Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Momordica cochinchinensis is a dried and mature seed of Cucurbitaceae plants, which has the effect of dispersing nodules, detumescence, attacking poison, and treating sores, and is used in the treatment of tumors in the clinic. P-hydroxylcinnamaldehyde (CMSP) is an ethanol extract of cochinchina momordica seed (CMS). Our previous studies have found that CMSP is an effective anti-tumor component with good anti-tumor effects on melanoma and esophageal tumors. However, the inhibitory effect of CMSP on gastric cancer (GC) and its potential mechanism remain to be further elucidated.

Methods

First, we utilized network pharmacology to predict potential targets and mechanisms of action for the treatment of GC. Subsequently, a series of biological function experiments were conducted to assess the effects of CMSP on the proliferation and apoptosis of GC cells . To elucidate the molecular mechanism of CMSP, bioinformatics and high-efficiency liquid chromatography tandem mass spectrometry (HPLC-MS/MS) were employed for analysis. Additionally, a resistant cell line of the chemotherapy drug paclitaxel for GC was established, and the impact of 10μg/mL CMSP on the sensitivity of GC-resistant cells was examined.

Results

The network pharmacology results demonstrated that the active components of CMS exert an anti-GC effect through multi-target and multi-pathway mechanisms. The main pathways involved included the PI3K/Akt pathway, p53 signaling pathway, multi-species apoptosis pathway, as well as ADRB2 and CAV1 genes. Cell experiments revealed that CMSP can effectively inhibit the proliferation and induce apoptosis of GC cells . However, it did not show any sensitizing effect on paclitaxel-resistant cells. Importantly, CMSP exhibited no toxic or side effects on normal gastric epithelial cells. Furthermore, differential protein expression patterns following CMSP treatment were elucidated using HPLC-MS/MS and western blot analysis, highlighting its role in regulating apoptosis signaling pathways.

Conclusion

Our study presents novel evidence regarding pertinent potential target genes and signaling pathways through which CMSP mediates its anti-GC effects, with a particular emphasis on its role in modulating apoptotic signaling pathways. Collectively, these findings underscore the promising candidacy of CMSP as a therapeutic agent for GC that merits further investigation in clinical contexts.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429322420241112051105
2024-01-01
2025-05-05
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.2144229313949
    [Google Scholar]
  3. ZhangH. FuT. ZhangC. MicroRNA-1249 targets G protein subunit Alpha 11 and facilitates gastric cancer cell proliferation, motility and represses cell apoptosis.OncoTargets Ther.2021141249125910.2147/OTT.S27259933658793
    [Google Scholar]
  4. YangH. JiX. JinC. JiK. JiaZ. WuX. ZhangJ. BuZ. A practical nomogram for predicting the prognosis of elderly patients with gastric adenocarcinoma after gastrectomy.Int. J. Gen. Med.20221547348810.2147/IJGM.S34330635046708
    [Google Scholar]
  5. Van CutsemE. SagaertX. TopalB. HaustermansK. PrenenH. Gastric cancer.Lancet2016388100602654266410.1016/S0140‑6736(16)30354‑327156933
    [Google Scholar]
  6. ZhangQ. WangX. CaoS. SunY. HeX. JiangB. YuY. DuanJ. QiuF. KangN. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways.Biomed. Pharmacother.202012811024510.1016/j.biopha.2020.11024532454290
