Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Diabetic nephropathy is a progressive kidney disease that frequently results in end-stage renal disorders and is characterized by proteinuria, albuminuria, decreased filtration, and renal fibrosis. Despite the fact that there are a number of therapeutic alternatives available, DN continues to be the main contributor to end-stage renal disease. Therefore, significant innovation is required to enhance outcomes in DN patients.

Methods

Information was collected from online search engines like, Google Scholar, Web of Science, PubMed, Scopus, and Sci-Hub databases using keywords like diabetes, nephropathy, kidney disease, autophagy, .

Results

Natural compounds have anti-inflammatory and antioxidant properties and impact various signaling pathways. They ameliorate kidney damage by decreasing oxidative stress, inflammatory process, and fibrosis and enhance the antioxidant system, most likely by activating and deactivating several signaling pathways. This review focuses on the role of metabolic memory and various signaling pathways involved in the pathogenesis of DN and therapeutic approaches available for the management of DN. Special attention is given to the various pathways modulated by the phytoconstituents.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524023666230727093911
2024-07-09
2025-06-26
Loading full text...

Full text loading...

References

  1. TrikkalinouA. PapazafiropoulouA.K. MelidonisA. Type 2 diabetes and quality of life.World J. Diabetes20178412012910.4239/wjd.v8.i4.120 28465788
    [Google Scholar]
  2. ShawJ.E. SicreeR.A. ZimmetP.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087141410.1016/j.diabres.2009.10.007 19896746
    [Google Scholar]
  3. ZhangP. ZhangX. BrownJ. Global healthcare expenditure on diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087329330110.1016/j.diabres.2010.01.026 20171754
    [Google Scholar]
  4. SaydahS.H. ImperatoreG. BecklesG.L. Socioeconomic status and mortality: Contribution of health care access and psychological distress among U.S. adults with diagnosed diabetes.Diabetes Care2013361495510.2337/dc11‑1864 22933434
    [Google Scholar]
  5. JaiswalA. Chandra SemwalB. SinghS. A compressive review on novel molecular target of diabetic nephropathy.Res J Pharm Tech20221531398140410.52711/0974‑360X.2022.00233
    [Google Scholar]
  6. SelbyN.M. TaalM.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines.Diabetes Obes. Metab.202022S1Suppl. 131510.1111/dom.14007 32267079
    [Google Scholar]
  7. YuenL. SaeediP. RiazM. Projections of the prevalence of hyperglycaemia in pregnancy in 2019 and beyond: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res Clin Pract201915710784110.1016/j.diabres.2019.107841 31518656
    [Google Scholar]
  8. LiS. XieH. ShiY. LiuH. Prevalence of diabetic nephropathy in the diabetes mellitus population: A protocol for systematic review and meta-analysis.Medicine202210142e3123210.1097/MD.0000000000031232 36281143
    [Google Scholar]
  9. XueR. GuiD. ZhengL. ZhaiR. WangF. WangN. Mechanistic insight and management of diabetic nephropathy: Recent progress and future perspective.J. Diabetes Res.201720171710.1155/2017/1839809 28386567
    [Google Scholar]
  10. DengY. LiN. WuY. Global, regional and national burden of diabetes-related chronic kidney disease from 1990 to 2019.Front. Endocrinol.20211267235010.3389/fendo.2021.672350 34276558
    [Google Scholar]
  11. StenvinkelP. Chronic kidney disease: A public health priority and harbinger of premature cardiovascular disease.J. Intern. Med.2010268545646710.1111/j.1365‑2796.2010.02269.x 20809922
    [Google Scholar]
  12. YangH. SloanG. YeY. A new perspective in diabetic neuropathy: From the periphery to the brain, a call for early detection, and precision medicine.Front. Endocrinol.20201092910.3389/fendo.2019.00929 32010062
    [Google Scholar]
  13. AwadA.S. YouH. GaoT. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury.Kidney Int.201588472273310.1038/ki.2015.162 26061548
    [Google Scholar]
  14. Donate-CorreaJ. Martín-NúñezE. Muros-de-FuentesM. Mora-FernándezC. Navarro-GonzálezJ.F. Inflammatory cytokines in diabetic nephropathy.J. Diabetes Res.201520151910.1155/2015/948417 25785280
    [Google Scholar]
  15. ShakyaR. GoyalA. SemwalB.C. SinghN.K. YadavH.N. Role of brain angiotensin (1-7) in chronic hyperglycaemia induced nephropathy in wistar rats.Indian J Pharma Education Res2017511839110.5530/ijper.51.1.12
    [Google Scholar]
  16. AroraM.K. SinghU.K. Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update.Vascul. Pharmacol.201358425927110.1016/j.vph.2013.01.001 23313806
    [Google Scholar]
  17. KopelJ. Pena-HernandezC. NugentK. Evolving spectrum of diabetic nephropathy.World J. Diabetes201910526927910.4239/wjd.v10.i5.269 31139314
    [Google Scholar]
  18. Donate-CorreaJ. Luis-RodríguezD. Martín-NúñezE. Inflammatory targets in diabetic nephropathy.J. Clin. Med.20209245810.3390/jcm9020458 32046074
    [Google Scholar]
  19. PerssonF. RossingP. Diagnosis of diabetic kidney disease: State of the art and future perspective.Kidney Int. Suppl.2018812710.1016/j.kisu.2017.10.003 30675433
    [Google Scholar]
  20. Anil KumarP. WelshG.I. SaleemM.A. MenonR.K. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus.Front. Endocrinol.2014515115110.3389/fendo.2014.00151 25309512
    [Google Scholar]
  21. SusztakK. RaffA.C. SchifferM. BöttingerE.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.Diabetes200655122523310.2337/diabetes.55.01.06.db05‑0894 16380497
    [Google Scholar]
