Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Ischemia and reperfusion damage to the liver is one of the major causes of hepatic dysfunction and liver failure after a liver transplant. The start of hepatic ischemia-reperfusion damage is linked to metabolic acidosis, Kupffer cells, neutrophils, excessive calcium, and changes in the permeability of the mitochondrial membrane. Hypoxia activates Kupffer cells, resulting in the production of reactive oxygen species (ROS). These ROS when accumulated, causes apoptosis and necrosis, as well as activate immune and inflammatory responses that involve many cells and signalling molecules. Numerous antioxidant compounds have been researched to lessen oxidative stress and thus serve as potential compounds to deal the ischemia-reperfusion damage. This article confers a deep understanding of the protective effects of some effective therapies, including hepatoprotective agents, attenuation of an increase in xanthine oxidase activity, and administration of antioxidants like N-acetylcysteine, superoxide dismutase (SOD), and ornithine.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230803114856
2023-08-16
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E030823219400.html?itemId=/content/journals/cmp/10.2174/1874467217666230803114856&mimeType=html&fmt=ahah

References

  1. SoaresROS LosadaDM JordaniMC ÉvoraP Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies.Int J Mol Sci.20192020503410.3390/ijms20205034
    [Google Scholar]
  2. WangH. MaS. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome.Am. J. Emerg. Med.200826671171510.1016/j.ajem.2007.10.03118606328
    [Google Scholar]
  3. PapadopoulosD. SiempisT. TheodorakouE. TsoulfasG. Hepatic ischemia and reperfusion injury and trauma: current concepts.Arch. Trauma Res.201322637010.5812/atr.1250124396796
    [Google Scholar]
  4. VarshneyV. GoyalA. GuptaJ.K. YadavH.N. Role of erythropoietin in ischemic postconditioning induced cardioprotection in hyperlipidemic rat heart.J. Indian Coll. Cardiol.201772727710.1016/j.jicc.2017.03.003
    [Google Scholar]
  5. LiS. HafeezA. NoorullaF. GengX. ShaoG. RenC. LuG. ZhaoH. DingY. JiX. Preconditioning in neuroprotection: From hypoxia to ischemia.Prog. Neurobiol.2017157799110.1016/j.pneurobio.2017.01.00128110083
    [Google Scholar]
  6. PaschosP. PaletasK. Non alcoholic fatty liver disease and metabolic syndrome.Int. J. Biol. Pharm. Allied Sci.2021101 (SPECIAL ISSUE)91910.31032/IJBPAS/2021/10.1.100919240815
    [Google Scholar]
  7. EipelC. AbshagenK. VollmarB. Regulation of hepatic blood flow: The hepatic arterial buffer response revisited.World J. Gastroenterol.201016486046605710.3748/wjg.v16.i48.604621182219
    [Google Scholar]
  8. ZhuY. DongJ. WangW.L. LiM.X. LongZ.D. ZhenX.L. LvY. Ischemic preconditioning versus intermittent clamping of portal triad in liver resection: A meta-analysis of randomized controlled trials.Hepatol. Res.201444887888710.1111/hepr.1219323819558
    [Google Scholar]
  9. ChaudhuryS. SebyK. ChakrabortyR. Prevalence of psychiatric and physical morbidity in an urban geriatric population.Indian J. Psychiatry201153212112710.4103/0019‑5545.8253521772643
    [Google Scholar]
  10. RampesS. MaD. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies.J. Biomed. Res.201933422123410.7555/JBR.32.2018008732383437
    [Google Scholar]
  11. DeLeveL.D. Liver sinusoidal endothelial cells and liver regeneration.J. Clin. Invest.201312351861186610.1172/JCI6602523635783
    [Google Scholar]
