Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background:

The mammalian role of the rapamycin (mTOR) pathway is the practical nutrient-sensitive regulation of animal growth and plays a central role in physiology, metabolism, and common diseases. The mTOR is activated in response to nutrients, growth factors, and cellular energy. The mTOR pathway activates in various cellular processes and human cancer diseases. Dysfunction of mTOR signal transduction is associated with metabolic disorders, cancer for instance.

Objective:

In recent years, significant achievements envisaged in developing targeted drugs for cancer. The global impact of cancer continues to grow. However, the focus of disease-modifying therapies remains elusive. The mTOR is a significant target in cancer to be considered for mTOR inhibitors, even though the costs are high. Despite many mTOR inhibitors, potent, selective inhibitors for mTOR are still limited. Therefore, in this review, the mTOR structure and protein-ligand interactions of utmost importance to provide the basis for molecular modelling and structure-based drug design are discussed.

Conclusion:

This review introduces the mTOR, its crystal structure, and the latest research on mTOR.Besides, the role of mTOR in cancer, its function, and its regulation are reviewed. In addition, the mechanistic role of mTOR signalling networks in cancer and interaction with drugs that inhibit the development of mTOR and crystal structures of mTOR and its complexes are explored. Finally, the current status and prospects of mTOR-targeted therapy are addressed.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230331081959
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/BMS-CMP-2022-278.html?itemId=/content/journals/cmp/10.2174/1874467217666230331081959&mimeType=html&fmt=ahah