  22. YamamotoH. WatanabeT. YamamotoY. RAGE in diabetic nephropathy.Curr. Mol. Med.20077875275710.2174/156652407783220769 18331233
    [Google Scholar]
  23. WangY LiuN LuB Mechanisms and roles of mitophagy in neurodegenerative diseases.CNS Neurosci Ther2019257cns.13140.10.1111/cns.13140 31050206
    [Google Scholar]
  24. KatoM. NatarajanR. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory.Nat. Rev. Nephrol.201915632734510.1038/s41581‑019‑0135‑6 30894700
    [Google Scholar]
  25. Čugalj KernB. Trebušak PodkrajšekK. KovačJ. The role of epigenetic modifications in late complications in type 1 diabetes.Genes202213470510.3390/genes13040705 35456511
    [Google Scholar]
  26. ChenS.H. LiangY.J. The role of life style intervention, in addition to drugs, for diabetic kidney disease with sarcopenic obesity.Life202212380112
    [Google Scholar]
  27. AlicicR.Z. JohnsonE.J. TuttleK.R. SGLT2 inhibition for the prevention and treatment of diabetic kidney disease: A review.Am. J. Kidney Dis.201872226727710.1053/j.ajkd.2018.03.022 29866460
    [Google Scholar]
  28. ReddyM.A. ZhangE. NatarajanR. Epigenetic mechanisms in diabetic complications and metabolic memory.Diabetologia201558344345510.1007/s00125‑014‑3462‑y 25481708
    [Google Scholar]
  29. YagiS. HirosawaM. ShiotaK. DNA methylation profile: A composer-, conductor-, and player-orchestrated Mammalian genome consisting of genes and transposable genetic elements.J. Reprod. Dev.201258326527310.1262/jrd.2011‑030 22790869
    [Google Scholar]
  30. ChenG. ChenH. RenS. Aberrant DNA methylation of mTOR pathway genes promotes inflammatory activation of immune cells in diabetic kidney disease.Kidney Int.201996240942010.1016/j.kint.2019.02.020 31101365
    [Google Scholar]
  31. VanderJagtT.A. NeugebauerM.H. MorganM. BowdenD.W. ShahV.O. Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy.World J. Diabetes2015691113112110.4239/wjd.v6.i9.1113 26265998
    [Google Scholar]
  32. ParkJ. GuanY. ShengX. Functional methylome analysis of human diabetic kidney disease.JCI Insight2019411e12888610.1172/jci.insight.128886 31167971
    [Google Scholar]
  33. LiS. LiW. WuR. Epigenome and transcriptome study of moringa isothiocyanate in mouse kidney mesangial cells induced by high glucose, a potential model for diabetic-induced nephropathy.AAPS J.2020221810.1208/s12248‑019‑0393‑z 31807911
    [Google Scholar]
  34. ChengD. GaoL. SuS. Moringa isothiocyanate activates Nrf2: Potential role in diabetic nephropathy.AAPS J.20192123110.1208/s12248‑019‑0301‑6 30783799
    [Google Scholar]
  35. BhattacharjeeN. BarmaS. KonwarN. DewanjeeS. MannaP. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update.Eur. J. Pharmacol.201679182410.1016/j.ejphar.2016.08.022 27568833
    [Google Scholar]
  36. MorrisR. KershawN.J. BabonJ.J. The molecular details of cytokine signaling via the JAK/STAT pathway.Protein Sci.201827121984200910.1002/pro.3519 30267440
    [Google Scholar]
  37. SeifF. KhoshmirsafaM. AazamiH. MohsenzadeganM. SedighiG. BaharM. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells.Cell Commun. Signal.20171512310.1186/s12964‑017‑0177‑y 28637459
    [Google Scholar]
  38. BousoikE. Montazeri AliabadiH. Do we know Jack & quot; about JAK? A closer look atJAK/STAT signalling pathway.Front. Oncol.2018828710.3389/fonc.2018.00287 30109213
    [Google Scholar]
  39. BerthierC.C. ZhangH. SchinM. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy.Diabetes200958246947710.2337/db08‑1328 19017763
    [Google Scholar]
  40. BrosiusF.C. TuttleK.R. KretzlerM. JAK inhibition in the treatment of diabetic kidney disease.Diabetologia20165981624162710.1007/s00125‑016‑4021‑5 27333885
    [Google Scholar]
  41. HashimotoR. KakigiR. MiyamotoY. JAK-STAT-dependent regulation of scavenger receptors in LPS-activated murine macrophages.Eur. J. Pharmacol.202087117294010.1016/j.ejphar.2020.172940 31968212
    [Google Scholar]
  42. BanerjeeS. BiehlA. AK–STAT signaling as a target for inflammatory and auto immune diseases: Current and future prospects.Drugs20177752154610.1007/s40265‑017‑0701‑9 28255960
    [Google Scholar]
  43. ZhengC. HuangL. LuoW. Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice.Cell Death Dis.2019101184810.1038/s41419‑019‑2085‑0 31699972
    [Google Scholar]
  44. XuJ. LiuL.Q. XuL.L. XingY. YeS. Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis.Clin. Exp. Pharmacol. Physiol.202047459960810.1111/1440‑1681.13226 31821581
    [Google Scholar]
  45. SoetiknoV. Kenichi WatanabeK. LakshamananA. ArumugamS. SariF. SukumaranV. Role of Protein Kinase C-MAPK, oxidative stress and inflammation pathways in diabetic nephropathy.J. Nephrol. Ther.20122012S210.4172/2161‑0959.S2‑001
    [Google Scholar]
  46. KurtzebornK. KwonH.N. KuureS. MAPK/ERK signaling in the regulation of renal differentiation.Int. J. Mol. Sci.2019207177910.3390/ijms20071779 30974877
    [Google Scholar]
  47. BobkovaI. ChebotarevaN. SchukinaA. KamyshovaE. BobrovaL. New insights into the molecular mechanisms of podocyte injury in Diabetes.J. Clin. Exp. Nephrol.2018331710.21767/2472‑5056.100068
    [Google Scholar]
  48. WadaT. AzumaH. FuruichiK. Reduction in chronic allograft nephropathy by inhibition of p38 mitogen-activated protein kinase.Am. J. Nephrol.200626431932510.1159/000094365 16816533
    [Google Scholar]
  49. ZhangJ. ZhongH.B. LinY. YaoW. HuangJ.Y. KLF15 suppresses cell proliferation and extracellular matrix expression in mesangial cells under high glucose.Int. J. Clin. Exp. Med.20158112033020336 26884948
    [Google Scholar]