  12. MaoX. CaiY. ChenY. WangY. JiangX. YeL. LiS. Novel targets and therapeutic strategies to protect against hepatic ischemia reperfusion injury.Front. Med.2022875733610.3389/fmed.2021.75733635059411
    [Google Scholar]
  13. LushchakV.I. Glutathione homeostasis and functions: Potential targets for medical interventions.J. Amino Acids2012201212610.1155/2012/73683722500213
    [Google Scholar]
  14. Vieira SilvaS. FreireE. Pessegueiro MirandaH. Palliative care in end-stage liver disease patients awaiting liver transplantation.GE Port. J. Gastroenterol.202027641742810.1159/00050733633251291
    [Google Scholar]
  15. HiraoH NakamuraK Kupiec-WeglinskiJW Liver ischaemia–reperfusion injury: A new understanding of the role of innate immunity.Nat Rev Gastroenterol Hepatol202219423925610.1038/s41575‑021‑00549‑8
    [Google Scholar]
  16. WuM.Y. YiangG.T. LiaoW.T. TsaiA.P.Y. ChengY.L. ChengP.W. LiC.Y. LiC.J. Current mechanistic concepts in ischemia and reperfusion injury.Cell. Physiol. Biochem.20184641650166710.1159/00048924129694958
    [Google Scholar]
  17. PetrenkoA. CarnevaleM. SomovA. OsorioJ. RodríguezJ. GuibertE. FullerB. FroghiF. Organ Preservation into the 2020s: The Era of Dynamic Intervention.Transfus. Med. Hemother.201946315117210.1159/00049961031244584
    [Google Scholar]
  18. BochimotoH. IshiharaY. Mohd ZinN.K. IwataH. KondohD. ObaraH. MatsunoN. Ultrastructural changes in porcine liver sinusoidal endothelial cells of machine perfused liver donated after cardiac death.World J. Gastroenterol.202228192100211110.3748/wjg.v28.i19.210035664031
    [Google Scholar]
  19. PulakatL. SumnersC. Angiotensin Type 2 receptors: Painful, or not?Front. Pharmacol.20201157199410.3389/fphar.2020.57199433424587
    [Google Scholar]
  20. SastreJ. ServiddioG. PeredaJ. MinanaJ.B. ArduiniA. VendemialeG. PoliG. PallardoF.V. VinaJ. Mitochondrial function in liver disease.Front. Biosci.20071211200120910.2741/213817127373
    [Google Scholar]
  21. Abu-AmaraM. YangS.Y. TapuriaN. FullerB. DavidsonB. SeifalianA. Liver ischemia/reperfusion injury: Processes in inflammatory networks-A review.Liver Transpl.20101691016103210.1002/lt.2211720818739
    [Google Scholar]
  22. BrassC.A. RobertsT.G. Hepatic free radical production after cold storage: Kupffer cell-dependent and -independent mechanisms in rats.Gastroenterology199510841167117510.1016/0016‑5085(95)90216‑37698585
    [Google Scholar]
  23. KanoriaS. GlantzounisG. QuagliaA. DineshS. FusaiG. DavidsonB.R. SeifalianA.M. Remote preconditioning improves hepatic oxygenation after ischaemia reperfusion injury.Transpl. Int.201225778379110.1111/j.1432‑2277.2012.01481.x22533545
    [Google Scholar]
  24. JaeschkeH. Reactive oxygen and ischemia/reperfusion injury of the liver.Chem. Biol. Interact.199179211513610.1016/0009‑2797(91)90077‑K1884426
    [Google Scholar]
  25. RüdigerH.A. ClavienP.A. Tumor necrosis factor α, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver.Gastroenterology2002122120221010.1053/gast.2002.3030411781294
    [Google Scholar]
  26. RauenU. PolzarB. StephanH. MannherzH.G. De GrootH. Cold‐induced apoptosis in cultured hepatocytes and liver endothelial cells: Mediation by reactive oxygen species.FASEB J.199913115516810.1096/fasebj.13.1.1559872940
    [Google Scholar]
  27. GiakoustidisD. PapageorgiouG. IliadisS. KontosN. KostopoulouE. PapachrestouA. TsantilasD. SpyridisC. TakoudasD. BotsoglouN. DimitriadouA. GiakoustidisE. Intramuscular administration of very high dose of alpha-tocopherol protects liver from severe ischemia/reperfusion injury.World J. Surg.200226787287710.1007/s00268‑002‑6271‑211960213