    [Google Scholar]
  7. QiaoD. XingJ. DuanY. WangS. YaoG. ZhangS. JinJ. LinZ. ChenL. PiaoY. The molecular mechanism of baicalein repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway.Phytomedicine202210015404610.1016/j.phymed.2022.15404635306368
    [Google Scholar]
  8. YuM. PanQ. LiW. DuT. HuangF. WuH. HeY. WuX. ShiH. Isoliquiritigenin inhibits gastric cancer growth through suppressing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α mediated energy metabolic collapse.Phytomedicine202312115504510.1016/j.phymed.2023.15504537742526
    [Google Scholar]
  9. SuK. YaoX. GuoC. QianC. WangY. MaX. WangX. YangY. Solasodine suppresses the metastasis of gastric cancer through claudin-2 via the AMPK/STAT3/NF-κB pathway.Chem. Biol. Interact.202337911052010.1016/j.cbi.2023.11052037121296
    [Google Scholar]
  10. WangH. LuoY. ChuZ. NiT. OuS. DaiX. ZhangX. LiuY. Poria acid, triterpenoids extracted from Poria cocos, inhibits the invasion and metastasis of gastric cancer cells.Molecules20222711362910.3390/molecules2711362935684565
    [Google Scholar]
  11. XiaoC. RajputZ.I. LiuD. HuS. Enhancement of serological immune responses to foot-and-mouth disease vaccine by a supplement made of extract of cochinchina momordica seeds.Clin. Vaccine Immunol.200714121634163910.1128/CVI.00339‑0717942610
    [Google Scholar]
  12. ZhaoL. MaM. WuH. ZhangC. DaiS. DongP. HuoB. ShanB. p-Hydroxylcinnamaldehyde slows the progression of 4NQO-induced oesophageal tumourigenesis via the RhoA-MAPK signaling pathway.Mol. Carcinog.201857101319133110.1002/mc.2284729873419
    [Google Scholar]
  13. ZhaoL. SunG. HanL. LiuL. RenF. LiL. MaM. ShanB. P-Hydroxycinnamaldehyde induces B16-F1 melanoma cell differentiation via the RhoA-MAPK signaling pathway.Cell. Physiol. Biochem.20163862247226010.1159/00044558027188168
    [Google Scholar]
  14. MaM. ZhangC. XiangX. DengX. DaiS. WeiS. ZhangX. ZhaoL. LiuY. ShanB.E. p-Hydroxylcinnamaldehyde from cochinchinamomordica seed reverses resistance to TRAIL in human oesophageal squamous cell carcinoma via the activation of the p38 mitogen-activated protein kinase signalling pathway.Biomed. Pharmacother.202012110961110.1016/j.biopha.2019.10961131731196
    [Google Scholar]
  15. WangX. WeiS. LiW. WeiX. ZhangC. DaiS. MaM. ZhaoL. ShanB. P-Hydroxylcinnamaldehyde induces tumor-associated macrophage polarization toward the M1 type by regulating the proteome and inhibits ESCC in vivo and in vitro.Int. Immunopharmacol.202311911021310.1016/j.intimp.2023.11021337137266
    [Google Scholar]
  16. MaM. ZhaoL. YangX. ShanY. CuiW. ChenL. ShanB. p-Hydroxylcinnamaldehyde induces the differentiation of oesophageal carcinoma cells via the cAMP-RhoA-MAPK signalling pathway.Sci. Rep.2016613131510.1038/srep3131527501997
    [Google Scholar]
  17. ZhangR. YuS. BaiH. NingK. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations.Sci. Rep.201771282110.1038/s41598‑017‑03039‑728588237
    [Google Scholar]
  18. GongB. KaoY. ZhangC. SunF. ZhaoH. Systematic investigation of scutellariae barbatae herba for treating hepatocellular carcinoma based on network pharmacology.Evid. Based Complement. Alternat. Med.201820181436573910.1155/2018/436573930584453
    [Google Scholar]
  19. LiX. TangH. TangQ. ChenW. Decoding the mechanism of huanglian jiedu decoction in treating pneumonia based on network pharmacology and molecular docking.Front. Cell Dev. Biol.2021963836610.3389/fcell.2021.63836633681222
    [Google Scholar]
  20. JiaG. JiangX. LiZ. DingX. LeiL. XuS. GaoN. Decoding the mechanism of Shen Qi Sha Bai decoction in treating acute myeloid leukemia based on network pharmacology and molecular docking.Front. Cell Dev. Biol.2021979675710.3389/fcell.2021.79675734988084
    [Google Scholar]
  21. ZhaoL.M. HanL.N. RenF.Z. ChenS.H. LiuL.H. WangM.X. SangM.X. ShanB.E. An ester extract of Cochinchina momordica seeds induces differentiation of melanoma B16 F1 cells via MAPKs signaling.Asian Pac. J. Cancer Prev.20121383795380210.7314/APJCP.2012.13.8.379523098473
    [Google Scholar]
  22. JiaJ. QiuX. Research advances on TCM anti-tumor effects and the molecular mechanisms.J. Cancer Res. Ther.2014105Suppl. 181310.4103/0973‑1482.13974425207899
    [Google Scholar]
  23. OuyangL. LuoY. TianM. ZhangS.Y. LuR. WangJ.H. KasimuR. LiX. Plant natural products: From traditional compounds to new emerging drugs in cancer therapy.Cell Prolif.201447650651510.1111/cpr.1214325377084
    [Google Scholar]
  24. LiuH.R. MengL.Y. LinZ.Y. ShenY. YuY.Q. ZhuY.Z. Cochinchina momordica seed extract induces apoptosis and cell cycle arrest in human gastric cancer cells via PARP and p53 signal pathways.Nutr. Cancer20126471070107710.1080/01635581.2012.71273723020228
    [Google Scholar]
  25. RuJ LiP WangJ TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J Cheminform.2014613
    [Google Scholar]
  26. XuH.Y. ZhangY.Q. LiuZ.M. ChenT. LvC.Y. TangS.H. ZhangX.B. ZhangW. LiZ.Y. ZhouR.R. YangH.J. WangX.J. HuangL.Q. ETCM: An encyclopaedia of traditional Chinese medicine.Nucleic Acids Res.201947D1D976D98210.1093/nar/gky98730365030
    [Google Scholar]
  27. StelzerG RosenN PlaschkesI The GeneCards suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics.2016541.30.11.30.33
    [Google Scholar]
  28. BuryM. Le CalvéB. FerbeyreG. BlankV. LessardF. New insights into CDK regulators: Novel opportunities for cancer therapy.Trends Cell Biol.202131533134410.1016/j.tcb.2021.01.01033676803
    [Google Scholar]
  29. LohbergerB. BernhartE. StuendlN. GlaenzerD. LeithnerA. RinnerB. BauerR. KretschmerN. Periplocin mediates TRAIL-induced apoptosis and cell cycle arrest in human myxofibrosarcoma cells via the ERK/p38/JNK pathway.Phytomedicine20207615326210.1016/j.phymed.2020.15326232559583
    [Google Scholar]
  30. KashyapD. GargV.K. GoelN. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis.Adv. Protein Chem. Struct. Biol.20211257312010.1016/bs.apcsb.2021.01.00333931145
    [Google Scholar]
  31. WangH. ZhuJ. JiangL. ShanB. XiaoP. AiJ. LiN. QiF. NiuS. Mechanism of Heshouwuyin inhibiting the Cyt c/Apaf-1/Caspase-9/Caspase-3 pathway in spermatogenic cell apoptosis.BMC Complement. Med. Ther.202020118010.1186/s12906‑020‑02904‑932527252
    [Google Scholar]
  32. AshkenaziA. FairbrotherW.J. LeversonJ.D. SouersA.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors.Nat. Rev. Drug Discov.201716427328410.1038/nrd.2016.25328209992
    [Google Scholar]
  33. LindsayJ. EspostiM.D. GilmoreA.P. Bcl-2 proteins and mitochondria-Specificity in membrane targeting for death.Biochim. Biophys. Acta Mol. Cell Res.20111813453253910.1016/j.bbamcr.2010.10.01721056595
    [Google Scholar]
  34. Peña-BlancoA. García-SáezA.J. Bax, Bak and beyond - mitochondrial performance in apoptosis.FEBS J.2018285341643110.1111/febs.1418628755482
    [Google Scholar]
  35. CuiL. BuW. SongJ. FengL. XuT. LiuD. DingW. WangJ. LiC. MaB. LuoY. JiangZ. WangC. ChenJ. HouJ. YanH. YangL. JiaX. Apoptosis induction by alantolactone in breast cancer MDA-MB-231 cells through reactive oxygen species-mediated mitochondrion-dependent pathway.Arch. Pharm. Res.201841329931310.1007/s12272‑017‑0990‑229214600
    [Google Scholar]
  36. JungH. BaeJ. KoS.K. SohnU.D. Ultrasonication processed Panax ginseng berry extract induces apoptosis through an intrinsic apoptosis pathway in HepG2 cells.Arch. Pharm. Res.201639685586210.1007/s12272‑016‑0760‑627233905
    [Google Scholar]
  37. LiuX. LuX. ZhenF. JinS. YuT. ZhuQ. WangW. XuK. YaoJ. GuoR. LINC00665 induces acquired resistance to Gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC.Mol. Ther. Nucleic Acids20191615516110.1016/j.omtn.2019.02.01030889481
    [Google Scholar]
  38. SchiffP.B. FantJ. HorwitzS.B. Promotion of microtubule assembly in vitro by taxol.Nature1979277569866566710.1038/277665a0423966
    [Google Scholar]
  39. XiG. HayesE. LewisR. IchiS. Mania-FarnellB. ShimK. TakaoT. AllenderE. MayanilC.S. TomitaT. CD133 and DNA-PK regulate MDR1 via the PI3K- or Akt-NF-κB pathway in multidrug-resistant glioblastoma cells in vitro.Oncogene201635224125010.1038/onc.2015.7825823028
    [Google Scholar]
  40. WangH. HuangH. DingS.F. Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway.Cell Biol. Int.201842111492150210.1002/cbin.1099129790626
    [Google Scholar]
  41. HashemiM. TaheriazamA. DaneiiP. HassanpourA. kakavandA. RezaeiS. HejaziE.S. AboutalebiM. GholamrezaieH. SaebfarH. SalimimoghadamS. MirzaeiS. EntezariM. SamarghandianS. Targeting PI3K/Akt signaling in prostate cancer therapy.J. Cell Commun. Signal.202317342344310.1007/s12079‑022‑00702‑136367667
    [Google Scholar]
  42. Baghery Saghchy KhorasaniA. Pourbagheri-SigaroodiA. PirsalehiA. Safaroghli-azarA. ZaliM.R. BashashD. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions.Eur. J. Pharmacol.202189817398310.1016/j.ejphar.2021.17398333647255
    [Google Scholar]
  43. FanB. ShiS. ShenX. YangX. LiuN. WuG. GuoX. HuangN. Effect of HMGN2 on proliferation and apoptosis of MCF-7 breast cancer cells.Oncol. Lett.20191711160116630655878
    [Google Scholar]
  44. SunC. LuoX. GouY. HuL. WangK. LiC. XiangZ. ZhangP. KongX. ZhangC. YangQ. LiJ. XiaoL. LiY. ChenQ. TCAB1: A potential target for diagnosis and therapy of head and neck carcinomas.Mol. Cancer201413118010.1186/1476‑4598‑13‑18025070141
    [Google Scholar]
  45. RaoX. HuangD. SuiX. LiuG. SongX. XieJ. HuangD. Overexpression of WRAP53 is associated with development and progression of esophageal squamous cell carcinoma.PLoS One201493e9167010.1371/journal.pone.009167024626331
    [Google Scholar]
  46. Sedaie BonabA. PouladiN. HosseinpourfeiziM.A. Ravanbakhsh GavganiR. DehghanR. AzarfamP. MontazeriV. FakhrjouA. Single-strand conformational polymorphism analysis of a common single nucleotide variation in WRAP53 gene, rs2287499, and evaluating its association in relation to breast cancer risk and prognosis among Iranian-Azeri population.Med. Oncol.201431916810.1007/s12032‑014‑0168‑425134915
    [Google Scholar]
  47. KamelM.M. MatboliM. SallamM. MontasserI.F. SaadA.S. El-TawdiA.H.F. Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma.Transl. Res.201616813414510.1016/j.trsl.2015.10.00226551349
    [Google Scholar]
  48. JinZ. SongM. WangJ. ZhuW. SunD. LiuH. ShiG. Integrative multiomics evaluation reveals the importance of pseudouridine synthases in hepatocellular carcinoma.Front. Genet.20221394468110.3389/fgene.2022.94468136437949
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429322420241112051105
Loading
/content/journals/cmp/10.2174/0118761429322420241112051105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test