  50. Marquez-ExpositoL. Cantero-NavarroE. LavozC. Could the Notch signaling pathway be a potential therapeutic option in renal diseases?Nefrología201838546647510.1016/j.nefroe.2018.07.005 29439807
    [Google Scholar]
  51. SchweisguthF. Regulation of notch signaling activity.Curr. Biol.2004143R129R13810.1016/j.cub.2004.01.023 14986688
    [Google Scholar]
  52. SiebelC. LendahlU. Notch signaling in development, tissue homeostasis, and disease.Physiol. Rev.20179741235129410.1152/physrev.00005.2017 28794168
    [Google Scholar]
  53. MaT. LiX. ZhuY. Excessive activation of notch signaling in macrophages promotes kidney inflammation, fibrosis, and necroptosis.Front. Immunol.20221383587910.3389/fimmu.2022.835879 35280997
    [Google Scholar]
  54. EdelingM. RagiG. HuangS. PavenstädtH. SusztakK. Developmental signalling pathways in renal fibrosis: The roles of Notch, Wnt and Hedgehog.Nat. Rev. Nephrol.201612742643910.1038/nrneph.2016.54 27140856
    [Google Scholar]
  55. MukherjeeM. FogartyE. JangaM. SurendranK. Notch signaling in kidney development, maintenance, and disease.Biomolecules201991169210.3390/biom9110692 31690016
    [Google Scholar]
  56. LiL. LiuQ. ShangT. Aberrant activation of Notch1 signaling in glomerular endothelium induces albuminuria.Circ. Res.2021128560261810.1161/CIRCRESAHA.120.316970 33435713
    [Google Scholar]
  57. CarafaV. RotiliD. ForgioneM. Sirtuin functions and modulation: From chemistry to the clinic.Clin. Epigenetics2016816110.1186/s13148‑016‑0224‑3 27226812
    [Google Scholar]
  58. MorigiM. PericoL. BenigniA. Sirtuinsin renal health and disease.J. Am. Soc. Nephrol.20182971799180910.1681/ASN.2017111218 29712732
    [Google Scholar]
  59. WangY. HeJ. LiaoM. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators.Eur. J. Med. Chem.2019161487710.1016/j.ejmech.2018.10.028 30342425
    [Google Scholar]
  60. HouS. ZhangT. LiY. GuoF. JinX. Glycyrrhizic acid prevents diabetic nephropathy by activating AMPK/SIRT1/PGC-1α signalling in db/db mice.J. Diabetes Res.2017201711010.1155/2017/2865912 29238727
    [Google Scholar]
  61. ChenB. ZangW. WangJ. The chemical biology of sirtuins.Chem. Soc. Rev.201544155246526410.1039/C4CS00373J 25955411
    [Google Scholar]
  62. HeW. WangY. ZhangM.Z. Sirt1 activation protects the mouse renal medulla from oxidative injury.J. Clin. Invest.201012041056106810.1172/JCI41563 20335659
    [Google Scholar]
  63. HongQ. ZhangL. DasB. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury.Kidney Int.20189361330134310.1016/j.kint.2017.12.008 29477240
    [Google Scholar]
  64. MaB. ZhuZ. ZhangJ. RenC. ZhangQ. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice.J. Funct. Foods2020646410370210.1016/j.jff.2019.103702
    [Google Scholar]
  65. YamaharaK. YasudaM. KumeS. KoyaD. MaegawaH. UzuT. The role of autophagy in the pathogenesis of diabetic nephropathy.J. Diabetes Res.201320131910.1155/2013/193757 24455746
    [Google Scholar]
  66. WangZ. ChoiM.E. Autophagy in kidney health and disease.Antioxid. Redox Signal.201420351953710.1089/ars.2013.5363 23642034
    [Google Scholar]
  67. GuoH. WangY. ZhangX. Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy.Sci. Rep.201771685210.1038/s41598‑017‑07061‑7 28761152
    [Google Scholar]
  68. MizunoeY. KobayashiM. TagawaR. NakagawaY. ShimanoH. HigamiY. Association between lysosomal dysfunction and obesity-related pathology: A key knowledge to prevent metabolic syndrome.Int. J. Mol. Sci.20192015368810.3390/ijms20153688 31357643
    [Google Scholar]
  69. SugawaraH. MoniwaN. KunoA. Activation of the angiotensin II receptor promotes autophagy in renal proximal tubular cells and affords protection from ischemia/reperfusion injury.J. Pharmacol. Sci.2021145218719710.1016/j.jphs.2020.12.001 33451753
    [Google Scholar]
  70. McGrathK. EdiR. Diabetic kidney disease: Diagnosis, treatment, and prevention.AFP20199912751759 31194487
    [Google Scholar]
  71. TriozziJ.L. Parker GreggL. ViraniS.S. NavaneethanS.D. Management of type 2 diabetes in chronic kidney disease.BMJ Open Diabetes Res. Care202191e00230010.1136/bmjdrc‑2021‑002300 34312158
    [Google Scholar]
  72. MacIsaacR.J. JerumsG. EkinciE.I. Effects of glycaemic management on diabetic kidney disease.World J. Diabetes20178517218610.4239/wjd.v8.i5.172 28572879
    [Google Scholar]
  73. SkupienJ. WarramJ.H. SmilesA. GaleckiA. StantonR.C. KrolewskiA.S. Improved glycemic control and risk of ESRD in patients with type 1 diabetes and proteinuria.J. Am. Soc. Nephrol.201425122916292510.1681/ASN.2013091002 24904086
    [Google Scholar]
  74. JohansenM.Y. MacDonaldC.S. HansenK.B. Effect of an intensive lifestyle intervention on glycemic control in patients with type 2diabetes: A randomized clinical trial.JAMA2017318763764610.1001/jama.2017.10169 28810024
    [Google Scholar]
  75. MartensT. BeckR.W. BaileyR. Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin: A randomized clinical trial.JAMA2021325222262227210.1001/jama.2021.7444 34077499
    [Google Scholar]
  76. StantonR.C. Diabetic kidney disease and hypertension.Exp. Clin. Endocrinol. Diabetes201612429398 26575123
    [Google Scholar]
  77. de BoerI.H. BangaloreS. BenetosA. Diabetes and hypertension: A position statement by the American Diabetes Association.Diabetes Care20174091273128410.2337/dci17‑0026 28830958
    [Google Scholar]
  78. ChenR. SuchardM.A. KrumholzH.M. Comparative first-line effectiveness and safety of ACE (angiotensin-converting enzyme) inhibitors and angiotensin receptor blockers: A multinational cohort study.Hypertension202178359160310.1161/HYPERTENSIONAHA.120.16667 34304580
    [Google Scholar]