    [Google Scholar]
  28. Montalvo-JaveE.E. Escalante-TattersfieldT. Ortega-SalgadoJ.A. PiñaE. GellerD.A. Factors in the pathophysiology of the liver ischemia-reperfusion injury.J. Surg. Res.2008147115315910.1016/j.jss.2007.06.01517707862
    [Google Scholar]
  29. BouryN.M. CzuprynskiC.J. Listeria monocytogenes infection increases neutrophil adhesion and damage to a murine hepatocyte cell line in vitro.Immunol. Lett.1995461-211111610.1016/0165‑2478(95)00027‑37590905
    [Google Scholar]
  30. PeraltaC. FernándezL. PanésJ. PratsN. SansM. PiquéJ.M. GelpíE. Roselló-CatafauJ. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor–induced P-selectin up-regulation in the rat.Hepatology200133110011310.1053/jhep.2001.2052911124826
    [Google Scholar]
  31. SchwabeR.F. BrennerD.A. Mechanisms of Liver Injury. I. TNF-α-induced liver injury: Role of IKK, JNK, and ROS pathways.Am. J. Physiol. Gastrointest. Liver Physiol.20062904G583G58910.1152/ajpgi.00422.200516537970
    [Google Scholar]
  32. TeodoroJS Da SilvaRT MachadoIF Panisello-RosellóA Roselló-CatafauJ RoloAP Shaping of hepatic ischemia/reperfusion events: The crucial role of mitochondria.Cells202211468810.3390/cells11040688
    [Google Scholar]
  33. ScheweJ. MakeschinM.C. KhandogaA. ZhangJ. MayrD. RothenfußerS. SchnurrM. GerbesA.L. SteibC.J. To protect fatty livers from ischemia reperfusion injury: Role of ischemic postconditioning.Dig. Dis. Sci.20216641349135910.1007/s10620‑020‑06328‑w32451758
    [Google Scholar]
  34. JinS. DaiC.L. Hepatic blood inflow occlusion without hemihepatic artery control in treatment of hepatocellular carcinoma.World J. Gastroenterol.201016465895590010.3748/wjg.v16.i46.589521155013
    [Google Scholar]
  35. JaramilloS. Montane-MuntaneM. GambusP.L. CapitanD. Navarro-RipollR. BlasiA. Perioperative blood loss: Estimation of blood volume loss or haemoglobin mass loss?Blood Transfus.2020181202910.2450/2019.0204‑1931855150
    [Google Scholar]
  36. SinghK. Kumar GuptaJ. SinghK. KumarS. Protective effects of ornithine on hepatic ischemia-reperfusion injury.Int J Gastroenterol Hepatol Dis20232Apre07042321555810.2174/2666290602666230407141138
    [Google Scholar]
  37. ChouillardE.K. GumbsA.A. CherquiD. Vascular clamping in liver surgery: Physiology, indications and techniques.Ann. Surg. Innov. Res.201041210.1186/1750‑1164‑4‑220346153
    [Google Scholar]
  38. GranfeldtA. LeferD.J. Vinten-JohansenJ. Protective ischaemia in patients: Preconditioning and postconditioning.Cardiovasc. Res.200983223424610.1093/cvr/cvp12919398470
    [Google Scholar]
  39. SugiM.D. JoshiG. MadduK.K. DahiyaN. MeniasC.O. Imaging of renal transplant complications throughout the life of the allograft: comprehensive multimodality review.Radiographics20193951327135510.1148/rg.201919009631498742
    [Google Scholar]
  40. AzoulayD. EshkenazyR. AndreaniP. CastaingD. AdamR. IchaiP. NailiS. VinetE. SalibaF. LemoineA. GillonM.C. BismuthH. In situ hypothermic perfusion of the liver versus standard total vascular exclusion for complex liver resection.Ann. Surg.2005241227728510.1097/01.sla.0000152017.62778.2f15650638
    [Google Scholar]
  41. ZhangH. YanQ. WangX. ChenX. ChenY. DuJ. ChenL. The role of mitochondria in liver ischemia-reperfusion injury: From aspects of mitochondrial oxidative stress, mitochondrial fission, mitochondrial membrane permeable transport pore formation, mitophagy, and mitochondria-related protective measures.Oxid. Med. Cell. Longev.2021202111210.1155/2021/667057934285766
