Skip to content
2000
image of Mechanisms Underlying the Anti-Atherosclerotic Effects of EGCG

Abstract

Atherosclerosis (AS) is a chronic inflammatory vascular disease and the primary pathological basis of cardiovascular diseases. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol compound in green tea, has garnered significant attention in recent years for its protective effects against AS. EGCG possesses properties that lower lipid levels, exhibit antioxidant and anti-inflammatory activities, enhance plaque stability, and promote the recovery of endothelial function. The regulatory mechanisms of EGCG in AS primarily involve inhibiting apoptosis, modulating autophagy, improving gut microbiota, and regulating the Nrf2 and inflammatory signaling pathways. This review summarizes the role of EGCG in the prevention and treatment of AS and its potential mechanisms, providing a scientific basis for future research directions and therapeutic applications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240354839241113044604
2025-01-09
2025-07-15
Loading full text...

Full text loading...

References

  1. Tsao C.W. Aday A.W. Almarzooq Z.I. Alonso A. Beaton A.Z. Bittencourt M.S. Boehme A.K. Buxton A.E. Carson A.P. Commodore-Mensah Y. Elkind M.S.V. Evenson K.R. Eze-Nliam C. Ferguson J.F. Generoso G. Ho J.E. Kalani R. Khan S.S. Kissela B.M. Knutson K.L. Levine D.A. Lewis T.T. Liu J. Loop M.S. Ma J. Mussolino M.E. Navaneethan S.D. Perak A.M. Poudel R. Rezk-Hanna M. Roth G.A. Schroeder E.B. Shah S.H. Thacker E.L. VanWagner L.B. Virani S.S. Voecks J.H. Wang N.Y. Yaffe K. Martin S.S. Heart disease and stroke statistics—2022 update: A report from the American heart association. Circulation 2022 145 8 e153 e639 10.1161/CIR.0000000000001052 35078371
    [Google Scholar]
  2. Fan J. Watanabe T. Atherosclerosis: Known and unknown. Pathol. Int. 2022 72 3 151 160 10.1111/pin.13202 35076127
    [Google Scholar]
  3. Moore K.J. Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011 145 3 341 355 10.1016/j.cell.2011.04.005 21529710
    [Google Scholar]
  4. Libby P. The changing landscape of atherosclerosis. Nature 2021 592 7855 524 533 10.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  5. Lim S. Oh P.C. Sakuma I. Koh K.K. How to balance cardiorenometabolic benefits and risks of statins. Atherosclerosis 2014 235 2 644 648 10.1016/j.atherosclerosis.2014.06.001 24973595
    [Google Scholar]
  6. Luo H. Chen J. Su C. Zha L. Advances in the bioactivities of phytochemical saponins in the prevention and treatment of Atherosclerosis. Nutrients 2022 14 23 4998 10.3390/nu14234998 36501028
    [Google Scholar]
  7. Khan N. Mukhtar H. Tea polyphenols in promotion of human health. Nutrients 2018 11 1 39 10.3390/nu11010039 30585192
    [Google Scholar]
  8. Basu A. Lucas E.A. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 2007 65 8 361 375 10.1111/j.1753‑4887.2007.tb00314.x 17867370
    [Google Scholar]
  9. Chen B. Zhang W. Lin C. Zhang L. A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases. Int. J. Mol. Sci. 2022 23 19 11569 10.3390/ijms231911569 36232871
    [Google Scholar]
  10. Kawabata K. Yoshioka Y. Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019 24 2 370 10.3390/molecules24020370 30669635
    [Google Scholar]
  11. Zhang J. Nie S. Wang S. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. J. Agric. Food Chem. 2013 61 38 9200 9209 10.1021/jf4023004 24020822