  79. PatelA. MacMahonS. ChalmersJ. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): A randomised controlled trial.Lancet2007370959082984010.1016/S0140‑6736(07)61303‑8 17765963
    [Google Scholar]
  80. HeerspinkH.J.L. AndressD.L. BakrisG. Rationale and protocol of the Study Of diabetic Nephropathy with AtRasentan (SONAR) trial: A clinical trial design novel to diabetic nephropathy.Diabetes Obes. Metab.20182061369137610.1111/dom.13245 29405626
    [Google Scholar]
  81. FriedL.F. EmanueleN. ZhangJ.H. Combined angiotensin inhibition for the treatment of diabetic nephropathy.N. Engl. J. Med.2013369201892190310.1056/NEJMoa1303154 24206457
    [Google Scholar]
  82. Lifestyle management: Standards of medical care indiabetes-2018.Diabetes Care2018421S38S50
    [Google Scholar]
  83. LoefM. WalachH. The combined effects of healthy lifestyle behaviors on all cause mortality: A systematic review and meta-analysis.Prev. Med.201255316317010.1016/j.ypmed.2012.06.017 22735042
    [Google Scholar]
  84. ZhuP. HerringtonW.G. HaynesR. Conventional and genetic evidence on the association between adiposity and CKD.J. Am. Soc. Nephrol.202132112713710.1681/ASN.2020050679 33127858
    [Google Scholar]
  85. ChenX. SunL. LiD. Green tea peptides ameliorate diabetic nephropathy by inhibiting the TGF-β/Smad signaling pathway in mice.Food Funct.20221363258327010.1039/D1FO03615G 35234233
    [Google Scholar]
  86. HowdenE.J. CoombesJ.S. StrandH. DouglasB. CampbellK.L. IsbelN.M. Exercise training in CKD: Efficacy, adherence, and safety.Am. J. Kidney Dis.201565458359110.1053/j.ajkd.2014.09.017 25458662
    [Google Scholar]
  87. YeC. KongL. ZhaoZ. LiM. WangS. LinH. XuY. LuJ. ChenY. XuY. WangW. Causal associations of obesity with chronic kidney disease and arterial stiffness: a Mendelian randomization study.J. Clin. Endocrinol. Metab.20221072e825e83510.1210/clinem/dgab633 34448477
    [Google Scholar]
  88. MenneJ. DumannE. HallerH. SchmidtB.M.W. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis.PLoS Med.20191612e100298310.1371/journal.pmed.1002983 31815931
    [Google Scholar]
  89. LiaoP.Y. LoH.Y. LiuI.C. LoL.C. HsiangC.Y. HoT.Y. A gastro-resistant peptide from Momordica charantia improves diabetic nephropathy in db/db mice via its novel reno-protective and anti-inflammatory activities.Food Funct.20221341822183310.1039/D1FO02788C 35083999
    [Google Scholar]
  90. Daza-ArnedoR. Rico-FontalvoJ.E. Pájaro-GalvisN. Dipeptidyl peptidase-4 inhibitors and diabetic kidney disease: A narrative review.Kidney Med.2021361065107310.1016/j.xkme.2021.07.007 34939016
    [Google Scholar]
  91. AndersenE.S. DeaconC.F. HolstJ.J. Do we know the true mechanism of action of the DPP ‐4 inhibitors?Diabetes Obes. Metab.2018201344110.1111/dom.13018 28544214
    [Google Scholar]
  92. DeaconC.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes.Front. Endocrinol. (Lausanne)201910108010.3389/fendo.2019.00080 30828317
    [Google Scholar]
  93. KuboA. HidakaT. NakayamaM. Protective effects of DPP-4 inhibitor on podocyte injury in glomerular diseases.BMC Nephrol.202021140210.1186/s12882‑020‑02060‑9 32948146
    [Google Scholar]
  94. WatanabeK. SatoE. MishimaE. MiyazakiM. TanakaT. What’s new in the molecular mechanisms of diabetic kidney disease: Recent advances.Int. J. Mol. Sci.202224157010.3390/ijms24010570 36614011
    [Google Scholar]
  95. SamsuN. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment.BioMed Res. Int.2021202111710.1155/2021/1497449 34307650
    [Google Scholar]
  96. BremAS MorrisDJ GongR Aldosterone-induced fibrosis in the kidney: questions and controversies.Am J Kidney Dis2011Sep; 583471910.1053/j.ajkd.2011.03.029 21705125 PMC4792515
    [Google Scholar]
  97. SaklayenM.G. GyebiL.K. TasosaJ. YapJ. Effects of additive therapy with spironolactone on proteinuria in diabetic patients already on ACE inhibitor or ARB therapy: Results of a randomized, placebo-controlled, double-blind, crossover trial.J. Investig. Med.200856471471910.2310/JIM.0b013e31816d78e9 18382267
    [Google Scholar]
  98. BolignanoD. PalmerS.C. NavaneethanS.D. StrippoliG.F. Aldosterone antagonists for preventing the progression of chronic kidney disease.Cochrane Database Syst. Rev.2014294CD007004
    [Google Scholar]
  99. CurrieG. TaylorA.H.M. FujitaT. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: A systematic review and meta-analysis.BMC Nephrol.201617112710.1186/s12882‑016‑0337‑0 27609359
    [Google Scholar]
  100. AlexandrouM.E. PapagianniA. TsapasA. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease.J. Hypertens.201937122307232410.1097/HJH.0000000000002187 31688290
    [Google Scholar]
  101. RainaR. ChauvinA. ChakrabortyR. The role of endothelin and endothelin antagonists in chronic kidney disease.Kidney Dis.202061223410.1159/000504623 32021871
    [Google Scholar]
  102. ZhangL. XueS. HouJ. ChenG. XuZ.G. Endothelin receptor antagonists for the treatment of diabetic nephropathy: A meta-analysis and systematic review.World J. Diabetes2020111155356610.4239/wjd.v11.i11.553 33269066
    [Google Scholar]
  103. MannJ.F.E. GreenD. JamersonK. Avosentan for overt diabetic nephropathy.J. Am. Soc. Nephrol.201021352753510.1681/ASN.2009060593 20167702
    [Google Scholar]
  104. PalyginO. IlatovskayaD.V. StaruschenkoA. Protease-activated receptors in kidney disease progression.Am. J. Physiol. Renal Physiol.20163116F1140F114410.1152/ajprenal.00460.2016 27733370
    [Google Scholar]
  105. OeY. MiyazakiM. TakahashiN. Coagulation, protease-activated receptors, and diabetic kidney disease: Lessons from eNOS-deficient mice.Tohoku J. Exp. Med.202125511810.1620/tjem.255.1 34511578