    [Google Scholar]
  42. YellonD.M. DowneyJ.M. Preconditioning the myocardium: From cellular physiology to clinical cardiology.Physiol. Rev.20038341113115110.1152/physrev.00009.200314506302
    [Google Scholar]
  43. ErenE.A. LatchanaN. BealE. HayesD.Jr WhitsonB. BlackS.M. Donations after circulatory death in liver transplant.Exp. Clin. Transplant.201614546347010.6002/ect.2015.025627733105
    [Google Scholar]
  44. TolboomH. PouwR.E. IzamisM.L. MilwidJ.M. SharmaN. Soto-GutierrezA. NahmiasY. UygunK. BerthiaumeF. YarmushM.L. Recovery of warm ischemic rat liver grafts by normothermic extracorporeal perfusion.Transplantation200987217017710.1097/TP.0b013e318192df6b19155970
    [Google Scholar]
  45. AzoulayD. Del GaudioM. AndreaniP. IchaiP. SebagM. AdamR. ScattonO. MinB.Y. DelvardV. LemoineA. BismuthH. CastaingD. Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft’s preservation and function: The ying and the yang.Ann. Surg.2005242113313910.1097/01.sla.0000167848.96692.ad15973111
    [Google Scholar]
  46. DongM.H. BettencourtR. BrennerD.A. Barrett-ConnorE. LoombaR. Serum levels of alanine aminotransferase decrease with age in longitudinal analysis.Clin. Gastroenterol. Hepatol.2012103285290.e110.1016/j.cgh.2011.10.01422020064
    [Google Scholar]
  47. HausenloyD.J. BarrabesJ.A. BøtkerH.E. DavidsonS.M. Di LisaF. DowneyJ. EngstromT. FerdinandyP. Carbrera-FuentesH.A. HeuschG. IbanezB. IliodromitisE.K. InserteJ. JenningsR. KaliaN. KharbandaR. LecourS. MarberM. MiuraT. OvizeM. Perez-PinzonM.A. PiperH.M. PrzyklenkK. SchmidtM.R. RedingtonA. Ruiz-MeanaM. VilahurG. Vinten-JohansenJ. YellonD.M. Garcia-DoradoD. Ischaemic conditioning and targeting reperfusion injury: A 30 year voyage of discovery.Basic Res. Cardiol.201611167010.1007/s00395‑016‑0588‑827766474
    [Google Scholar]
  48. LlacunaL. MaríM. LluisJ.M. García-RuizC. Fernández-ChecaJ.C. MoralesA. Reactive oxygen species mediate liver injury through parenchymal nuclear factor-kappaB inactivation in prolonged ischemia/reperfusion.Am. J. Pathol.200917451776178510.2353/ajpath.2009.08085719349371
    [Google Scholar]
  49. LiY PalmerA LupuL Huber-LangM Inflammatory response to the ischaemia–reperfusion insult in the liver after major tissue trauma.Eur J Trauma Emerg Surg.202248611410.1007/s00068‑022‑02026‑6
    [Google Scholar]
  50. SakaiN. Van SweringenH.L. SchusterR. BlanchardJ. BurnsJ.M. TevarA.D. EdwardsM.J. LentschA.B. Receptor activator of nuclear factor-κB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice.Hepatology201255388889710.1002/hep.2475622031462
    [Google Scholar]
  51. YoonSH KangHB KimJ YooK HanSJ Diminazene aceturate attenuates hepatic ischemia/reperfusion injury in mice.Sci Rep.20221211815810.1038/s41598‑022‑21865‑2
    [Google Scholar]
  52. TangY. WangT. JuW. LiF. ZhangQ. ChenZ. GongJ. ZhaoQ. WangD. ChenM. GuoZ. HeX. Ischemic-free liver transplantation reduces the recurrence of hepatocellular carcinoma after liver transplantation.Front. Oncol.20211177353510.3389/fonc.2021.77353534966679
    [Google Scholar]
  53. MichielsenP.P. FrancqueS.M. van DongenJ.L. Viral hepatitis and hepatocellular carcinoma.World J. Surg. Oncol.2005312710.1186/1477‑7819‑3‑2715907199
    [Google Scholar]
  54. BaeH.B. Volatile anesthetics and ischemia-reperfusion injury.Korean J. Anesthesiol.201568321121210.4097/kjae.2015.68.3.21126045921
    [Google Scholar]
