more than cutaneous pain in humans.Br. J. Anaesth.200085452953210.1093/bja/85.4.52911064609
    [Google Scholar]
  22. Graven-NielsenT. Arendt-NielsenL. SvenssonP. JensenT.S. Quantification of local and referred muscle pain in humans after sequential i.m. injections of hypertonic saline.Pain199769111111710.1016/S0304‑3959(96)03243‑59060020
    [Google Scholar]
  23. Arendt-NielsenL. DrewesA.M. HansenJ.B. Tage-JensenU. Gut pain reactions in man: An experimental investigation using short and long duration transmucosal electrical stimulation.Pain199769325526210.1016/S0304‑3959(96)03244‑79085299
    [Google Scholar]
  24. DrewesA.M. SchipperK.P. DimcevskiG. PetersenP. AndersenO.K. GregersenH. Arendt-NielsenL. Multi-modal induction and assessment of allodynia and hyperalgesia in the human oesophagus.Eur. J. Pain20037653954910.1016/S1090‑3801(03)00053‑314575667
    [Google Scholar]
  25. Mohr DrewesA. PedersenJ. ReddyH. RasmussenK. Funch-JensenP. Arendt-NielsenL. GregersenH. Central sensitization in patients with non-cardiac chest pain: A clinical experimental study.Scand. J. Gastroenterol.200641664064910.1080/0036552050044255916754535
    [Google Scholar]
  26. DickensonA.H. SullivanA.F. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following c fibre stimulation.Neuropharmacology19872681235123810.1016/0028‑3908(87)90275‑92821443
    [Google Scholar]
  27. NeziriA.Y. AndersenO.K. Petersen-FelixS. RadanovB. DickensonA.H. ScaramozzinoP. Arendt-NielsenL. CuratoloM. The nociceptive withdrawal reflex: Normative values of thresholds and reflex receptive fields.Eur. J. Pain201014213414110.1016/j.ejpain.2009.04.01019505833
    [Google Scholar]
  28. Arendt-NielsenL. SonnenborgF.A. AndersenO.K. Facilitation of the withdrawal reflex by repeated transcutaneous electrical stimulation: An experimental study on central integration in humans.Eur. J. Appl. Physiol.200081316517310.1007/s00421005002610638373
    [Google Scholar]
  29. McPheeM.E. VaegterH.B. Graven-NielsenT. Alterations in pronociceptive and antinociceptive mechanisms in patients with low back pain: A systematic review with meta-analysis.Pain2020161346447510.1097/j.pain.000000000000173732049888
    [Google Scholar]
  30. O’BrienA.T. DeitosA. Triñanes PegoY. FregniF. Carrillo-de-la-PeñaM.T. Defective endogenous pain modulation in fibromyalgia: A meta-analysis of temporal summation and conditioned pain modulation paradigms.J. Pain201819881983610.1016/j.jpain.2018.01.01029454976
    [Google Scholar]
  31. BannisterK. DickensonA.H. What the brain tells the spinal cord.Pain2016157102148215110.1097/j.pain.000000000000056827023423
    [Google Scholar]
  32. PriceT.J. PrescottS.A. Inhibitory regulation of the pain gate and how its failure causes pathological pain.Pain2015156578979210.1097/j.pain.000000000000013925719614
    [Google Scholar]
  33. FernandesC. Pidal-MirandaM. Samartin-VeigaN. Carrillo-de-la-PeñaM.T. Conditioned pain modulation as a biomarker of chronic pain: A systematic review of its concurrent validity.Pain2019160122679269010.1097/j.pain.000000000000166431365469
    [Google Scholar]
  34. SchliessbachJ. SiegenthalerA. StreitbergerK. EichenbergerU. NüeschE. JüniP. Arendt-NielsenL. CuratoloM. The prevalence of widespread central hypersensitivity in chronic pain patients.Eur. J. Pain2013171012010.1002/j.1532‑2149.2013.00332.x23703952
    [Google Scholar]
