Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702
side by side viewer icon HTML

Abstract

Background:

Amplification of inosine monophosphate dehydrogenase II, EC 1,1,1,205 (IMPDH2) has been reported in various cancers, which results in transformation and tumorigenicity. In our current work, we have explored the oncogenic properties and the underlying pathophysiology of IMPDH2 in hepatoblastoma (HB).

Methods:

To investigate IMPDH2 expression in HB tissues and prognostic significance in HB patients, gene expression profiling interactive analysis (GEPIA) has been adopted. Immunohistochemistry has also helped to validate the protein expression of IMPDH2 in HB tissues. The effect of IMPDH2 overexpression or depletion on the proliferation of Hepatoblastoma cells has been evaluated by CCK8 assays and colony formation assays. Xenograft tumor growth of mice has been detected. Luciferase reporter assays have been conducted to determine the interaction of IMPDH2 and JunB, which was further asserted by pharmacological inhibition of JunB.

Results:

IMPDH2 was highly expressed in HB tissues. Experimentally, the proliferation and colony formation of HuH6 cells were increased by IMPDH2 overexpression. Conversely, genetic inactivation of IMPDH2 impaired the proliferative efficiency and colony-forming rate of HepG2 cells. Besides, the luciferase reporter assay validated IMPDH2 overexpression to be associated with enhanced JunB transcriptional activity, while its activity was diminished in the case of IMPDH2 depletion. JunB inhibitor neutralized the IMPDH2-mediated increased phosphorylation of JunB.

Conclusion:

Our findings, thus, suggest that IMPDH2 exhibits its oncogenic role in HB partially JunB-dependent proliferation.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429257350231212093136
2024-02-20
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/BMS-CMP-2023-71.html?itemId=/content/journals/cmp/10.2174/0118761429257350231212093136&mimeType=html&fmt=ahah