  55. CottartC.H. DoL. BlancM.C. VaubourdolleM. DescampsG. DurandD. GalenF.X. ClotJ.P. Hepatoprotective effect of endogenous nitric oxide during ischemia-reperfusion in the rat.Hepatology199929380981310.1002/hep.51029031710051483
    [Google Scholar]
  56. VollmarB. MengerM.D. The hepatic microcirculation: Mechanistic contributions and therapeutic targets in liver injury and repair.Physiol. Rev.20098941269133910.1152/physrev.00027.200819789382
    [Google Scholar]
  57. ReynaertH. ThompsonM.G. ThomasT. GeertsA. Hepatic stellate cells: Role in microcirculation and pathophysiology of portal hypertension.Gut200250457158110.1136/gut.50.4.57111889082
    [Google Scholar]
  58. Torres CrignaA. LinkB. SamecM. GiordanoF.A. KubatkaP. GolubnitschajaO. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine.EPMA J.202112326530510.1007/s13167‑021‑00248‑z34367381
    [Google Scholar]
  59. SinghK. Kumar GuptaJ. SinghK. KumarS. The efficacy of current medications and biomarkers in hepatic ischemia-reperfusion damage.Int J Gastroenterol Hepatol Dis20232Apr10.2174/2666290602666230417110630
    [Google Scholar]
  60. DarW.A. SullivanE. BynonJ.S. EltzschigH. JuC. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms.Liver Int.201939578880110.1111/liv.1409130843314
    [Google Scholar]
  61. GuanL.Y. FuP.Y. LiP.D. LiZ.N. LiuH.Y. XinM.G. LiW. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide.World J. Gastrointest. Surg.20146712212810.4240/wjgs.v6.i7.12225068009
    [Google Scholar]
  62. SaidiR.F. ChangJ. VerbS. BrooksS. NalbantogluI. AdsayV. JacobsM.J. The effect of methylprednisolone on warm ischemia-reperfusion injury in the liver.Am. J. Surg.2007193334534810.1016/j.amjsurg.2006.09.01717320532
    [Google Scholar]
  63. OcuinL.M. ZengS. CavnarM.J. SorensonE.C. BamboatZ.M. GreerJ.B. KimT.S. PopowR. DeMatteoR.P. Nilotinib protects the murine liver from ischemia/reperfusion injury.J. Hepatol.201257476677310.1016/j.jhep.2012.05.01222641092
    [Google Scholar]
  64. GaoF. QiuX. WangK. ShaoC. JinW. ZhangZ. XuX. Targeting the hepatic microenvironment to improve ischemia/reperfusion injury: new insights into the immune and metabolic compartments.Aging Dis.20221341196121410.14336/AD.2022.010935855339
    [Google Scholar]
  65. OlthofP.B. van GolenR.F. MeijerB. van BeekA.A. BenninkR.J. VerheijJ. van GulikT.M. HegerM. Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury.Biochim. Biophys. Acta Mol. Basis Dis.20171863237538510.1016/j.bbadis.2016.10.02227989959
    [Google Scholar]
  66. LiJ LiRJ LvGY LiuHQ The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury.Eur Rev Med Pharmacol Sci2015191120362047
    [Google Scholar]
  67. BhattacharyyaA. ChattopadhyayR. MitraS. CroweS.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases.Physiol. Rev.201494232935410.1152/physrev.00040.201224692350
    [Google Scholar]
  68. GrangerD.N. KvietysP.R. Reperfusion injury and reactive oxygen species: The evolution of a concept.Redox Biol.2015652455110.1016/j.redox.2015.08.02026484802
    [Google Scholar]
  69. Chaves CayuelaN. Kiyomi KoikeM. JacysynJ. RasslanR. Azevedo CerqueiraA. Pereira CostaS. Picanço Diniz-JúniorJ. Massazo UtiyamaE. Frasson de Souza MonteroE. N-acetylcysteine reduced ischemia and reperfusion damage associated with steatohepatitis in mice.Int. J. Mol. Sci.20202111410610.3390/ijms2111410632526845
    [Google Scholar]
  70. SchauerR.J. GerbesA.L. VonierD. MeissnerH. MichlP. LeidererR. SchildbergF.W. MessmerK. BilzerM. Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia.Ann. Surg.2004239222023110.1097/01.sla.0000110321.64275.9514745330