    [Google Scholar]
  12. Andreu Fernández V. Almeida Toledano L. Pizarro Lozano N. Navarro Tapia E. Gómez Roig M.D. De la Torre Fornell R. García Algar Ó. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants 2020 9 5 440 10.3390/antiox9050440 32438698
    [Google Scholar]
  13. Peng X. McClements D.J. Liu X. Liu F. EGCG-based nanoparticles: Synthesis, properties, and applications. Crit. Rev. Food Sci. Nutr. 2024 1 22 10.1080/10408398.2024.2328184 38520117
    [Google Scholar]
  14. Chen S.J. Kao Y.H. Jing L. Chuang Y.P. Wu W.L. Liu S.T. Huang S.M. Lai J.H. Ho L.J. Tsai M.C. Lin C.S. Epigallocatechin-3-gallate reduces scavenger receptor A expression and foam cell formation in human macrophages. J. Agric. Food Chem. 2017 65 15 3141 3150 10.1021/acs.jafc.6b05832 28367625
    [Google Scholar]
  15. Shin H.S. Han J.M. Kim H.G. Choi M.K. Son C.G. Yoo H.R. Jo H.K. Seol I.C. Anti-atherosclerosis and hyperlipidemia effects of herbal mixture, Artemisia iwayomogi Kitamura and Curcuma longa Linne, in apolipoprotein E-deficient mice. J. Ethnopharmacol. 2014 153 1 142 150 10.1016/j.jep.2014.01.039 24508858
    [Google Scholar]
  16. Moore K.J. Sheedy F.J. Fisher E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013 13 10 709 721 10.1038/nri3520 23995626
    [Google Scholar]
  17. Bäck M. Yurdagul A. Jr Tabas I. Öörni K. Kovanen P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019 16 7 389 406 10.1038/s41569‑019‑0169‑2 30846875
    [Google Scholar]
  18. Batty M. Bennett M.R. Yu E. The role of oxidative stress in Atherosclerosis. Cells 2022 11 23 3843 10.3390/cells11233843 36497101
    [Google Scholar]
  19. Kong P. Cui Z.Y. Huang X.F. Zhang D.D. Guo R.J. Han M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022 7 1 131 10.1038/s41392‑022‑00955‑7 35459215
    [Google Scholar]
  20. Xu S. Ilyas I. Little P.J. Li H. Kamato D. Zheng X. Luo S. Li Z. Liu P. Han J. Harding I.C. Ebong E.E. Cameron S.J. Stewart A.G. Weng J. Endothelial dysfunction in Atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol. Rev. 2021 73 3 924 967 10.1124/pharmrev.120.000096 34088867
    [Google Scholar]
  21. Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev. Cardiovasc. Med. 2022 23 2 073 10.31083/j.rcm2302073 35229564
    [Google Scholar]
  22. Almatroodi S.A. Almatroudi A. Khan A.A. Alhumaydhi F.A. Alsahli M.A. Rahmani A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 2020 25 14 3146 10.3390/molecules25143146 32660101
    [Google Scholar]
  23. Chen T.S. Liao W.Y. Huang C.W. Chang C.H. Adipose-derived stem cells preincubated with green tea EGCG enhance pancreatic tissue regeneration in rats with type 1 diabetes through ROS/Sirt1 signaling regulation. Int. J. Mol. Sci. 2022 23 6 3165 10.3390/ijms23063165 35328586
    [Google Scholar]
  24. Mohsenzadeh M.S. Razavi B.M. Imenshahidi M. Mohajeri S.A. Rameshrad M. Hosseinzadeh H. Evaluation of green tea extract and epigallocatechin gallate effects on bisphenol A‐induced vascular toxicity in isolated rat aorta and cytotoxicity in human umbilical vein endothelial cells. Phytother. Res. 2021 35 2 996 1009 10.1002/ptr.6861 32893422
    [Google Scholar]
  25. Xing L. Zhang H. Qi R. Tsao R. Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem. 2019 67 4 1029 1043 10.1021/acs.jafc.8b06146 30653316
    [Google Scholar]
