Skip to content
2000
Volume 14, Issue 9
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

In this study, a two-dimensional gel-based proteomic approach was applied to profile the protein alterations underlying the significant adverse effects from post-stroke depression (PSD). In view of the close association between left prefrontal cortical dysfunction and PSD, a PSD rat model was constructed through a left anterior cortical lesion followed by chronic mild stress (CMS) for three weeks. Through sucrose preference testing, PSD rats displayed depression-like behavior during the entire CMS period. In contrast, stroke rats displayed depression-like behavior in the first week post-stroke and recovered in the second week post-stroke. To investigate the PSD-induced protein expression changes, ipsilateral hippocampal protein expression in stroke, PSD, and control rats were comparatively analyzed. 46 differential proteins were identified, 22 of which were regulated in opposing directions by stroke and post-stroke stress. The majority of these 22 proteins were involved in neurogenesis, cytoskeletal remodeling, and energy metabolism. Additional proteins were functionally related to mitochondrial antioxidative stress systems. The differential proteins expressed in opposing directions by stroke and post-stroke stress may play a role in self-repair after adult brain lesions, suggesting that stroke induces self-repair mechanisms, while post-stoke stress mitigates them, in the rat hippocampus. Among these differential proteins dysregulated in opposing directions, three mitochondrial proteins involved in mitochondrial antioxidative stress – heat shock 70 kDa protein 9, peroxiredoxin-6, and prohibitin – were validated and may play an important role in stroke-injury self-repair and PSD-induced injury of hippocampal neurons. These findings offer new insight into deciphering the molecular mechanisms underpinning PSD's adverse effects on stroke recovery.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/1566524014666141021143333
2014-11-01
2025-06-26
Loading full text...

Full text loading...

/content/journals/cmm/10.2174/1566524014666141021143333
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test