    [Google Scholar]
  71. YounusH. Therapeutic potentials of superoxide dismutase.Int J Health Sci20181238893
    [Google Scholar]
  72. ReddyM.K. LabhasetwarV. Nanoparticle‐mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia‐reperfusion injury.FASEB J.20092351384139510.1096/fj.08‑11694719124559
    [Google Scholar]
  73. Rinaldi TosiM.E. BocanegraV. ManuchaW. Gil LorenzoA. VallésP.G. The Nrf2–Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO).Cell Stress Chaperones2011161576810.1007/s12192‑010‑0221‑y20734248
    [Google Scholar]
  74. ConstantinM. ChoiA.J.S. CloonanS.M. RyterS.W. Therapeutic potential of heme oxygenase-1/carbon monoxide in lung disease.Int. J. Hypertens.2012201211910.1155/2012/85923522518295
    [Google Scholar]
  75. WuH.H. HuangC.C. ChangC.P. LinM.T. NiuK.C. TianY.F. Heat shock Protein 70 (HSP70) reduces hepatic inflammatory and oxidative damage in a rat model of liver ischemia/reperfusion injury with hyperbaric oxygen preconditioning.Med. Sci. Monit.2018248096810410.12659/MSM.91164130417859
    [Google Scholar]
  76. HoglenN.C. AnselmoD.M. KatoriM. KaldasM. ShenX.D. ValentinoK.L. LassmanC. BusuttilR.W. Kupiec-WeglinskiJ.W. FarmerD.G. A caspase inhibitor, IDN-6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia.Liver Transpl.200713336136610.1002/lt.2101617318854
    [Google Scholar]
  77. JeonB.R. YeomD.H. LeeS.M. Protective effect of allopurinol on hepatic energy metabolism in ischemic and reperfused rat liver.Shock200115211211710.1097/00024382‑200115020‑0000611220638
    [Google Scholar]
  78. GuoJ. ZhangT. GuJ. CaiK. DengX. ChenK. HuangK. WangG. LiH. WangJ. Oleic acid protects against hepatic ischemia and reperfusion injury in mice by inhibiting AKT/mTOR pathways.Oxid. Med. Cell. Longev.2019201911810.1155/2019/484259231915509
    [Google Scholar]
  79. Alfonso-PrietoM. BiarnésX. VidossichP. RoviraC. The molecular mechanism of the catalase reaction.J. Am. Chem. Soc.200913133117511176110.1021/ja901857219653683
    [Google Scholar]
  80. MatsumotoH. SilvertonS.F. DeboltK. ShapiroI.M. Superoxide dismutase and catalase activities in the growth cartilage: Relationship between oxidoreductase activity and chondrocyte maturation.J. Bone Miner. Res.19916656957410.1002/jbmr.56500606071887819
    [Google Scholar]
  81. NitaM. GrzybowskiA. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.Oxid. Med. Cell. Longev.2016201612310.1155/2016/316473426881021
    [Google Scholar]
  82. KasparJ.W. NitureS.K. JaiswalA.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress.Free Radic. Biol. Med.20094791304130910.1016/j.freeradbiomed.2009.07.03519666107
    [Google Scholar]
  83. SahebkarA. CiceroA.F.G. Simental-MendíaL.E. AggarwalB.B. GuptaS.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials.Pharmacol. Res.201610723424210.1016/j.phrs.2016.03.02627025786
    [Google Scholar]
  84. ZakiH.F. AbdelsalamR.M. Vinpocetine protects liver against ischemia–reperfusion injury.Can. J. Physiol. Pharmacol.201391121064107010.1139/cjpp‑2013‑009724289077
    [Google Scholar]
  85. LinC.M. LeeJ.F. ChiangL.L. ChenC.F. WangD. SuC.L. The protective effect of curcumin on ischemia-reperfusion-induced liver injury.Transplant. Proc.201244497497710.1016/j.transproceed.2012.01.08122564600
    [Google Scholar]
  86. TruongV.L. JunM. JeongW.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress.Biofactors2018441364910.1002/biof.139929193412
    [Google Scholar]