  35. AndersenO.K. GracelyR.H. Arendt-NielsenL. Facilitation of the human nociceptive reflex by stimulation of Aβ-fibres in a secondary hyperalgesic area sustained by nociceptive input from the primary hyperalgesic area.Acta Physiol. Scand.19951551879710.1111/j.1748‑1716.1995.tb09951.x8553881
    [Google Scholar]
  36. CuratoloM. MüllerM. AshrafA. NeziriA.Y. StreitbergerK. AndersenO.K. Arendt-NielsenL. Pain hypersensitivity and spinal nociceptive hypersensitivity in chronic pain.Pain2015156112373238210.1097/j.pain.000000000000028926172555
    [Google Scholar]
  37. FrenchD.J. FranceC.R. FranceJ.L. ArnottL.F. The influence of acute anxiety on assessment of nociceptive flexion reflex thresholds in healthy young adults.Pain2005114335836310.1016/j.pain.2004.12.03415777861
    [Google Scholar]
  38. RhudyJ.L. MartinS.L. TerryE.L. FranceC.R. BartleyE.J. DelVenturaJ.L. KerrK.L. Pain catastrophizing is related to temporal summation of pain but not temporal summation of the nociceptive flexion reflex.Pain2011152479480110.1016/j.pain.2010.12.04121316150
    [Google Scholar]
  39. Arendt-NielsenL. Anker-MøllerE. BjerringP. SpangsbergN. Onset phase of spinal bupivacaine analgesia assessed quantitatively by laser stimulation.Br. J. Anaesth.199065563964210.1093/bja/65.5.6392248841
    [Google Scholar]
  40. GranotM. BuskilaD. GranovskyY. SprecherE. NeumannL. YarnitskyD. Simultaneous recording of late and ultra-late pain evoked potentials in fibromyalgia.Clin. Neurophysiol.2001112101881188710.1016/S1388‑2457(01)00646‑011595147
    [Google Scholar]
  41. ChenA.C.N. HerrmannC.S. Perception of pain coincides with the spatial expansion of electroencephalographic dynamics in human subjects.Neurosci. Lett.2001297318318610.1016/S0304‑3940(00)01696‑711137758
    [Google Scholar]
  42. VuilleumierP.H. ArguissainF.G. Biurrun ManresaJ.A. NeziriA.Y. NirkkoA.C. AndersenO.K. Arendt-NielsenL. CuratoloM. Psychophysical and electrophysiological evidence for enhanced pain facilitation and unaltered pain inhibition in acute low back pain patients.J. Pain201718111313132310.1016/j.jpain.2017.05.00828645867
    [Google Scholar]
  43. NapadowV. ScloccoR. HendersonL.A. Brainstem neuroimaging of nociception and pain circuitries.Pain Rep.201944e745e74510.1097/PR9.000000000000074531579846
    [Google Scholar]
  44. MourauxA. IannettiG.D. The search for pain biomarkers in the human brain.Brain2018141123290330710.1093/brain/awy28130462175
    [Google Scholar]
  45. MoayediM. SalomonsT.V. AtlasL.Y. Pain neuroimaging in humans: A primer for beginners and non-imagers.J. Pain2018199961.e1961.e2110.1016/j.jpain.2018.03.01129608974
    [Google Scholar]
  46. YounisS. HougaardA. VestergaardM.B. LarssonH.B.W. AshinaM. Migraine and magnetic resonance spectroscopy: A systematic review.Curr. Opin. Neurol.201730324626210.1097/WCO.000000000000043628240609
    [Google Scholar]
  47. KumbhareD.A. ElzibakA.H. NoseworthyM.D. Evaluation of chronic pain using Magnetic Resonance (MR) neuroimaging approaches.Clin. J. Pain201733428129010.1097/AJP.000000000000041527518493
    [Google Scholar]
  48. CoghillR.C. McHaffieJ.G. YenY.F. Neural correlates of interindividual differences in the subjective experience of pain.Proc. Natl. Acad. Sci. USA2003100148538854210.1073/pnas.143068410012824463
    [Google Scholar]
  49. CookD.B. LangeG. CicconeD.S. LiuW.C. SteffenerJ. NatelsonB.H. Functional imaging of pain in patients with primary fibromyalgia.J. Rheumatol.200431236437814760810
    [Google Scholar]