    [Google Scholar]
  106. WaasdorpM. DuitmanJ. FlorquinS. SpekC.A. Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice.Oncotarget2018931216552166210.18632/oncotarget.25069 29774092
    [Google Scholar]
  107. LokS.W.Y. YiuW.H. LiH. The PAR-1 antagonist vorapaxar ameliorates kidney injury and tubulointerstitial fibrosis.Clin. Sci.2020134212873289110.1042/CS20200923 33078834
    [Google Scholar]
  108. CraggG.M. NewmanD.J. Natural products: A continuing source of novel drug leads.Biochim. Biophys. Acta, Gen. Subj.2013183063670369510.1016/j.bbagen.2013.02.008 23428572
    [Google Scholar]
  109. ShafiS. TabassumN. AhmadF. Diabetic nephropathy and herbal medicines.Int J Phytopharmacology2012311017
    [Google Scholar]
  110. BenzieI.F. Wachtel-GalorS. Herbal medicine: Bio molecular and clinical aspects.2nd edBoca RatonCRC Press201110.1201/b10787
    [Google Scholar]
  111. MorakinyoA. AkindeleA. AhmedZ. Modulation of antioxidant enzymes and inflammatory cytokines: Possible mechanism of anti diabetic effect of ginger extracts.Afr. J. Biomed. Res.2011143195202
    [Google Scholar]
  112. Al HroobA.M. AbukhalilM.H. AlghonmeenR.D. MahmoudA.M. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy.Biomed. Pharmacother.201810638138910.1016/j.biopha.2018.06.148 29966984
    [Google Scholar]
  113. HeimesK. FeistelB. VerspohlE.J. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts.Eur. J. Pharmacol.20096241-3586510.1016/j.ejphar.2009.09.049 19818348
    [Google Scholar]
  114. Al-QattanK. ThomsonM. AliM. Garlic (Allium sativum) and ginger (Zingiber officinale) attenuate structural nephropathy progression in streptozotocin-induced diabetic rats.Clin. Nutr. ESPEN200832e62e71
    [Google Scholar]
  115. CuiY ShiY BaoY WangS HuaQ LiuY Zingerone attenuates diabetic nephropathy through inhibition of nicotinamide adenine dinucleotide phosphate oxidase 4.Biomed Pharmacother.20189942243010.1016/j.biopha.2018.01.051 29367111
    [Google Scholar]
  116. MarefatiN. AbdiT. BeheshtiF. VafaeeF. MahmoudabadyM. HosseiniM. Zingiber officinale (Ginger) hydroalcoholic extract improved avoidance memory in rat model of streptozotocin-induced diabetes by regulating brain oxidative stress.Horm. Mol. Biol. Clin. Investig.2022431152610.1515/hmbci‑2021‑0033 34679261
    [Google Scholar]
  117. RehmanM.U. RashidS.M. RasoolS. Zingerone (4-(4-hydroxy-3-methylphenyl)butan-2-one) ameliorates renal function via controlling oxidative burst and inflammation in experimental diabetic nephropathy.Arch. Physiol. Biochem.2019125320120910.1080/13813455.2018.1448422 29537332
    [Google Scholar]
  118. HuangJ. HuangK. LanT. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway.Mol. Cell. Endocrinol.2013365223124010.1016/j.mce.2012.10.024 23127801
    [Google Scholar]
  119. ChenK. ZhangJ. ZhangW. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: A novel pathway of diabetic nephropathy.Int. J. Biochem. Cell Biol.201345593294310.1016/j.biocel.2013.02.009 23434541
    [Google Scholar]
  120. FuX. ZhangJ. HuangX. Curcumin antagonizes glucose fluctuation-induced renal injury by inhibiting aerobic glycolysis via the mir-489/ldha pathway.Mediators Inflamm.2021202112510.1155/2021/6104529 34456629
    [Google Scholar]
  121. YangF. ZhangZ. ZhangL. Bisacurone attenuates diabetic nephropathy by ameliorating oxidative stress, inflammation and apoptosis in rats.Hum. Exp. Toxicol.20224110.1177/09603271221143713 36510688
    [Google Scholar]
  122. VanaieA. ShahidiS. IrajB. Curcumin as a major active component of turmeric attenuates proteinuria in patients with overt diabetic nephropathy.J. Res. Med. Sci.2019247777 31523263
    [Google Scholar]
  123. ChungH. LeeS.W. HyunM. Curcumin blocks high glucose-induced podocyte injury via RIPK3-dependpathway.Front. Cell Dev. Biol.20221080057410.3389/fcell.2022.800574 35706905
    [Google Scholar]
  124. MacenaM.L. NunesL.F.S. da SilvaA.F. Effects of dietary polyphenols in the glycemic, renal, inflammatory, and oxidative stress biomarkers in diabetic nephropathy: A systematic review with meta-analysis of randomized controlled trials.Nutr. Rev.202280122237225910.1093/nutrit/nuac035 35595310
    [Google Scholar]
  125. BagherniyaM. MahdaviA. Shokri-MashhadiN. The beneficial therapeutic effects of plant‐derived natural products for the treatment of sarcopenia.J. Cachexia Sarcopenia Muscle20221362772279010.1002/jcsm.13057 35961944
    [Google Scholar]
  126. XueW. LeiJ. LiX. ZhangR. Trigonella foenum graecum seed extract protects kidney function and morphology in diabetic rats via its antioxidant activity.Nutr. Res.201131755556210.1016/j.nutres.2011.05.010 21840472
    [Google Scholar]
  127. JinY. ShiY. ZouY. MiaoC. SunB. LiC. Fenugreek prevents the development of STZ-induced diabetic nephropathy in a rat model of Diabetes.Evid. Based Complement. Alternat. Med.2014201411110.1155/2014/259368 25057273
    [Google Scholar]
  128. PradeepS.R. BarmanS. SrinivasanK. Attenuation of diabetic nephropathy by dietary fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) via suppression of glucose transporters and renin-angiotensin system.Nutrition201967-686711054310.1016/j.nut.2019.06.024 31408826
    [Google Scholar]
  129. KongZ.L. CheK. HuJ.X. Orientin protects podocytes from high glucose induced apoptosis through Mitophagy.Chem. Biodivers.2020173e190064710.1002/cbdv.201900647 31951311
    [Google Scholar]