  87. WangY. SunX. HanX. SunJ. LiL. ZhangD. SunG. Resveratrol improves hepatic ischemia-reperfusion injury by inhibiting neutrophils via the ERK signaling pathway.Biomed. Pharmacother.202316011435810.1016/j.biopha.2023.11435836739762
    [Google Scholar]
  88. DusabimanaT. KimS.R. KimH.J. ParkS.W. KimH. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis.Exp. Mol. Med.201951411610.1038/s12276‑019‑0245‑z31028246
    [Google Scholar]
  89. ChenJ.H. TipoeG.L. LiongE.C. SoH.S.H. LeungK.M. TomW.M. FungP.C.W. NanjiA.A. Green tea polyphenols prevent toxin-induced hepatotoxicity in mice by down-regulating inducible nitric oxide–derived prooxidants.Am. J. Clin. Nutr.200480374275110.1093/ajcn/80.3.74215321817
    [Google Scholar]
  90. ZhongZ. FrohM. ConnorH.D. LiX. ConzelmannL.O. MasonR.P. LemastersJ.J. ThurmanR.G. Prevention of hepatic ischemia-reperfusion injury by green tea extract.Am. J. Physiol. Gastrointest. Liver Physiol.20022834G957G96410.1152/ajpgi.00216.200112223356
    [Google Scholar]
  91. ZhangX.G. XuP. LiuQ. YuC.H. ZhangY. ChenS.H. LiY.M. Effect of tea polyphenol on cytokine gene expression in rats with alcoholic liver disease.Hepatobiliary Pancreat. Dis. Int.20065226827216698589
    [Google Scholar]
  92. FanS. ZhangC. LuoT. WangJ. TangY. ChenZ. YuL. Limonin: A review of its pharmacology, toxicity, and pharmacokinetics.Molecules20192420367910.3390/molecules2420367931614806
    [Google Scholar]
  93. MahmoudM.F. GamalS. El-FayoumiH.M. Limonin attenuates hepatocellular injury following liver ischemia and reperfusion in rats via toll-like receptor dependent pathway.Eur. J. Pharmacol.201474067668210.1016/j.ejphar.2014.06.01024967531
    [Google Scholar]
  94. NiuX. ZhangY. ChengM. YinN. WuY. ShiW. YangY. ZhuL. HuangC. LiJ. 7-O-(2- (Propylamino)-2-oxoethyl) hesperetin attenuates inflammation and protects against alcoholic liver injury by NLRP12.Int. Immunopharmacol.202211010900610.1016/j.intimp.2022.10900635792270
    [Google Scholar]
  95. PuthanveetilP. KongX. BräseS. VorosG. PeerW.A. Transcriptome analysis of two structurally related flavonoids; Apigenin and Chrysin revealed hypocholesterolemic and ketogenic effects in mouse embryonic fibroblasts.Eur. J. Pharmacol.202189317380410.1016/j.ejphar.2020.17380433347826
    [Google Scholar]
  96. LinJ. TianJ. ShuC. ChengZ. LiuY. WangW. LiuR. LiB. WangY. Malvidin-3-galactoside from blueberry suppresses the growth and metastasis potential of hepatocellular carcinoma cell Huh-7 by regulating apoptosis and metastases pathways.Food Sci. Hum. Wellness20209213614510.1016/j.fshw.2020.02.004
    [Google Scholar]
  97. NassefN.A. Quercetin improves platelet function and ultrastructure in cholestatic liver injury in rats: Role of ORAI1 gene expression.Gene Rep.20191710048510.1016/j.genrep.2019.100485
    [Google Scholar]
  98. YuZ. YangL. DengS. LiangM. Daidzein ameliorates LPS-induced hepatocyte injury by inhibiting inflammation and oxidative stress.Eur. J. Pharmacol.202088517339910.1016/j.ejphar.2020.17339932712091
    [Google Scholar]
  99. WuH. XieY. XuY. HuZ. WanX. HuangH. HuangD. Protective effect of Epicatechin on APAP-induced acute liver injury of mice through anti-inflammation and apoptosis inhibition.Nat. Prod. Res.202034685585810.1080/14786419.2018.150326130394110
    [Google Scholar]
  100. PatelR.P. LangJ.D. SmithA.B. CrawfordJ.H. Redox therapeutics in hepatic ischemia reperfusion injury.World J. Hepatol.2014611810.4254/wjh.v6.i1.124653789
    [Google Scholar]
  101. IngramH DoganM EasonJD KuscuC KuscuC MicroRNAs: Novel targets in hepatic ischemia–reperfusion injury.Biomedicines202210479110.3390/biomedicines10040791