  26. Pathak N.M. Millar P.J.B. Pathak V. Flatt P.R. Gault V.A. Beneficial metabolic effects of dietary epigallocatechin gallate alone and in combination with exendin-4 in high fat diabetic mice. Mol. Cell. Endocrinol. 2018 460 200 208 10.1016/j.mce.2017.07.024 28754350
    [Google Scholar]
  27. Quezada-Fernández P. Trujillo-Quiros J. Pascoe-González S. Trujillo-Rangel W.A. Cardona-Müller D. Ramos-Becerra C.G. Barocio-Pantoja M. Rodríguez-de la Cerda M. Nérida Sánchez-Rodríguez E. Cardona-Muñóz E.G. García-Benavides L. Grover-Páez F. Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled trial. Int. J. Food Sci. Nutr. 2019 70 8 977 985 10.1080/09637486.2019.1589430 31084381
    [Google Scholar]
  28. Pang J. Zhang Z. Zheng T. Bassig B.A. Mao C. Liu X. Zhu Y. Shi K. Ge J. Yang Y. Dejia-Huang Bai M. Peng Y. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int. J. Cardiol. 2016 202 967 974 10.1016/j.ijcard.2014.12.176 26318390
    [Google Scholar]
  29. Jagtap S. Meganathan K. Wagh V. Winkler J. Hescheler J. Sachinidis A. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr. Med. Chem. 2009 16 12 1451 1462 10.2174/092986709787909578 19355899
    [Google Scholar]
  30. Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr. 2007 26 4 373S 388S 10.1080/07315724.2007.10719626 17906191
    [Google Scholar]
  31. Tritsch N. Steger M.C. Segatz V. Blumenthal P. Rigling M. Schwarz S. Zhang Y. Franke H. Lachenmeier D.W. Risk assessment of caffeine and Epigallocatechin Gallate in coffee leaf tea. Foods 2022 11 3 263 10.3390/foods11030263 35159415
    [Google Scholar]
  32. Wang W. Zhang Z.Z. Wu Y. Wang R.Q. Chen J.W. Chen J. Zhang Y. Chen Y.J. Geng M. Xu Z.D. Dai M. Li J.H. Pan L.L. (–)-Epigallocatechin-3-Gallate Ameliorates atherosclerosis and modulates hepatic lipid metabolic gene expression in apolipoprotein E knockout mice: Involvement of TTC39B. Front. Pharmacol. 2018 9 195 10.3389/fphar.2018.00195 29593532
    [Google Scholar]
  33. Wang T. Xiang Z. Wang Y. Li X. Fang C. Song S. Li C. Yu H. Wang H. Yan L. Hao S. Wang X. Sheng J. (−)-Epigallocatechin Gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages. Front. Immunol. 2017 8 433 10.3389/fimmu.2017.00433 28443100
    [Google Scholar]
  34. Duan J. Chen Z. Liang X. Chen Y. Li H. Tian X. Zhang M. Wang X. Sun H. Kong D. Li Y. Yang J. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials 2020 255 120199 10.1016/j.biomaterials.2020.120199 32580099
    [Google Scholar]
  35. Xu X. Pan J. Zhou X. Amelioration of lipid profile and level of antioxidant activities by epigallocatechin-gallate in a rat model of atherogenesis. Heart Lung Circ. 2014 23 12 1194 1201 10.1016/j.hlc.2014.05.013 25027849
    [Google Scholar]
  36. Cai Y. Kurita-Ochiai T. Hashizume T. Yamamoto M. Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis -induced atherosclerosis. Pathog. Dis. 2013 67 1 76 83 10.1111/2049‑632X.12001 23620122
    [Google Scholar]
  37. Wang Q. Zhang J. Li Y. Shi H. Wang H. Chen B. Wang F. Wang Z. Yang Z. Wang L. Green tea polyphenol epigallocatechin-3-gallate increases atherosclerotic plaque stability in apolipoprotein E-deficient mice fed a high-fat diet. Kardiol. Pol. 2018 76 8 1263 1270 10.5603/KP.a2018.0114 29862488
    [Google Scholar]
  38. Townsend D. Hughes E. Akien G. Stewart K.L. Radford S.E. Rochester D. Middleton D.A. Epigallocatechin-3-gallate remodels apolipoprotein A-I amyloid fibrils into soluble oligomers in the presence of heparin. J. Biol. Chem. 2018 293 33 12877 12893 10.1074/jbc.RA118.002038 29853648