  50. GieseckeT. GracelyR.H. GrantM.A.B. NachemsonA. PetzkeF. WilliamsD.A. ClauwD.J. Evidence of augmented central pain processing in idiopathic chronic low back pain.Arthritis Rheum.200450261362310.1002/art.2006314872506
    [Google Scholar]
  51. GracelyR.H. PetzkeF. WolfJ.M. ClauwD.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia.Arthritis Rheum.20024651333134310.1002/art.1022512115241
    [Google Scholar]
  52. ArchibaldJ. MacMillanE.L. EnzlerA. JutzelerC.R. SchweinhardtP. KramerJ.L.K. Excitatory and inhibitory responses in the brain to experimental pain: A systematic review of MR spectroscopy studies.Neuroimage202021511679410.1016/j.neuroimage.2020.11679432278899
    [Google Scholar]
  53. ThiaucourtM. ShabesP. SchlossN. SackM. BaumgärtnerU. SchmahlC. EndeG. Posterior insular GABA levels inversely correlate with the intensity of experimental mechanical pain in healthy subjects.Neuroscience201838711612210.1016/j.neuroscience.2017.09.04328978415
    [Google Scholar]
  54. FoersterB.R. PetrouM. EddenR.A.E. SundgrenP.C. Schmidt-WilckeT. LoweS.E. HarteS.E. ClauwD.J. HarrisR.E. Reduced insular γ-aminobutyric acid in fibromyalgia.Arthritis Rheum.201264257958310.1002/art.3333921913179
    [Google Scholar]
  55. SommerC. LeindersM. ÜçeylerN. Inflammation in the pathophysiology of neuropathic pain.Pain2018159359560210.1097/j.pain.000000000000112229447138
    [Google Scholar]
  56. SalterM.W. StevensB. Microglia emerge as central players in brain disease.Nat. Med.20172391018102710.1038/nm.439728886007
    [Google Scholar]
  57. WalkerA.K. KavelaarsA. HeijnenC.J. DantzerR. Neuroinflammation and comorbidity of pain and depression.Pharmacol. Rev.20146618010110.1124/pr.113.00814424335193
    [Google Scholar]
  58. RenK. DubnerR. Interactions between the immune and nervous systems in pain.Nat. Med.201016111267127610.1038/nm.223420948535
    [Google Scholar]
  59. AlbrechtD.S. ForsbergA. SandströmA. BerganC. KadetoffD. ProtsenkoE. LampaJ. LeeY.C. HöglundC.O. CatanaC. CervenkaS. AkejuO. LekanderM. CohenG. HalldinC. TaylorN. KimM. HookerJ.M. EdwardsR.R. NapadowV. KosekE. LoggiaM.L. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation.Brain Behav. Immun.201975728310.1016/j.bbi.2018.09.01830223011
    [Google Scholar]
  60. LoggiaM.L. ChondeD.B. AkejuO. ArabaszG. CatanaC. EdwardsR.R. HillE. HsuS. Izquierdo-GarciaD. JiR.R. RileyM. WasanA.D. ZürcherN.R. AlbrechtD.S. VangelM.G. RosenB.R. NapadowV. HookerJ.M. Evidence for brain glial activation in chronic pain patients.Brain2015138360461510.1093/brain/awu37725582579
    [Google Scholar]
  61. AlbrechtD.S. AhmedS.U. KettnerN.W. BorraR.J.H. Cohen-AdadJ. DengH. HouleT.T. OpalaczA. RothS.A. MeloM.F.V. ChenL. MaoJ. HookerJ.M. LoggiaM.L. ZhangY. Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients.Pain2018159596897710.1097/j.pain.000000000000117129419657
    [Google Scholar]
  62. BinshtokA.M. WangH. ZimmermannK. AmayaF. VardehD. ShiL. BrennerG.J. JiR.R. BeanB.P. WoolfC.J. SamadT.A. Nociceptors are interleukin-1beta sensors.J. Neurosci.20082852140621407310.1523/JNEUROSCI.3795‑08.200819109489
    [Google Scholar]
  63. MayerS. IzydorczykI. ReehP.W. GrubbB.D. Bradykinin-induced nociceptor sensitisation to heat depends on cox-1 and cox-2 in isolated rat skin.Pain20071301142410.1016/j.pain.2006.10.02717196338
    [Google Scholar]
  64. NeumannS. DoubellT.P. LeslieT. WoolfC.J. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons.Nature1996384660736036410.1038/384360a08934522