    [Google Scholar]
  102. KenslerT.W. WakabayashiN. BiswalS. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.Annu. Rev. Pharmacol. Toxicol.20074718911610.1146/annurev.pharmtox.46.120604.14104616968214
    [Google Scholar]
  103. KluneJ.R. TsungA. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements.Surg. Clin. North Am.201090466567710.1016/j.suc.2010.04.00320637940
    [Google Scholar]
  104. YangJ. MardenJ.J. FanC. SanliogluS. WeissR.M. RitchieT.C. DavissonR.L. EngelhardtJ.F. Genetic redox preconditioning differentially modulates AP-1 and NFκB responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis.Mol. Ther.20037334135310.1016/S1525‑0016(02)00061‑812668130
    [Google Scholar]
  105. CesarattoL. VascottoC. D’AmbrosioC. ScaloniA. BaccaraniU. ParonI. DamanteG. CalligarisS. QuadrifoglioF. TiribelliC. TellG. Overoxidation of peroxiredoxins as an immediate and sensitive marker of oxidative stress in HepG2 cells and its application to the redox effects induced by ischemia/reperfusion in human liver.Free Radic. Res.200539325526810.1080/1071576040002960315788230
    [Google Scholar]
  106. RobinsonR.T. WangJ. CrippsJ.G. MilksM.W. EnglishK.A. PearsonT.A. GorhamJ.D. End-organ damage in a mouse model of fulminant liver inflammation requires CD4+ T cell production of IFN-gamma but is independent of Fas.J. Immunol.200918253278328410.4049/jimmunol.080341719234226
    [Google Scholar]
  107. KuyvenhovenJ.P. VerspagetH.W. GaoQ. RingersJ. SmitV.T.H.B.M. LamersC.B.H.W. van HoekB. Assessment of serum matrix metalloproteinases MMP-2 and MMP-9 after human liver transplantation: increased serum MMP-9 level in acute rejection.Transplantation200477111646165210.1097/01.TP.0000131170.67671.7515201662
    [Google Scholar]
  108. DuarteS BaberJ FujiiT CoitoAJ Matrix metalloproteinases in liver injury, repair and fibrosis.Matrix Biol201544-4614715610.1016/j.matbio.2015.01.004
    [Google Scholar]
  109. JaeschkeH. WoolbrightB.L. Current strategies to minimize hepatic ischemia–reperfusion injury by targeting reactive oxygen species.Transplant. Rev.201226210311410.1016/j.trre.2011.10.00622459037
    [Google Scholar]
  110. KalimerisK. BriassoulisP. NtzouvaniA. NomikosT. PapaparaskevaK. PolitiA. BatistakiC. KostopanagiotouG. N-acetylcysteine ameliorates liver injury in a rat model of intestinal ischemia reperfusion.J. Surg. Res.2016206226327210.1016/j.jss.2016.08.04927884318
    [Google Scholar]
  111. SözenS. KisakürekM. YildizF. GönültaşM. DinçelA.S. The effects of glutamine on hepatic ischemia reperfusion injury in rats.Hippokratia201115216116622110300
    [Google Scholar]
  112. SidhuS.S. L-ornithine L-aspartate is effective and safe for the treatment of hepatic encephalopathy in cirrhosis.J. Clin. Exp. Hepatol.20188321922110.1016/j.jceh.2018.08.00730302036
    [Google Scholar]
  113. VanisreeA.J. ShyamaladeviC.S. The effect of N-acetylcysteine in combination with vitamin C on the activity of ornithine decarboxylase of lung carcinoma cells — In vitro.Life Sci.200679765465910.1016/j.lfs.2006.02.00916574159
    [Google Scholar]
  114. CaldwellR.W. RodriguezP.C. ToqueH.A. NarayananS.P. CaldwellR.B. Arginase: A multifaceted enzyme important in health and disease.Physiol. Rev.201898264166510.1152/physrev.00037.201629412048
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230803114856
Loading
/content/journals/cmp/10.2174/1874467217666230803114856
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test