    [Google Scholar]
  39. Cao Y. Wang D. Wang X. Zhang J. Shan Z. Teng W. (-)-Epigallocatechin gallate inhibits TNF-α-induced PAI-1 production in vascular endothelial cells. J. Cardiovasc. Pharmacol. 2013 62 5 452 456 10.1097/FJC.0b013e3182a18ba8 23921304
    [Google Scholar]
  40. Lorenz M. Rauhut F. Hofer C. Gwosc S. Müller E. Praeger D. Zimmermann B.F. Wernecke K.D. Baumann G. Stangl K. Stangl V. Tea-induced improvement of endothelial function in humans: No role for epigallocatechin gallate (EGCG). Sci. Rep. 2017 7 1 2279 10.1038/s41598‑017‑02384‑x 28536463
    [Google Scholar]
  41. Widlansky M.E. Hamburg N.M. Anter E. Holbrook M. Kahn D.F. Elliott J.G. Keaney J.F. Jr Vita J.A. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J. Am. Coll. Nutr. 2007 26 2 95 102 10.1080/07315724.2007.10719590 17536120
    [Google Scholar]
  42. Chen Q. Kang J. Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct. Target. Ther. 2018 3 1 18 10.1038/s41392‑018‑0018‑5 29967689
    [Google Scholar]
  43. Duan H. Zhang Q. Liu J. Li R. Wang D. Peng W. Wu C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol. Res. 2021 168 105599 10.1016/j.phrs.2021.105599 33838291
    [Google Scholar]
  44. Pai P.Y. Chou W.C. Chan S.H. Wu S.Y. Chen H.I. Li C.W. Hsieh P.L. Chu P.M. Chen Y.A. Ou H.C. Tsai K.L. Epigallocatechin Gallate reduces Homocysteine-caused oxidative damages through modulation SIRT1/AMPK pathway in endothelial cells. Am. J. Chin. Med. 2021 49 1 113 129 10.1142/S0192415X21500063 33371812
    [Google Scholar]
  45. Liu J. Liu Y. Wang Y. Li C. Xie Y. Klionsky D.J. Kang R. Tang D. TMEM164 is a new determinant of autophagy-dependent ferroptosis. Autophagy 2023 19 3 945 956 10.1080/15548627.2022.2111635 35947500
    [Google Scholar]
  46. Priem D. Huyghe J. Bertrand M.J.M. LC3-independent autophagy is vital to prevent TNF cytotoxicity. Autophagy 2023 19 9 2585 2589 10.1080/15548627.2023.2197760 37014272
    [Google Scholar]
  47. Liu S. Yao S. Yang H. Liu S. Wang Y. Autophagy: Regulator of cell death. Cell Death Dis. 2023 14 10 648 10.1038/s41419‑023‑06154‑8 37794028
    [Google Scholar]
  48. Li N. Zhang R.X. Xie X.J. Gu H.F. Autophagy in chronic stress induced atherosclerosis. Clin. Chim. Acta 2020 503 70 75 10.1016/j.cca.2020.01.006 31945340
    [Google Scholar]
  49. Liu S. Jiang X. Cui X. Wang J. Liu S. Li H. Yang J. Zhang C. Zhang W. Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis. Cell Death Dis. 2021 12 4 385 10.1038/s41419‑021‑03671‑2 33837179
    [Google Scholar]
  50. Yamagata K. Xie Y. Suzuki S. Tagami M. Epigallocatechin-3-gallate inhibits VCAM-1 expression and apoptosis induction associated with LC3 expressions in TNFα-stimulated human endothelial cells. Phytomedicine 2015 22 4 431 437 10.1016/j.phymed.2015.01.011 25925964
    [Google Scholar]
  51. Jamuna S. Ashokkumar R. Sakeena Sadullah M.S. Devaraj S.N. Oligomeric proanthocyanidins and epigallocatechin gallate aggravate autophagy of foam cells through the activation of Class III PI3K/Beclin1‐complex mediated cholesterol efflux. Biofactors 2019 45 5 763 773 10.1002/biof.1537 31237721
    [Google Scholar]
  52. Malard F. Dore J. Gaugler B. Mohty M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol. 2021 14 3 547 554 10.1038/s41385‑020‑00365‑4 33299088
    [Google Scholar]
  53. Yoshida N. Yamashita T. Hirata K. Gut microbiome and cardiovascular diseases. Diseases 2018 6 3 56 10.3390/diseases6030056 29966270