  130. AlsuliamS.M. AlbadrN.A. AlmaimanS.A. Al-KhalifahA.S. AlkhaldyN.S. AlshammariG.M. Fenugreek seed galactomannan aqueous extract protects against diabetic nephropathy and liver damage by targeting NF-κB and Keap1/Nrf2 axis.Toxics202210736210.3390/toxics10070362 35878267
    [Google Scholar]
  131. ZhouG. CuiJ. XieS. WanH. LuoY. GuoG. Vitexin, a fenugreek glycoside, ameliorated obesity-induced diabetic nephropathy via modulation of NF-κB/IkBα and AMPK/ACC pathways in mice.Biosci. Biotechnol. Biochem.20218551183119310.1093/bbb/zbab012 33704405
    [Google Scholar]
  132. BaoT.Q. LiY. QuC. ZhengZ.G. YangH. LiP. Antidiabetic effects and mechanisms of Rosemary (Rosmarinus officinalis L.) and its phenolic components.Am. J. Chin. Med.20204861353136810.1142/S0192415X20500664 33016104
    [Google Scholar]
  133. NaimiM. VlavcheskiF. ShamshoumH. TsianiE. Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives.Nutrients20179996810.3390/nu9090968 28862678
    [Google Scholar]
  134. OzturkH. OzturkH. TerziE.H. OzgenU. DuranA. UygunI. Protective effects of rosmarinic acid against renal ischaemia/reperfusion injury in rats.J. Pak. Med. Assoc.2014643260265 24864596
    [Google Scholar]
  135. WuL. VelanderP. BrownA.M. Rosmarinic acid potently detoxifies amylin amyloid and ameliorates diabetic pathology in a transgenic rat model of Type 2 Diabetes.ACS Pharmacol. Transl. Sci.2021441322133710.1021/acsptsci.1c00028 34423269
    [Google Scholar]
  136. MusialC. Kuban-JankowskaA. Gorska-PonikowskaM. Beneficial properties of green tea catechins.Int. J. Mol. Sci.2020215174410.3390/ijms21051744 32143309
    [Google Scholar]
  137. OhishiT. ShG. MoniracP. Anti-inflammatory action of Green Tea.AAMC20161527490
    [Google Scholar]
  138. AsareA.T. MensahF. AcheampongS. Asare-BediakoE. ArmahJ. Effects of gamma irradiation on geomorphological characteristics of okra (Abelmoschusesculentus L. Moench.).Adv. Agric.201720171710.1155/2017/2385106
    [Google Scholar]
  139. LadeiraL.C.M. dos SantosE.C. SantosT.A. Green tea infusion prevents diabetic nephropathy aggravation in recent-onset type 1 diabetes regardless of glycemic control.J. Ethnopharmacol.202127411403210.1016/j.jep.2021.114032 33737142
    [Google Scholar]
  140. BorgesC.M. The use of green tea polyphenols fortreating residual albuminuria in diabetic nephropathy: A double-blind, randomized clinical trial.Sci. Rep.2016611910.1038/srep28282 28442746
    [Google Scholar]
  141. Barocio-PantojaM. Quezada-FernándezP. Cardona-MüllerD. Green tea extract increases soluble RAGE and improves renal function in patients with diabetic nephropathy.J. Med. Food202124121264127010.1089/jmf.2020.0212 34788550
    [Google Scholar]
  142. KhanraR. DewanjeeS.K. DuaT. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response.J. Transl. Med.2015131610.1186/s12967‑014‑0364‑1
    [Google Scholar]
  143. KhanraR. DewanjeeS. DuaT.K. BhattacharjeeN. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling.Biomed. Pharmacother.2017888891892310.1016/j.biopha.2017.01.132 28178622
    [Google Scholar]
  144. ZhaoL. XuL. TaoX. Protective effect of the total flavonoids from Rosa laevigata Michx fruit on renal ischemia-reperfusion injury through suppression of oxidative stress and inflammation.Molecules201621795210.3390/molecules21070952 27455216
    [Google Scholar]
  145. ZhouY. LiaoQ. LuoY. QingZ. ZhangQ. HeG. Renal protective effect of Rosa laevigata Michx. by the inhibition of oxidative stress in streptozotocin-induced diabetic rats.Mol. Med. Rep.20125615481554Epub 2012 Apr 2.10.3892/mmr.2012.855 22469771
    [Google Scholar]
  146. CzompaA. GyongyosiA. SzokeK. Effects of Momordica charantia (bitter melon) on ischemic diabetic myocardium.Molecules201722348810.3390/molecules22030488 28287477
    [Google Scholar]
  147. KimJ. ChoH.R. MoonS.B. KimK.Y. KuS. Synergic effects of bitter melon and β-Glucan composition on STZ-induced rat diabetes and its complications.J. Microbiol. Biotechnol.201222114715510.4014/jmb.1106.06037 22297232
    [Google Scholar]
  148. MishraA. GautamS. PalS.A. Effect of Momordica charantia fruits onstreptozotocin-induced diabetes mellitus and diets associated complications.Int. J. Pharm. Pharm. Sci.20157356363
    [Google Scholar]
  149. RaishM. AhmadA. JanB.L. Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats.Int. J. Biol. Macromol.2016919139439910.1016/j.ijbiomac.2016.05.090 27238589
    [Google Scholar]
  150. ElekofehintiO.O. OyedokunV.O. IwaloyeO. LawalA.O. EjelonuO.C. Momordica charantia silver nanoparticles modulate SOCS/JAK/STAT and P13K/Akt/PTEN signalling pathways in the kidney of streptozotocin-induced diabetic rats.J. Diabetes Metab. Disord.202120124526010.1007/s40200‑021‑00739‑w 34178835
    [Google Scholar]
  151. LiaoP.Y. LoH.Y. LiuI.C. LoL.C. HsiangC.Y. HoT.Y. A gastro-resistant peptide from Momordica-charantia improves diabetic nephropathy in db/db mice via its novel reno-protective and anti-inflammatory activities.Food Funct.202213418221833
    [Google Scholar]
  152. TianX. LiangT. LiuY. DingG. ZhangF. MaZ. Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides: A review.Biomolecules20199938910.3390/biom9090389 31438522
    [Google Scholar]
  153. DuM. HuX. KouL. ZhangB. ZhangC. Lycium barbarum Polysaccharide Mediated the Antidiabetic and Antinephritic Effects in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats via Regulation of NF- κ B.BioMed Res. Int.201620161910.1155/2016/3140290 27200371
    [Google Scholar]
  154. LiuQ. HanQ. LuM. WangH. TangF. Lycium barbarum polysaccharide attenuates cardiac hypertrophy, inhibits calpain-1 expression and inhibits NF-κB activation in streptozotocin-induced diabetic rats.Exp. Ther. Med.201918150951610.3892/etm.2019.7612 31258688
