Skip to content
2000
Volume 16, Issue 3
  • ISSN: 1874-4672
  • E-ISSN:

Abstract

Background and Objective: Hydroxychloroquine (HCQ) is a molecule derived from quinacrine; it displays a wide range of pharmacological properties, including anti-inflammatory, immunomodulatory, and antineoplastic. However, little is known about this molecule’s role in lung injury. This study aimed to identify HCQ’s regulatory role of HCQ in sepsis-induced lung injury and its molecular mechanism. Methods: To test the protective properties of HCQ, we established an in vivo model of lipopolysaccharide (LPS)-induced lung injury in mice. The extent of the injury was determined by evaluating histopathology, inflammatory response, oxidative stress, and apoptosis. Mechanistically, conventional nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) knockout mice were employed to investigate whether HCQ exerted pulmonary protection by inhibiting NLRP3-mediated pyroptosis. Results: Our findings revealed that HCQ pretreatment significantly mitigated LPS-induced lung injury in mice in terms of histopathology, inflammatory response, oxidative stress, and apoptosis, while inhibiting LPS-induced NLRP3 inflammasome activation and pyroptosis. Additionally, the indicators of lung injury, including histopathology, inflammatory response, oxidative stress, and apoptosis, were still reduced drastically in LPS-treated NLRP3 (-/-) mice after HCQ pretreatment. Notably, HCQ pretreatment further decreased the levels of pyroptosis indicators, including IL-1β, IL-18 and Cle-GSDMD, in LPS-treated NLRP3 (-/-) mice. Conclusion: Taken together, HCQ protects against lung injury by inhibiting pyroptosis, maybe not only through the NLRP3 pathway but also through non-NLRP3 pathway; therefore, it may be a new therapeutic strategy in the treatment of lung injury.

Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467215666220822110855
2023-06-01
2024-11-08
Loading full text...

Full text loading...

/content/journals/cmp/10.2174/1874467215666220822110855
Loading


  • Article Type:
    Research Article
Keyword(s): apoptosis; Hydroxychloroquine; inflammation; lung injury; NLRP3; oxidative stress; pyroptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test