References

  1. RanganathanS. Lopez-TerradaD. AlaggioR. Hepatoblastoma and pediatric hepatocellular carcinoma: An update.Pediatr. Dev. Pathol.2020232799510.1177/109352661987522831554479
    [Google Scholar]
  2. CzaudernaP. Lopez-TerradaD. HiyamaE. HäberleB. MalogolowkinM.H. MeyersR.L. Hepatoblastoma state of the art.Curr. Opin. Pediatr.2014261192810.1097/MOP.000000000000004624322718
    [Google Scholar]
  3. LakeC.M. TiaoG.M. BondocA.J. Surgical management of locally-advanced and metastatic hepatoblastoma.Semin. Pediatr. Surg.201928615085610.1016/j.sempedsurg.2019.15085631931965
    [Google Scholar]
  4. HooksK.B. AudouxJ. FazliH. LesjeanS. ErnaultT. Dugot-SenantN. Leste-LasserreT. HagedornM. RousseauB. DanetC. BranchereauS. BrugièresL. TaqueS. GuettierC. FabreM. RullierA. BuendiaM.A. CommesT. GrossetC.F. RaymondA.A. New insights into diagnosis and therapeutic options for proliferative hepatoblastoma.Hepatology20186818910210.1002/hep.2967229152775
    [Google Scholar]
  5. TianY. ZhangJ. ChenL. ZhangX. The expression and prognostic role of IMPDH2 in ovarian cancer.Ann. Diagn. Pathol.20204615151110.1016/j.anndiagpath.2020.15151132305001
    [Google Scholar]
  6. KofujiS. SasakiA.T. GTP metabolic reprogramming by IMPDH2: Unlocking cancer cells’ fuelling mechanism.J. Biochem.2020168431932810.1093/jb/mvaa08532702086
    [Google Scholar]
  7. ZouJ. HanZ. ZhouL. CaiC. LuoH. HuangY. LiangY. HeH. JiangF. WangC. ZhongW. Elevated expression of IMPDH2 is associated with progression of kidney and bladder cancer.Med. Oncol.201532137310.1007/s12032‑014‑0373‑125465060
    [Google Scholar]
  8. ZhouL XiaD ZhuJ Enhanced expression of IMPDH2 promotes metastasis and advanced tumor progression in patients with prostate cancer.Clin. Transl. oncol.2014161090691310.1007/s12094‑014‑1167‑9
    [Google Scholar]
  9. XuY. ZhengZ. GaoY. DuanS. ChenC. RongJ. WangK. YunM. WengH. YeS. ZhangJ. High expression of IMPDH2 is associated with aggressive features and poor prognosis of primary nasopharyngeal carcinoma.Sci. Rep.20177174510.1038/s41598‑017‑00887‑128389646
    [Google Scholar]
  10. ZhengP. LiL. FANCI Cooperates with IMPDH2 to Promote Lung Adenocarcinoma Tumor Growth via a MEK/ERK/MMPs Pathway.OncoTargets Ther.20201345146310.2147/OTT.S23033332021289
    [Google Scholar]
  11. DuanS. HuangW. LiuX. LiuX. ChenN. XuQ. HuY. SongW. ZhouJ. IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways.J. Exp. Clin. Cancer Res.201837130410.1186/s13046‑018‑0980‑330518405
    [Google Scholar]
  12. BirnerP. EggerG. MerkelO. KennerL. JunB and PTEN in prostate cancer: ‘Loss is nothing else than change’.Cell Death Differ.201522452252310.1038/cdd.2014.23225747853
    [Google Scholar]
  13. PasseguéE. WagnerE.F. WeissmanI.L. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells.Cell2004119343144310.1016/j.cell.2004.10.01015507213
    [Google Scholar]
  14. Wanna-udomS. TerashimaM. LyuH. IshimuraA. TakinoT. SakariM. TsukaharaT. SuzukiT. The m6A methyltransferase METTL3 contributes to Transforming Growth Factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB.Biochem. Biophys. Res. Commun.2020524115015510.1016/j.bbrc.2020.01.04231982139
    [Google Scholar]
  15. YanP. ZhouB. MaY. WangA. HuX. LuoY. YuanY. WeiY. PangP. MaoJ. Tracking the important role of JUNB in hepatocellular carcinoma by single-cell sequencing analysis.Oncol. Lett.20201921478148631966074
    [Google Scholar]
  16. ZhuL. ShiL. YeW. LiS. LiuX. ZhuZ. Circular RNA PUM1 (CircPUM1) attenuates trophoblast cell dysfunction and inflammation in recurrent spontaneous abortion via the MicroRNA-30a-5p (miR-30a-5p)/JUNB axis.Bioengineered20211216878689010.1080/21655979.2021.197320734519628
    [Google Scholar]
  17. ZhanT. RindtorffN. BetgeJ. EbertM.P. BoutrosM. CRISPR/Cas9 for cancer research and therapy.Semin. Cancer Biol.20195510611910.1016/j.semcancer.2018.04.00129673923
    [Google Scholar]
  18. ZhangJ. WangF. WangH. WangY. WuY. XuH. SuC. Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF‑κB signaling pathways.Exp. Ther. Med.20171465445545110.3892/etm.2017.525029285074