    [Google Scholar]
  155. DengS. BaiL. LiL. LiuT. CaiH. Hypoglycemic effects of Lycium barbarum polysaccharide in type 2 diabetes mellitus mice via modulating gut microbiota.Front. Nutr.20229916271
    [Google Scholar]
  156. LinC.Y. YinM.C. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice.Plant Foods Hum. Nutr.201267330330810.1007/s11130‑012‑0294‑0 22581156
    [Google Scholar]
  157. KuangQ.T. ZhaoJ.J. YeC.L. Nephro-protective effects of total triterpenoids from Psidium guajava leaves on type 2 diabetic rats.Zhong Yao Cai20123519497 22734419
    [Google Scholar]
  158. JayachandranM. VinayagamR. AmbatiR.R. XuB. ChungS.S.M. Guava leaf extract diminishes hyperglycemia and oxidative stress, prevents β-cell death, inhibits inflammation, and regulates the NF-kB signaling pathway in STZ-induced diabetic rats.BioMed Res. Int.2018201811410.1155/2018/4601649 29670899
    [Google Scholar]
  159. SenSS SukumaranV GiriSS ParkSC Flavonoid fraction of guava leaf extract attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signalling pathway in Labeo rohita macrophages.Fish Shellfish Immunol2015471859210.1016/j.fsi.2015.08.031 26327113
    [Google Scholar]
  160. KhazimK. GorinY. CavaglieriR.C. AbboudH.E. FantiP. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo.Am. J. Physiol. Renal Physiol.20133055F691F70010.1152/ajprenal.00028.2013 23804455
    [Google Scholar]
  161. YaoY. YangJ. WangD. The aqueous extract of Lycopus lucidus Turcz ameliorates streptozotocin-induced diabetic renal damage via inhibiting TGF-β1 signaling pathway.Phytomedicine201320131160116710.1016/j.phymed.2013.06.004 23827664
    [Google Scholar]
  162. UllahN. KhanM.A. KhanT. AhmadW. Bioactive traditional plant Cinnamomum zeylanicum successfully combat against nephrotoxic effects of aminoglycosides.Bangladesh J. Pharmacol.201381521
    [Google Scholar]
  163. BaoH PengA. The Green Tea Polyphenol(-)- epigallocatechin-3-gallate and its beneficial roles in chronic kidney disease.J Transl Int Med2016Sep 1; 439910310.1515/jtim‑2016‑0031 28191529
    [Google Scholar]
  164. OhGS KimHJ ChoiJH ShenA ChoeSK KarnaA LeeSH JoHJ YangSH KwakTH LeeCH ParkR SoHS Pharmacological activation of NQO1 increases NAD⁺ levels and attenuates cisplatin-mediated acute kidney injury in mice.Kidney Int.2014Mar; 8535476010.1038/ki.2013.330 24025646
    [Google Scholar]
  165. Al ZaabiM. AliH. AliB.H. Effect of flaxseed on systemic inflammation andoxidative stress in diabetic rats with or without chronic kidney disease.PLoS One20211610e025880010.1371/journal.pone.0258800 34665824
    [Google Scholar]
  166. GuoM GaoJ JiangL DaiY Astragalus polysaccharide ameliorates renal inflammatory responses in a diabetic nephropathy by suppressing the tlr4/nf-κb pathway.Drug Des Devel Ther2020172107211810.2147/DDDT.S411211 37489175 PMC10363349
    [Google Scholar]
  167. ElsherbinyN.M. El-SherbinyM. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: Role of Nrf2 and NOX4.Chem. Biol. Interact.201422310210810.1016/j.cbi.2014.09.015 25268985
    [Google Scholar]
  168. ShijuT.M. RajkumarR. RajeshN.G. ViswanathanP. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats.Indian J. Exp. Biol.2013512139148 23923607
    [Google Scholar]
  169. LiX XiaoY GaoH LiB XuL ChengM JiangB MaY Grape seed proanthocyanidins ameliorate diabetic nephropathy via modulation of levels of AGE, RAGE and CTGF.Nephron Exp Nephrol.20091112e314110.1159/00019110319142024
    [Google Scholar]
  170. YuX. SuQ. GengJ. LiuH. LiuY. LiuJ. ShiY. ZouY. Ginkgo biloba leaf extract prevents diabetic nephropathy through the suppression of tissue transglutaminase.Exp. Ther. Med.202121433310.3892/etm.2021.9764 33732306
    [Google Scholar]
  171. FareedSA YousefEM Abd El-MoneamSM Assessment of effects of rosemary essential oil on the kidney pathology of diabetic adult male albino rats.Cureus 2023153e3573610.7759/cureus.35736 37016650PMC10067024
    [Google Scholar]
  172. EshratH. HussainM.A. JamilK. RaoM. Preliminary studies on the hypoglycaemic effect ofAbroma augusta in alloxan diabetic rats.Indian J. Clin. Biochem.2001161778010.1007/BF02867572 23105296
    [Google Scholar]
  173. KimK. KimH.Y. Bitter melon (Momordica charantia) extract suppresses cytokine induced activation of MAPK and NF-κB in pancreatic β-Cells.Food Sci. Biotechnol.20112053153510.1007/s10068‑011‑0074‑x
    [Google Scholar]
  174. WanF. MaF. WuJ. Effect of Lycium barbarum Polysaccharide on Decreasing Serum Amyloid A3 Expression through Inhibiting NF-κB Activation in a Mouse Model of Diabetic Nephropathy.Anal. Cell. Pathol. (Amst.)2022202211210.1155/2022/7847135 35132370
    [Google Scholar]
  175. HeerspinkH.J. AndressD.L. BakrisG. BrennaJ.J. Correa‐RotterR. DeyJ. HouF.F. KitzmanD.W. KohanD. MakinoH. McMurrayJ. Rationale and protocol of the Study of diabetic Nephropathy with atrasentan (SONAR) trial: A clinical trial design novel to diabetic nephropathy.Diabetes Obes. Metab.201820613691376
    [Google Scholar]
  176. BakrisG.L. AgarwalR. AnkerS.D. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes.N. Engl. J. Med.2020383232219222910.1056/NEJMoa2025845 33264825
    [Google Scholar]
  177. SchjoedtK.J. RossingK. JuhlT.R. Beneficial impact of spironolactone in diabetic nephropathy.Kidney Int.20056862829283610.1111/j.1523‑1755.2005.00756.x 16316360
    [Google Scholar]
  178. SharmaK. IxJ.H. MathewA.V. Pirfenidone for diabetic nephropathy.J. Am. Soc. Nephrol.20112261144115110.1681/ASN.2010101049 21511828
    [Google Scholar]