    [Google Scholar]
  65. CuratoloM. Diagnosis of altered central pain processing.Spine20113625Suppl.S200S20410.1097/BRS.0b013e3182387f3d22020613
    [Google Scholar]
  66. BanicB. Petersen-FelixS. AndersenO.K. RadanovB.P. VilligerM.P. Arendt-NielsenL. CuratoloM. Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and in fibromyalgia.Pain2004107171510.1016/j.pain.2003.05.00114715383
    [Google Scholar]
  67. JohansenM.K. Graven-NielsenT. OlesenA.S. Arendt-NielsenL. Generalised muscular hyperalgesia in chronic whiplash syndrome.Pain199983222923410.1016/S0304‑3959(99)00106‑210534594
    [Google Scholar]
  68. SterlingM. JullG. VicenzinoB. KenardyJ. Sensory hypersensitivity occurs soon after whiplash injury and is associated with poor recovery.Pain2003104350951710.1016/S0304‑3959(03)00078‑212927623
    [Google Scholar]
  69. FarrellS.F. ZoeteR.M.J. CabotP.J. SterlingM. Systemic inflammatory markers in neck pain: A systematic review with meta‐analysis.Eur. J. Pain20202491666168610.1002/ejp.163032621397
    [Google Scholar]
  70. FarrellS.F. SterlingM. Irving-RodgersH. SchmidA.B. Small fibre pathology in chronic whiplash‐associated disorder: A cross‐sectional study.Eur. J. Pain20202461045105710.1002/ejp.154932096260
    [Google Scholar]
  71. KosekE. ClauwD. NijsJ. BaronR. GilronI. HarrisR.E. MicoJ.A. RiceA.S.C. SterlingM. Chronic nociplastic pain affecting the musculoskeletal system: Clinical criteria and grading system.Pain2021162112629263410.1097/j.pain.000000000000232433974577
    [Google Scholar]
  72. NeziriA.Y. CuratoloM. LimacherA. NüeschE. RadanovB. AndersenO.K. Arendt-NielsenL. JüniP. Ranking of parameters of pain hypersensitivity according to their discriminative ability in chronic low back pain.Pain2012153102083209110.1016/j.pain.2012.06.02522846347
    [Google Scholar]
  73. BackonjaM.M. AttalN. BaronR. BouhassiraD. DrangholtM. DyckP.J. EdwardsR.R. FreemanR. GracelyR. HaanpaaM.H. HanssonP. HatemS.M. KrumovaE.K. JensenT.S. MaierC. MickG. RiceA.S. RolkeR. TreedeR.D. SerraJ. ToelleT. TugnoliV. WalkD. WalalceM.S. WareM. YarnitskyD. ZieglerD. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus.Pain201315491807181910.1016/j.pain.2013.05.04723742795
    [Google Scholar]
  74. BoudreauS.A. BadsbergS. ChristensenS.W. EgsgaardL.L. Digital pain drawings.Clin. J. Pain201632213914510.1097/AJP.000000000000023025756558
    [Google Scholar]
  75. PetrieK.J. FramptonT. LargeR.G. Moss-MorrisR. JohnsonM. MeechanG. What do patients expect from their first visit to a pain clinic?Clin. J. Pain200521429730110.1097/01.ajp.0000113058.92184.7415951646
    [Google Scholar]
  76. ChenB. DuanJ. WenS. PangJ. ZhangM. ZhanH. ZhengY. An updated systematic review and meta-analysis of duloxetine for knee osteoarthritis pain.Clin. J. Pain2021371185286210.1097/AJP.000000000000097534483232
    [Google Scholar]
  77. ChouR. DeyoR. FriedlyJ. SkellyA. WeimerM. FuR. DanaT. KraegelP. GriffinJ. GrusingS. Systemic pharmacologic therapies for low back pain: A systematic review for an american college of physicians clinical practice guideline.Ann. Intern. Med.2017166748049210.7326/M16‑245828192790
    [Google Scholar]
  78. FerreiraG.E. McLachlanA.J. LinC.W.C. ZadroJ.R. Abdel-ShaheedC. O’KeeffeM. MaherC.G. Efficacy and safety of antidepressants for the treatment of back pain and osteoarthritis: Systematic review and meta-analysis.BMJ2021372m482510.1136/bmj.m482533472813