    [Google Scholar]
  19. SongM. ZhouB. LiB. TianL. PMEPA1 stimulates the proliferation, colony formation of pancreatic cancer Cells via the MAPK signaling pathway.Am. J. Med. Sci.2021362329129610.1016/j.amjms.2021.04.00233857498
    [Google Scholar]
  20. HwangS-K. JinH. KwonJ.T. ChangS-H. KimT.H. ChoC-S. LeeK.H. YoungM.R. ColburnN.H. BeckG.R.Jr YangH-S. ChoM-H. Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice.Gene Ther.200714181353136110.1038/sj.gt.330298317611588
    [Google Scholar]
  21. AtsavesV. LekakisL. DrakosE. LeventakiV. GhaderiM. BaltatzisG.E. ChioureasD. JonesD. FeretzakiM. LiakouC. PanayiotidisP. GorgoulisV. PatsourisE. MedeirosL.J. ClaretF.X. RassidakisG.Z. The oncogenic JUNB / CD 30 axis contributes to cell cycle deregulation in ALK + anaplastic large cell lymphoma.Br. J. Haematol.2014167451452310.1111/bjh.1307925145835
    [Google Scholar]
  22. DoschJ. KainaB. Induction of c-fos, c-jun, junB and junD mRNA and AP-1 by alkylating mutagens in cells deficient and proficient for the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) and its relationship to cell death, mutation induction and chromosomal instability.Oncogene1996139192719358934539
    [Google Scholar]
  23. LiH.X. MengQ.P. LiuW. LiY.G. ZhangH.M. BaoF.C. SongL.L. LiH.J. IMPDH2 mediate radioresistance and chemoresistance in osteosarcoma cells.Eur. Rev. Med. Pharmacol. Sci.201418203038304425392102
    [Google Scholar]
  24. KofujiS. HirayamaA. EberhardtA.O. KawaguchiR. SugiuraY. SampetreanO. IkedaY. WarrenM. SakamotoN. KitaharaS. YoshinoH. YamashitaD. SumitaK. WolfeK. LangeL. IkedaS. ShimadaH. MinamiN. MalhotraA. MoriokaS. BanY. AsanoM. FlanaryV.L. RamkissoonA. ChowL.M.L. KiyokawaJ. MashimoT. LuceyG. MareninovS. OzawaT. OnishiN. OkumuraK. TerakawaJ. DaikokuT. Wise-DraperT. MajdN. KofujiK. SasakiM. MoriM. KanemuraY. SmithE.P. AnastasiouD. WakimotoH. HollandE.C. YongW.H. HorbinskiC. NakanoI. DeBerardinisR.J. BachooR.M. MischelP.S. YasuiW. SuematsuM. SayaH. SogaT. GrummtI. BierhoffH. SasakiA.T. IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma.Nat. Cell Biol.20192181003101410.1038/s41556‑019‑0363‑931371825
    [Google Scholar]
  25. HeY. MouZ. LiW. LiuB. FuT. ZhaoS. XiangD. WuY. Identification of IMPDH2 as a tumor-associated antigen in colorectal cancer using immunoproteomics analysis.Int. J. Colorectal Dis.200924111271127910.1007/s00384‑009‑0759‑219597826
    [Google Scholar]
  26. HuangF. NiM. ChalishazarM.D. HuffmanK.E. KimJ. CaiL. ShiX. CaiF. ZachariasL.G. IrelandA.S. LiK. GuW. KaushikA.K. LiuX. GazdarA.F. OliverT.G. MinnaJ.D. HuZ. DeBerardinisR.J. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers.Cell Metab.2018283369382.e510.1016/j.cmet.2018.06.00530043754
    [Google Scholar]
  27. XuH. MaH. ZhaL. LiQ. YangG. PanH. FeiX. XuX. XingC. ZhangL. IMPDH2 promotes cell proliferation and epithelial‑mesenchymal transition of non‑small cell lung cancer by activating the Wnt/β‑catenin signaling pathway.Oncol. Lett.2020205110.3892/ol.2020.1208232963625
    [Google Scholar]
  28. VartanianR. MasriJ. MartinJ. CloningerC. HolmesB. ArtinianN. FunkA. RueggT. GeraJ. AP-1 regulates cyclin D1 and c-MYC transcription in an AKT-dependent manner in response to mTOR inhibition: Role of AIP4/Itch-mediated JUNB degradation.Mol. Cancer Res.20119111513010.1158/1541‑7786.MCR‑10‑010521135252
    [Google Scholar]
  29. GongC. ShenJ. FangZ. QiaoL. FengR. LinX. LiS. Abnormally expressed JunB transactivated by IL-6/STAT3 signaling promotes uveal melanoma aggressiveness via epithelial–mesenchymal transition.Biosci. Rep.2018384BSR2018053210.1042/BSR2018053229899166
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429257350231212093136
Loading
/content/journals/cmp/10.2174/0118761429257350231212093136
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Hepatoblastoma; IMPDH2; In vitro; In vivo; JunB; Proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test