    [Google Scholar]
  54. Vourakis M. Mayer G. Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int. J. Mol. Sci. 2021 22 15 8074 10.3390/ijms22158074 34360839
    [Google Scholar]
  55. Sheng L. Jena P.K. Liu H.X. Hu Y. Nagar N. Bronner D.N. Settles M.L. Baümler A.J. Wan Y.J.Y. Obesity treatment by epigallocatechin‐3‐gallate−regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J. 2018 32 12 6371 6384 10.1096/fj.201800370R 29882708
    [Google Scholar]
  56. Zhang Q. Liu J. Duan H. Li R. Peng W. Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021 34 43 63 10.1016/j.jare.2021.06.023 35024180
    [Google Scholar]
  57. Yu W. Liu W. Xie D. Wang Q. Xu C. Zhao H. Lv J. He F. Chen B. Yamamoto T. Koyama H. Cheng J. High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid. Med. Cell. Longev. 2022 2022 1 21 10.1155/2022/9304383 35480874
    [Google Scholar]
  58. Kishimoto Y. Kondo K. Momiyama Y. The protective role of heme oxygenase-1 in atherosclerotic diseases. Int. J. Mol. Sci. 2019 20 15 3628 10.3390/ijms20153628 31344980
    [Google Scholar]
  59. Liu P.L. Liu J.T. Kuo H.F. Chong I.W. Hsieh C.C. Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1β via heme oxygenase-1. Mediators Inflamm. 2014 2014 1 8 10.1155/2014/523684 25386047
    [Google Scholar]
  60. Zheng Y. Morris A. Sunkara M. Layne J. Toborek M. Hennig B. Epigallocatechin-gallate stimulates NF-E2-related factor and heme oxygenase-1 via caveolin-1 displacement. J. Nutr. Biochem. 2012 23 2 163 168 10.1016/j.jnutbio.2010.12.002 21447442
    [Google Scholar]
  61. Yamagata K. Protective effect of epigallocatechin gallate on endothelial disorders in atherosclerosis. J. Cardiovasc. Pharmacol. 2020 75 4 292 298 10.1097/FJC.0000000000000792 31895874
    [Google Scholar]
  62. Liu Y. Long Y. Fang J. Liu G. Advances in the anti-atherosclerotic mechanisms of epigallocatechin gallate. Nutrients 2024 16 13 2074 10.3390/nu16132074 38999821
    [Google Scholar]
  63. Vieceli Dalla Sega F. Fortini F. Aquila G. Campo G. Vaccarezza M. Rizzo P. Notch signaling regulates immune responses in atherosclerosis. Front. Immunol. 2019 10 1130 10.3389/fimmu.2019.01130 31191522
    [Google Scholar]
  64. Yin J. Huang F. Yi Y. Yin L. Peng D. EGCG attenuates atherosclerosis through the Jagged-1/Notch pathway. Int. J. Mol. Med. 2016 37 2 398 406 10.3892/ijmm.2015.2422 26648562
    [Google Scholar]
  65. Li Y.F. Wang H. Fan Y. Shi H. Wang Q.M. Chen B. Khurwolah M.R. Long Q. Wang S.B. Wang Z.M. Wang L.S. Epigallocatechin-3-gallate inhibits matrix Metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-κDa Laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in lipopolysaccharide-induced macrophages. Cell. Physiol. Biochem. 2017 43 3 926 936 10.1159/000481643 28957799
    [Google Scholar]
  66. Huang S.C. Kao Y.H. Shih S.F. Tsai M.C. Lin C.S. Chen L.W. Chuang Y.P. Tsui P.F. Ho L.J. Lai J.H. Chen S.J. Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells. Biochem. Biophys. Res. Commun. 2021 550 70 76 10.1016/j.bbrc.2021.02.132 33689882
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240354839241113044604
Loading
/content/journals/cmm/10.2174/0115665240354839241113044604
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: EGCG ; apoptosis ; Atherosclerosis ; autophagy ; Nrf2 ; gut microbiota
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test