    [Google Scholar]
  79. HumbleS.R. DaltonA.J. LiL. A systematic review of therapeutic interventions to reduce acute and chronic post-surgical pain after amputation, thoracotomy or mastectomy.Eur. J. Pain201425088289
    [Google Scholar]
  80. Zorrilla-VacaA. StoneA. Caballero-LozadaA.F. ParedesS. GrantM.C. Perioperative duloxetine for acute postoperative analgesia: A meta-analysis of randomized trials.Reg. Anesth. Pain Med.2019441095996510.1136/rapm‑2019‑10068731375539
    [Google Scholar]
  81. MooreA. DerryS. WiffenP. Gabapentin for chronic neuropathic pain.JAMA2018319881881910.1001/jama.2017.2154729486015
    [Google Scholar]
  82. EnkeO. NewH.A. NewC.H. MathiesonS. McLachlanA.J. LatimerJ. MaherC.G. LinC.W.C. Anticonvulsants in the treatment of low back pain and lumbar radicular pain: A systematic review and meta-analysis.CMAJ201819026E786E79310.1503/cmaj.17133329970367
    [Google Scholar]
  83. CooperT.E. DerryS. WiffenP.J. MooreR.A. Gabapentin for fibromyalgia pain in adults.Cochrane Database Syst. Rev.20171CD01218828045473
    [Google Scholar]
  84. DeyoR.A. Von KorffM. DuhrkoopD. Opioids for low back pain.BMJ2015350jan05 10g638010.1136/bmj.g638025561513
    [Google Scholar]
  85. TölleT. FitzcharlesM.A. HäuserW. Is opioid therapy for chronic non-cancer pain associated with a greater risk of all-cause mortality compared to non-opioid analgesics? A systematic review of propensity score matched observational studies.Eur. J. Pain20212561195120810.1002/ejp.174233533519
    [Google Scholar]
  86. MaoJ. Opioid-induced abnormal pain sensitivity: Implications in clinical opioid therapy.Pain2002100321321710.1016/S0304‑3959(02)00422‑012467992
    [Google Scholar]
  87. AngstM.S. ClarkJ.D. Opioid-induced hyperalgesia.Anesthesiology2006104357058710.1097/00000542‑200603000‑0002516508405
    [Google Scholar]
  88. Arribas-RomanoA. Fernández-CarneroJ. Molina-RuedaF. Angulo-Diaz-ParreñoS. Navarro-SantanaM.J. Efficacy of physical therapy on nociceptive pain processing alterations in patients with chronic musculoskeletal pain: A systematic review and meta-analysis.Pain Med.202021102502251710.1093/pm/pnz36632100027
    [Google Scholar]
  89. RiceD. NijsJ. KosekE. WidemanT. HasenbringM.I. KoltynK. Graven-NielsenT. PolliA. Exercise-induced hypoalgesia in pain-free and chronic pain populations: State of the art and future directions.J. Pain201920111249126610.1016/j.jpain.2019.03.00530904519
    [Google Scholar]
  90. ÅrnesA.P. NielsenC.S. StubhaugA. FjeldM.K. HopstockL.A. HorschA. JohansenA. MorsethB. WilsgaardT. SteingrímsdóttirÓ.A. Physical activity and cold pain tolerance in the general population.Eur. J. Pain202125363765010.1002/ejp.169933165994
    [Google Scholar]
  91. JullG. SterlingM. KenardyJ. BellerE. Does the presence of sensory hypersensitivity influence outcomes of physical rehabilitation for chronic whiplash? - A preliminary RCT.Pain20071291283410.1016/j.pain.2006.09.03017218057
    [Google Scholar]
  92. NiknejadB. BolierR. HendersonC.R.Jr DelgadoD. KozlovE. LöckenhoffC.E. ReidM.C. Association between psychological interventions and chronic pain outcomes in older adults.JAMA Intern. Med.2018178683083910.1001/jamainternmed.2018.075629801109
    [Google Scholar]
/content/journals/cn/10.2174/1570159X20666221012112725
Loading
/content/journals/cn/10.2174/1570159X20666221012112725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test