  179. U.S National Library of Medicine.Trial of Pirfenidone to prevent progression in chronic kidney disease (top-ckd). NCT04258397.2022Available From: https://classic.clinicaltrials.gov/ct2/show/NCT04258397>
    [Google Scholar]
  180. ParvingH.H. LehnertH. Bröchner-MortensenJ. GomisR. AndersenS. ArnerP. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.N. Engl. J. Med.20013451287087810.1056/NEJMoa011489 11565519
    [Google Scholar]
  181. U.S National Library of Medicine.The Effects of Bindarit in Diabetic Nephropathy.2016Available From: https://classic.clinicaltrials.gov/ct2/show/NCT01109212
    [Google Scholar]
  182. ParvingH.H. PerssonF. LewisJ.B. LewisE.J. HollenbergN.K. Aliskiren combined with losartan in type 2 diabetes and nephropathy.N. Engl. J. Med.2008358232433244610.1056/NEJMoa0708379 18525041
    [Google Scholar]
  183. ChenY. LiuP. ChenX. LiY. ZhangF. WangY. Effects of different doses of irbesartan combined with spironolactone on urinary albumin excretion rate in elderly patients with early type 2 diabetic nephropathy.Am. J. Med. Sci.2018355541842410.1016/j.amjms.2018.01.017 29753370
    [Google Scholar]
  184. RabizadehS. Dehghani FirouzabadiF. NoshadS. Beneficial effects of pentoxifylline plus losartan dual therapy in Type 2 Diabetes with Nephropathy.Am. J. Med. Sci.2018355544244810.1016/j.amjms.2017.12.015 29753374
    [Google Scholar]
  185. Drug Bank Online.Niclosamide completed phase 3 trials for diabetic nephropathy treatment.2022Available From https://go.drugbank.com/drugs/DB06803/clinical_trials?conditions=DBCOND0028920&phase=3&purpose=treatment&status=completed
    [Google Scholar]
  186. PerkovicV. JardineM.J. NealB. Canagliflozin and renal outcomes in Type 2 Diabetes and Nephropathy.N. Engl. J. Med.2019380242295230610.1056/NEJMoa1811744 30990260
    [Google Scholar]
  187. MunisamyS. DaudK.M. MokhtarS.S. RasoolA.H.G. Effects of 1α-Calcidol (Alfacalcidol) on microvascular endothelial function, arterial stiffness, and blood pressure in type ii diabetic nephropathy patients.Microcirculation2016231536110.1111/micc.12256 26749451
    [Google Scholar]
  188. U.S National Library of Medicine.Colchicine for diabetic nephropathy trial, NCT02442921.2017Available From: https://classic.clinicaltrials.gov/ct2/show/study/NCT02442921
    [Google Scholar]
  189. LewisE.J. GreeneT. SpitalewizS. Pyridorin in type 2 diabetic nephropathy.J. Am. Soc. Nephrol.2012231131136
    [Google Scholar]
  190. U.S National Library of Medicine.Study on the efficacy and safety of a novel tripterygium wilfordii preparation in reducing proteinuria in patients with Diabetic Nephropathy.2012Available From: https://classic.clinicaltrials.gov/ct2/show/NCT04981613
    [Google Scholar]
  191. YooT.H. HongS.J. KimS. The FimAsartaN proTeinuriA SusTaIned reduCtion in comparison with losartan in diabetic chronic kidney disease (FANTASTIC) trial.Hypertens. Res.202245122008201710.1038/s41440‑022‑01028‑6 36123398
    [Google Scholar]
  192. LewisE.J. HunsickerL.G. ClarkeW.R. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.N. Engl. J. Med.20013451285186010.1056/NEJMoa011303 11565517
    [Google Scholar]
  193. ShehataM. Impact of trimetazidine on incidence of myocardial injury and contrast-induced nephropathy in diabetic patients with renal dysfunction undergoing elective percutaneous coronary intervention.Am. J. Cardiol.2014114338939410.1016/j.amjcard.2014.04.052 24927970
    [Google Scholar]
  194. LengnanX. BanZ. HaitaoW. Tripterygium wilfordii hook f treatment for stage iv diabetic nephropathy: protocol for a prospective, randomized controlled trial.BioMed Res. Int.202020201910.1155/2020/9181037 32596393
    [Google Scholar]
  195. WuZ. XuX. CaiJ. Prevention of chronic diabetic complications in type 1 diabetes by co-transplantation of umbilical cord mesenchymal stromal cells and autologous bone marrow: A pilot randomized controlled open-label clinical study with 8-year follow-up.Cytotherapy202224442142710.1016/j.jcyt.2021.09.015 35086778
    [Google Scholar]
  196. Drug Bank Online Levocetirizine recruiting phase 2 trials for diabetic nephropathy treatment.NCT056388802022
    [Google Scholar]
  197. LeeheyD.J. CarlsonK. RedaD.J. Pentoxifylline in diabetic kidney disease (VA PTXRx): Protocol for a pragmatic randomised controlled trial.BMJ Open2021118e05301910.1136/bmjopen‑2021‑053019 34400461
    [Google Scholar]
  198. U.S National Library of Medicine.The effects of trimetazidine on diabetic nephropathy. NCT05147194.2021Available From: https://classic.clinicaltrials.gov/ct2/show/NCT05147194
    [Google Scholar]
  199. KohanD.E. Lambers HeerspinkH.J. CollB. Predictors of atrasentan-associated fluid retention and change in albuminuria in patients with diabetic nephropathy.Clin. J. Am. Soc. Nephrol.20151091568157410.2215/CJN.00570115 26153128
    [Google Scholar]
  200. CharytanD.M. SolomonS.D. IvanovichP. Metformin use and cardiovascular events in patients with type 2 diabetes and chronic kidney disease.Diabetes Obes. Metab.20192151199120810.1111/dom.13642 30672083
    [Google Scholar]
  201. HeerspinkH.J.L. StefánssonB.V. Correa-RotterR. Dapagliflozin in patients with chronic kidney disease.N. Engl. J. Med.2020383151436144610.1056/NEJMoa2024816 32970396
    [Google Scholar]
  202. HerringtonW.G. StaplinN. WannerC. Empagliflozin in patients with chronic kidney disease.N. Engl. J. Med.2023388211712710.1056/NEJMoa2204233 36331190
    [Google Scholar]
/content/journals/cmm/10.2174/1566524023666230727093911
Loading
/content/journals/cmm/10.2174/1566524023666230727093911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test