Skip to content
2000
Volume 3, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Recent experiments have unravelled novel signal transduction pathways that involve the SRC homology 2 (SH2) domain adapter protein SHB. SHB is ubiquitously expressed and contains proline rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites and an SH2 domain and serves a role in generating signaling complexes in response to tyrosine kinase activation. SHB mediates certain responses in platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. Upstream of SHB in some cells lies the SRC-like FYN-Related Kinase FRK / RAK (also named BSK / IYK or GTK). FRK / RAK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and β-cells, where they both induce PC12 cell differentiation and β-cell proliferation. Furthermore, β-cell apoptosis is augmented by these proteins under conditions that cause β-cell degeneration. The FRK / RAK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2.Besides regulating apoptosis, proliferation and differentiation, SHB is also a component of the T cell receptor (TCR) signaling response. In Jurkat T cells, SHB links several signaling components with the TCR and is thus required for IL-2 production. In endothelial cells, SHB both promotes apoptosis under conditions that are anti-angiogenic, but is also required for proper mitogenicity, spreading and tubular morphogenesis. In embryonic stem cells, dominant-negative SHB (R522K) prevents early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon, suggesting a role of SHB in development.In summary, SHB is a versatile signal transduction molecule that produces diverse biological responses in different cell types under various conditions. SHB operates downstream of GTK in cells that express this kinase.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524033479744
2003-06-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/cmm/10.2174/1566524033479744
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test