References

  1. KennedyB.K. LammingD.W. The mechanistic target of rapamycin: The grand conducTOR of metabolism and aging.Cell Metab.2016236990100310.1016/j.cmet.2016.05.00927304501
    [Google Scholar]
  2. HuangS. ZhouH. Role of mTOR signaling in tumor cell motility, invasion and metastasis.Curr. Protein Pept. Sci.2011121304210.2174/13892031179565940721190521
    [Google Scholar]
  3. SaxtonR.A. SabatiniD.M. mTOR signaling in growth, metabolism, and disease.Cell2017168696097610.1016/j.cell.2017.02.00428283069
    [Google Scholar]
  4. LiuG.Y. SabatiniD.M. mTOR at the nexus of nutrition, growth, ageing and disease.Nat. Rev. Mol. Cell Biol.202021418320310.1038/s41580‑019‑0199‑y
    [Google Scholar]
  5. PopovaN.V. JückerM. The role of mTOR signaling as a therapeutic target in cancer.Int. J. Mol. Sci.2021224174310.3390/ijms2204174333572326
    [Google Scholar]
  6. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑132175074
    [Google Scholar]
  7. SenguptaS. PetersonT.R. SabatiniD.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress.Mol. Cell201040231032210.1016/j.molcel.2010.09.02620965424
    [Google Scholar]
  8. YangH. JiangX. LiB. YangH.J. MillerM. YangA. DharA. PavletichN.P. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40.Nature2017552768536837310.1038/nature2502329236692
    [Google Scholar]
  9. ChaoL.H. AvruchJ. Cryo-EM insight into the structure of MTOR complex 1 and its interactions with Rheb and substrates.F1000 Res.201981410.12688/f1000research.16109.130647914
    [Google Scholar]
  10. YangH. ChenX. LiuM. XuY. The structure of mTOR complexes at a glance.Precis. Cancer Med.20181710.21037/pcm.2018.07.02
    [Google Scholar]
  11. ShowkatM. BeighM.A. AndrabiK.I. mTOR signaling in protein translation regulation: Implications in cancer genesis and therapeutic interventions.Mol. Biol. Int.2014201411410.1155/2014/68698425505994
    [Google Scholar]
  12. ConciatoriF. BazzichettoC. FalconeI. PilottoS. BriaE. CognettiF. MilellaM. CiuffredaL. Role of mTOR signaling in tumor microenvironment: An overview.Int. J. Mol. Sci.2018198245310.3390/ijms1908245330126252
    [Google Scholar]
  13. LaplanteM. SabatiniD.M. mTOR signaling at a glance.J. Cell Sci.2009122203589359410.1242/jcs.05101119812304
    [Google Scholar]
  14. OhW.J. JacintoE. mTOR complex 2 signaling and functions.Cell Cycle201110142305231610.4161/cc.10.14.1658621670596
    [Google Scholar]
  15. VasanN. ToskaE. ScaltritiM. Overview of the relevance of PI3K pathway in HR-positive breast cancer.Ann. Oncol.201930S10x3x1110.1093/annonc/mdz28131859348
    [Google Scholar]
  16. ChalhoubN. BakerS.J. PTEN and the PI3-kinase pathway in cancer.Annu. Rev. Pathol.20094112715010.1146/annurev.pathol.4.110807.09231118767981
    [Google Scholar]
  17. RouxP.P. TopisirovicI. Signaling pathways involved in the regulation of mRNA translation.Mol. Cell. Biol.20183812e00070-1810.1128/MCB.00070‑1829610153
    [Google Scholar]
  18. HuangJ. ManningB.D. The TSC1–TSC2 complex: A molecular switchboard controlling cell growth.Biochem. J.2008412217919010.1042/BJ2008028118466115
    [Google Scholar]
  19. Ben-SahraI. ManningB.D. mTORC1 signaling and the metabolic control of cell growth.Curr. Opin. Cell Biol.201745728210.1016/j.ceb.2017.02.01228411448
    [Google Scholar]
  20. ZhouH. HuangS. The complexes of mammalian target of rapamycin.Curr. Protein Pept. Sci.201011640942410.2174/13892031079182409320491627
    [Google Scholar]
  21. YangH. RudgeD.G. KoosJ.D. VaidialingamB. YangH.J. PavletichN.P. mTOR kinase structure, mechanism and regulation.Nature2013497744821722310.1038/nature1212223636326
    [Google Scholar]
  22. Miller, N.; AACR, 2009.2009
    [Google Scholar]
  23. KnightS.D. AdamsN.D. BurgessJ.L. ChaudhariA.M. DarcyM.G. DonatelliC.A. LuengoJ.I. NewlanderK.A. ParrishC.A. RidgersL.H. SarpongM.A. SchmidtS.J. Van AllerG.S. CarsonJ.D. DiamondM.A. ElkinsP.A. GardinerC.M. GarverE. GilbertS.A. GontarekR.R. JacksonJ.R. KershnerK.L. LuoL. RahaK. SherkC.S. SungC.M. SuttonD. TumminoP.J. WegrzynR.J. AugerK.R. DhanakD. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin.ACS Med. Chem. Lett.201011394310.1021/ml900028r24900173
    [Google Scholar]
  24. ThoreenC.C. KangS.A. ChangJ.W. LiuQ. ZhangJ. GaoY. ReichlingL.J. SimT. SabatiniD.M. GrayN.S. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1.J. Biol. Chem.2009284128023803210.1074/jbc.M90030120019150980
    [Google Scholar]
  25. LiuQ. ChangJ.W. WangJ. KangS.A. ThoreenC.C. MarkhardA. HurW. ZhangJ. SimT. SabatiniD.M. GrayN.S. Discovery of 1-(4-(4-Propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1 H )-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer.J. Med. Chem.201053197146715510.1021/jm101144f20860370
    [Google Scholar]
  26. LiJ. LiuJ. SongJ. WangX. WeissH.L. TownsendC.M.Jr GaoT. EversB.M. mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON.Am. J. Physiol. Cell Physiol.20113011C213C22610.1152/ajpcell.00067.201121508335
    [Google Scholar]
  27. García-MartínezJ.M. MoranJ. ClarkeR.G. GrayA. CosulichS.C. ChrestaC.M. AlessiD.R. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).Biochem. J.20094211294210.1042/BJ2009048919402821
    [Google Scholar]
  28. FalconB.L. BarrS. GokhaleP.C. ChouJ. FogartyJ. DepeilleP. MiglareseM. EpsteinD.M. McDonaldD.M. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors.Cancer Res.20117151573158310.1158/0008‑5472.CAN‑10‑312621363918
    [Google Scholar]
  29. LiH. LinJ. WangX. YaoG. WangL. ZhengH. YangC. JiaC. LiuA. BaiX. Targeting of mTORC2 prevents cell migration and promotes apoptosis in breast cancer.Breast Cancer Res. Treat.201213431057106610.1007/s10549‑012‑2036‑222476852
    [Google Scholar]
  30. XueQ. HopkinsB. PerruzziC. UdayakumarD. SherrisD. BenjaminL.E. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability.Cancer Res.200868229551955710.1158/0008‑5472.CAN‑08‑205819010932
    [Google Scholar]
  31. DiazR. NguewaP.A. Diaz-GonzalezJ.A. HamelE. Gonzalez-MorenoO. CatenaR. SerranoD. RedradoM. SherrisD. CalvoA. The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer.Br. J. Cancer2009100693294010.1038/sj.bjc.660493819240717
    [Google Scholar]
  32. EdwardsS.R. WandlessT.J. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.J. Biol. Chem.200728218133951340110.1074/jbc.M70049820017350953
    [Google Scholar]
  33. ZinzallaV. GraziolaM. MastrianiA. VanoniM. AlberghinaL. Rapamycin-mediated G1 arrest involves regulation of the Cdk inhibitor Sic1 in Saccharomyces cerevisiae.Mol. Microbiol.20076351482149410.1111/j.1365‑2958.2007.05599.x17302822
    [Google Scholar]
  34. TakeuchiH. KondoY. FujiwaraK. KanzawaT. AokiH. MillsG.B. KondoS. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors.Cancer Res.20056583336334610.1158/0008‑5472.CAN‑04‑364015833867
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230331081959
Loading
/content/journals/cmp/10.2174/1874467217666230331081959
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; Cell growth; Crystal structure; mTOR; mTOR 2; mTOR1; PIK3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test