Skip to content
2000
image of Potential Effects of Opium on Pro-Inflammatory Cytokines in Coronary Artery Disease by Interfering with Anti-inflammatory Drugs

Abstract

Background

Opium is one of the factors that may interfere with coronary artery disease (CAD). This study aimed to investigate the role of opium in certain pro-inflammatory and anti-inflammatory cytokines in CAD patients with and without opium dependence on regular prescription medicines.

Methods

Seventy-seven patients with suspected CAD were selected as candidates for coronary angiography in this case-control study. They were categorized into three groups:1) CAD opium-addicted (CAD+OA, n=30); 2) CAD non-opium-addicted (CAD, n=30); and 3) non-opium-addicted with no CAD individuals as a control group (Ctrl, n=17). Routine medications, including aspirin, atorvastatin, bisoprolol, valsartan, losartan, clopidogrel, metoprolol, isosorbide, trinitrate glyceryl, captopril, and carvedilol, were administered to these patients. ELISA was performed to quantify plasma levels of interleukin-23 (IL-23), IL-17, IL-1β, transforming growth factor beta (TGF-β), and IL-10.

Results

A significantly higher level of IL-23 was found in the CAD+OA group than in the CAD and control groups. In addition, in the CAD+OA group, the mean difference in TGF-β levels was significantly lower than that in CAD patients, whereas no significant difference was found between the Ctrl group and the CAD+OA and CAD groups. No significant differences were observed in the mean levels of IL-17, IL-1β, or IL-10 among the groups.

Conclusion

Opium was found to contribute to the induction of inflammation by interfering with cardiovascular medications, resulting in deterioration of CAD complications. Additionally, certain medications, including aspirin, glyceryl trinitrate, atorvastatin, and clopidogrel, played a significant role in regulating the expression of cytokines.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240353642250306032936
2025-03-10
2025-07-05
Loading full text...

Full text loading...

References

  1. Akbari H. Hosseini-Bensenjan M. Salahi S. Moazzen F. Aria H. Manafi A. Hosseini S. Niknam M. Asadikaram G. Apelin and its ratio to lipid factors are associated with cardiovascular diseases: A systematic review and meta-analysis. PLoS One 2022 17 8 e0271899 10.1371/journal.pone.0271899 35913970
    [Google Scholar]
  2. Liu Y. Ye T. Chen L. Jin T. Sheng Y. Wu G. Zong G. Systemic immune-inflammation index predicts the severity of coronary stenosis in patients with coronary heart disease. Coron. Artery Dis. 2021 32 8 715 720 10.1097/MCA.0000000000001037 33826540
    [Google Scholar]
  3. Donia T. Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: Mechanisms and challenges. Environ. Sci. Pollut. Res. Int. 2021 28 26 34121 34153 10.1007/s11356‑021‑14109‑9 33963999
    [Google Scholar]
  4. Momeni-Moghaddam M.A. Asadikaram G. Akbari H. Abolhassani M. Masoumi M. Nadimy Z. Khaksari M. CD36 gene polymorphism rs1761667 (G > A) is associated with hypertension and coronary artery disease in an Iranian population. BMC Cardiovasc. Disord. 2019 19 1 140 10.1186/s12872‑019‑1111‑6 31185924
    [Google Scholar]
  5. Akbari H. Asadikaram G. Aria H. Fooladi S. Vakili S. Masoumi M. Association of Klotho gene polymorphism with hypertension and coronary artery disease in an Iranian population. BMC Cardiovasc. Disord. 2018 18 1 237 10.1186/s12872‑018‑0971‑5 30547758
    [Google Scholar]
  6. Min X. Lu M. Tu S. Wang X. Zhou C. Wang S. Pang S. Qian J. Ge Y. Guo Y. Serum cytokine profile in relation to the severity of coronary artery disease. Biomed. Res. Int. 2017 2017 4013685 10.1155/2017/4013685 28349060
    [Google Scholar]
  7. Wen S. Jiang Y. Liang S. Cheng Z. Zhu X. Guo Q. Opioids regulate the immune system: Focusing on macrophages and their organelles. Front. Pharmacol. 2022 12 814241 10.3389/fphar.2021.814241 35095529
    [Google Scholar]
  8. Eisenstein T.K. The role of opioid receptors in immune system function. Front. Immunol. 2019 10 2904 10.3389/fimmu.2019.02904 31921165
    [Google Scholar]
  9. Momeni-Moghaddam M.A. Asadikaram G. Nematollahi M. H. Tarzi M.E. Faramarz-Gaznagh S. Mohammadpour-Gharehbagh A. Arababadi M.K. Effects of cigarette smoke and opium on the expression of CD9, CD36, and CD68 at mRNA and protein levels in human macrophage cell line THP-1. Iran. J. Aller. Asth. Immunol. 2020 19 1 45 55 10.18502/ijaai.v19i1.2417 32245320
    [Google Scholar]
  10. Lim S.Y. Opioid effects on the central nervous system and the peripheral immune system: Implications for opioid tolerance. Curr. Pharmacol. Rep. 2021 7 3 81 95 10.1007/s40495‑021‑00258‑5
    [Google Scholar]
  11. Asadikaram G. Akbari H. Vakili S. Asiabanha M. Shahrokhi N. Savardashtaki A. The effects of opium addiction on thyroid and sex hormones in diabetic and non-diabetic male and female rats. Acta Endocrinol. (Bucur.) 2018 14 4 466 472 10.4183/aeb.2018.466 31149298
    [Google Scholar]
  12. Asadikaram G. Vakili S. Akbari H. Kheirmand-Parizi M. Sadeghi E. Asiabanha M. Shahrokhi N. Effects of opium addiction on some biochemical factors in diabetic rats. Addict. Health 2018 10 2 123 130 31069036
    [Google Scholar]
  13. Maino A. Sadeghian S. Mancini I. Abbasi S.H. Poorhosseini H. Boroumand M.A. Lotfi-Tokaldany M. Jalali A. Pagliari M.T. Rosendaal F.R. Peyvandi F. Opium as a risk factor for early-onset coronary artery disease: Results from the Milano-Iran (MIran) study. PLoS One 2023 18 4 e0283707 10.1371/journal.pone.0283707 37074987
    [Google Scholar]
  14. Masoudkabir F. Malekzadeh R. Yavari N. Zendehdel K. Mani A. Vasheghani-Farahani A. Ignaszewski A. Toma M. Roayaei P. Turk-Adawi K. