Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background

Neuroinflammatory responses are strongly associated with the pathogenesis of progressive neurodegenerative conditions and mood disorders. Modulating microglial activation is a potential strategy for developing protective treatments for central nervous system (CNS)-related diseases. Fibrates, widely used in clinical practice as cholesterol-lowering medications, exhibit numerous biological activities, such as anticancer and anti-inflammatory activities. However, the mechanisms underlying their beneficial effects on the CNS remain unclear.

Objective

This study investigated the mechanisms through which fibrates influence inflammatory and anti-inflammatory homeostasis in microglial cells.

Methods

Cell viability assay, nitric oxide measurement, Western blot analysis,, real-time PCR, and cell transfection were used in this study.

Results

Fenofibrate, a well-known fibrate, reduced the production of nitric oxide and interleukin-6 and the expression of inducible nitric oxide synthase and cyclooxygenase-2 in microglial cells. It also inhibited the expression of various proinflammatory cytokines and chemokines, including tumor necrosis factor-ɑ and interleukin-1β, and chemokine (C-C) motif ligand 2 and chemokine (C-X-C motif) ligand 10. Notably, treatment of fenofibrate dramatically activated the sonic hedgehog (SHH) and sirtuin-1 (SIRT1). Furthermore, the inhibition of SHH or SIRT1 mitigated the anti-inflammatory effects of fenofibrate in IMG microglial cells.

Conclusion

Our findings suggest that fenofibrate may inhibit inflammatory responses by activating SIRT1 and SHH in IMG microglial cells. Our study suggests that fenofibrate or targeting SHH molecule is a promising therapeutic strategy for neuroinflammation-associated conditions. Further research with additional cell lines and models is needed to understand its therapeutic potential.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429317532241017051135
2024-01-01
2025-04-30
The full text of this item is not currently available.

References

  1. LeeL. SandersR.A. Metabolic Syndrome.Pediatr. Rev.2012331045946810.1542/pir.33.10.45923027600
    [Google Scholar]
  2. da FonsecaA.C.C. MatiasD. GarciaC. AmaralR. GeraldoL.H. FreitasC. LimaF.R.S. The impact of microglial activation on blood-brain barrier in brain diseases.Front. Cell. Neurosci.2014836210.3389/fncel.2014.0036225404894
    [Google Scholar]
  3. VanhanenM. KoivistoK. MoilanenL. HelkalaE.L. HänninenT. SoininenH. KervinenK. KesäniemiY.A. LaaksoM. KuusistoJ. Association of metabolic syndrome with alzheimer disease.Neurology200667584384710.1212/01.wnl.0000234037.91185.9916966548
    [Google Scholar]
  4. WeisbergS.P. McCannD. DesaiM. RosenbaumM. LeibelR.L. FerranteA.W.Jr Obesity is associated with macrophage accumulation in adipose tissue.J. Clin. Invest.2003112121796180810.1172/JCI20031924614679176
    [Google Scholar]
  5. XuH. BarnesG.T. YangQ. TanG. YangD. ChouC.J. SoleJ. NicholsA. RossJ.S. TartagliaL.A. ChenH. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.J. Clin. Invest.2003112121821183010.1172/JCI20031945114679177
    [Google Scholar]
  6. LumengC.N. BodzinJ.L. SaltielA.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.J. Clin. Invest.2007117117518410.1172/JCI2988117200717
    [Google Scholar]
  7. HerradonG. Ramos-AlvarezM.P. GramageE. Connecting metainflammation and neuroinflammation through the PTN-MK-RPTPβ/ζ Axis: Relevance in therapeutic development.Front. Pharmacol.20191037710.3389/fphar.2019.0037731031625
    [Google Scholar]
  8. GustafsonD. RothenbergE. BlennowK. SteenB. SkoogI. An 18-year follow-up of overweight and risk of alzheimer disease.Arch. Intern. Med.2003163131524152810.1001/archinte.163.13.152412860573
    [Google Scholar]
  9. StaelsB. DallongevilleJ. AuwerxJ. SchoonjansK. LeitersdorfE. FruchartJ.C. Mechanism of action of fibrates on lipid and lipoprotein metabolism.Circulation199898192088209310.1161/01.CIR.98.19.20889808609
    [Google Scholar]
  10. SoskaV. Present status of fibrates in the treatment of hyperlipoproteinemias.Vnitr. Lek.199945743844011045165
    [Google Scholar]
  11. LazarowP.B. ShioH. Leroy-HouyetM.A. Specificity in the action of hypolipidemic drugs: Increase of peroxisomal beta-oxidation largely dissociated from hepatomegaly and peroxisome proliferation in the rat.J. Lipid Res.198223231732610.1016/S0022‑2275(20)38162‑17077146
    [Google Scholar]
  12. SchützB. ReimannJ. Dumitrescu-OzimekL. Kappes-HornK. LandrethG.E. SchürmannB. ZimmerA. HenekaM.T. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice.J. Neurosci.200525347805781210.1523/JNEUROSCI.2038‑05.200516120782
    [Google Scholar]
  13. JohriA. CalingasanN.Y. HennesseyT.M. SharmaA. YangL. WilleE. ChandraA. BealM.F. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease.Hum. Mol. Genet.20122151124113710.1093/hmg/ddr54122095692
    [Google Scholar]
  14. KreislerA. GeléP. WiartJ.F. LhermitteM. DestéeA. BordetR. Lipid-lowering drugs in the MPTP mouse model of Parkinson’s disease: Fenofibrate has a neuroprotective effect, whereas bezafibrate and HMG-CoA reductase inhibitors do not.Brain Res.200711351778410.1016/j.brainres.2006.12.01117196944
    [Google Scholar]
  15. JiangB. WangY.J. WangH. SongL. HuangC. ZhuQ. WuF. ZhangW. Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway.Br. J. Pharmacol.2017174217719410.1111/bph.1366827861729
    [Google Scholar]
  16. OukT. GautierS. PétraultM. MontaigneD. MaréchalX. MasseI. DevedjianJ.C. DeplanqueD. BastideM. NevièreR. DuriezP. StaelsB. PasquierF. LeysD. BordetR. Effects of the PPAR-α agonist fenofibrate on acute and short-term consequences of brain ischemia.J. Cereb. Blood Flow Metab.201434354255110.1038/jcbfm.2013.23324398933
    [Google Scholar]
  17. GervoisP. FruchartJ-C. DeleriveP. StaelsB. Induction of ikappabalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators.J. Biol. Chem.200027547367033670710.1074/jbc.M00404520010980195
    [Google Scholar]
  18. LoseyP. LaddsE. LapraisM. GeuvelB. BurnsL. BordetR. AnthonyD.C. The role of PPAR activation during the systemic response to brain injury.J. Neuroinflammation20151219910.1186/s12974‑015‑0295‑725994490
    [Google Scholar]
  19. LinC. LaiS.W. ShenC.K. ChenC.W. TsaiC.F. LiuY.S. LuD.Y. HuangB.R. Fenofibrate inhibits hypoxia-inducible factor-1 alpha and carbonic anhydrase expression through activation of AMP-activated protein kinase/ HO -1/Sirt1 pathway in glioblastoma cells.Environ. Toxicol.202136122551256110.1002/tox.2336934520103
    [Google Scholar]
  20. ZhengL. RuiC. ZhangH. ChenJ. JiaX. XiaoY. Sonic hedgehog signaling in epithelial tissue development.Regen. Med. Res.20197310.1051/rmr/19000431898580
    [Google Scholar]
  21. PitterK.L. TamagnoI. FengX. GhosalK. AmankulorN. HollandE.C. HambardzumyanD. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions.Glia201462101595160710.1002/glia.2270224895267
    [Google Scholar]
  22. ChenS.D. YangJ.L. HwangW.C. YangD.I. Emerging roles of sonic hedgehog in adult neurological diseases: Neurogenesis and beyond.Int. J. Mol. Sci.2018198242310.3390/ijms1908242330115884
    [Google Scholar]
  23. LaiS.W. ChenJ.H. LinH.Y. LiuY.S. TsaiC.F. ChangP.C. LuD.Y. LinC. Regulatory effects of neuroinflammatory responses through brain-derived neurotrophic factor signaling in microglial cells.Mol. Neurobiol.20185597487749910.1007/s12035‑018‑0933‑z29427085
    [Google Scholar]
  24. JazwaA. CuadradoA. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases.Curr. Drug Targets201011121517153110.2174/138945011100901151720704549
    [Google Scholar]
  25. TsaiC.F. ChenG.W. ChenY.C. ShenC.K. LuD.Y. YangL.Y. ChenJ.H. YehW.L. Regulatory effects of quercetin on m1/m2 macrophage polarization and oxidative/antioxidative balance.Nutrients20211416710.3390/nu1401006735010945
    [Google Scholar]
  26. YehW.L. HuangB.R. ChenG.W. CharoensaensukV. TsaiC.F. YangL.Y. LuD.Y. ChenM.K. LinC. Role of zerumbone, a phytochemical sesquiterpenoid from zingiber zerumbet smith, in maintaining macrophage polarization and redox homeostasis.Nutrients20221424540210.3390/nu1424540236558562
    [Google Scholar]
  27. VanellaL. SodhiK. KimD.H. PuriN. MaheshwariM. HindsT.D.Jr BellnerL. GoldsteinD. PetersonS.J. ShapiroJ.I. AbrahamN.G. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade.Stem Cell Res. Ther.2013422810.1186/scrt17623497794
    [Google Scholar]
  28. HanL. JiangJ. MaQ. WuZ. WangZ. The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway.Int. J. Oncol.20185262101210910.3892/ijo.2018.436329620188
    [Google Scholar]
  29. McCarthyR.C. LuD.Y. AlkhateebA. GardeckA.M. LeeC.H. Wessling-ResnickM. Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta.J. Neuroinflammation20161312110.1186/s12974‑016‑0484‑z26819091
    [Google Scholar]
  30. LiY.Z. ChenJ.H. TsaiC.F. YehW.L. Anti-inflammatory property of imperatorin on alveolar macrophages and inflammatory lung injury.J. Nat. Prod.20198241002100810.1021/acs.jnatprod.9b0014530892032
    [Google Scholar]
  31. TanX. YanY. SongB. ZhuS. MeiQ. WuK. Focal adhesion kinase: From biological functions to therapeutic strategies.Exp. Hematol. Oncol.20231218310.1186/s40164‑023‑00446‑737749625
    [Google Scholar]
  32. HenekaM.T. KummerM.P. LatzE. Innate immune activation in neurodegenerative disease.Nat. Rev. Immunol.201414746347710.1038/nri370524962261
    [Google Scholar]
  33. LiL. EterN. HeiduschkaP. The microglia in healthy and diseased retina.Exp. Eye Res.201513611613010.1016/j.exer.2015.04.02025952657
    [Google Scholar]
  34. KrauthausenM. SaxeS. ZimmermannJ. EmrichM. HenekaM.T. MüllerM. CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system.J. Neuroinflammation201411110910.1186/1742‑2094‑11‑10924930935
    [Google Scholar]
  35. ClarnerT. JanssenK. NellessenL. StangelM. SkripuletzT. KrauspeB. HessF.M. DeneckeB. BeutnerC. Linnartz-GerlachB. NeumannH. VallièresL. AmorS. OhlK. TenbrockK. BeyerC. KippM. CXCL10 triggers early microglial activation in the cuprizone model.J. Immunol.201519473400341310.4049/jimmunol.140145925725102
    [Google Scholar]
  36. ZhangZ. ZhangZ.Y. WuY. SchluesenerH.J. Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury.Brain Res.2012146110211010.1016/j.brainres.2012.04.03822583855
    [Google Scholar]
  37. WeisN. WeigertA. von KnethenA. BrüneB. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants.Mol. Biol. Cell20092051280128810.1091/mbc.e08‑10‑100519129475
    [Google Scholar]
  38. JeongG.S. LeeD.S. LiB. LeeH.J. KimE.C. KimY.C. Effects of sappanchalcone on the cytoprotection and anti-inflammation via heme oxygenase-1 in human pulp and periodontal ligament cells.Eur. J. Pharmacol.20106441-323023710.1016/j.ejphar.2010.06.05920621084
    [Google Scholar]
  39. GabuniaK. EllisonS.P. SinghH. DattaP. KelemenS.E. RizzoV. AutieriM.V. Interleukin-19 (IL-19) induces heme oxygenase-1 (HO-1) expression and decreases reactive oxygen species in human vascular smooth muscle cells.J. Biol. Chem.201228742477248410.1074/jbc.M111.31247022158875
    [Google Scholar]
  40. SchipperH.M. SongW. ZukorH. HascaloviciJ.R. ZeligmanD. Heme oxygenase-1 and neurodegeneration: Expanding frontiers of engagement.J. Neurochem.2009110246948510.1111/j.1471‑4159.2009.06160.x19457088
    [Google Scholar]
  41. Fernández-MendívilC. LuengoE. Trigo-AlonsoP. García-MagroN. NegredoP. LópezM.G. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism.Redox Biol.20213810178910.1016/j.redox.2020.10178933212416
    [Google Scholar]
  42. ChuangJ.Y. ChangP.C. ShenY.C. LinC. TsaiC.F. ChenJ.H. YehW.L. WuL.H. LinH.Y. LiuY.S. LuD.Y. Regulatory effects of fisetin on microglial activation.Molecules20141978820883910.3390/molecules1907882024972270
    [Google Scholar]
  43. TsaiC.F. KuoY.H. YehW.L. WuC. LinH.Y. LaiS.W. LiuY.S. WuL.H. LuJ.K. LuD.Y. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells.Int. J. Mol. Sci.20151635572558910.3390/ijms1603557225768341
    [Google Scholar]
  44. LinH.Y. HuangB.R. YehW.L. LeeC.H. HuangS.S. LaiC.H. LinH. LuD.Y. Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-α1/heme oxygenase-1 pathways.Neurobiol. Aging201435119120210.1016/j.neurobiolaging.2013.06.02023906616
    [Google Scholar]
  45. LuD.Y. ChenJ.H. TanT.W. HuangC.Y. YehW.L. HsuH.C. Resistin protects against 6-hydroxydopamine-induced cell death in dopaminergic-like MES23.5 cells.J. Cell. Physiol.201222806254
    [Google Scholar]
  46. CaoJ. PetersonS.J. SodhiK. VanellaL. BarbagalloI. RodellaL.F. SchwartzmanM.L. AbrahamN.G. KappasA. Heme oxygenase gene targeting to adipocytes attenuates adiposity and vascular dysfunction in mice fed a high-fat diet.Hypertension201260246747510.1161/HYPERTENSIONAHA.112.19380522753217
    [Google Scholar]
  47. VetterliL. MaechlerP. Resveratrol-activated SIRT1 in liver and pancreatic β-cells: A Janus head looking to the same direction of metabolic homeostasis.Aging (Albany NY)20113444444910.18632/aging.10030421483037
    [Google Scholar]
  48. PriceN.L. GomesA.P. LingA.J.Y. DuarteF.V. Martin-MontalvoA. NorthB.J. AgarwalB. YeL. RamadoriG. TeodoroJ.S. HubbardB.P. VarelaA.T. DavisJ.G. VaraminiB. HafnerA. MoaddelR. RoloA.P. CoppariR. PalmeiraC.M. de CaboR. BaurJ.A. SinclairD.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.Cell Metab.201215567569010.1016/j.cmet.2012.04.00322560220
    [Google Scholar]
  49. ChenJ. ZhouY. Mueller-SteinerS. ChenL.F. KwonH. YiS. MuckeL. GanL. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling.J. Biol. Chem.200528048403644037410.1074/jbc.M50932920016183991
    [Google Scholar]
  50. RamisM.R. SarubboF. TejadaS. JiménezM. EstebanS. MirallesA. MorantaD. Chronic polyphenon-60 or catechin treatments increase brain monoamines syntheses and hippocampal SIRT1 Levels improving cognition in aged rats.Nutrients202012232610.3390/nu1202032631991916
    [Google Scholar]
  51. WuL.H. HuangB.R. LaiS.W. LinC. LinH.Y. YangL.Y. LuD.Y. SIRT1 activation by minocycline on regulation of microglial polarization homeostasis.Aging (Albany NY)20201218179901800710.18632/aging.10354233021962
    [Google Scholar]
  52. HuangJ.G. ShenC.B. WuW.B. RenJ.W. XuL. LiuS. YangQ. Primary cilia mediate sonic hedgehog signaling to regulate neuronal-like differentiation of bone mesenchymal stem cells for resveratrol induction in vitro.J. Neurosci. Res.201492558759610.1002/jnr.2334324464877
    [Google Scholar]
  53. TangF. GuoS. LiaoH. YuP. WangL. SongX. ChenJ. YangQ. Resveratrol enhances neurite outgrowth and synaptogenesis via sonic hedgehog signaling following oxygen-glucose deprivation/reoxygenation injury.Cell. Physiol. Biochem.201743285286910.1159/00048161128957797
    [Google Scholar]
  54. LiaoH. HuangJ. LiuJ. ZhuH. ChenY. LiX. WenJ. YangQ. Sirt1 regulates microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury by targeting the Shh/Gli-1 signaling pathway.Mol. Biol. Rep.20235043317332710.1007/s11033‑022‑08167‑636725745
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429317532241017051135
Loading
/content/journals/cmp/10.2174/0118761429317532241017051135
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test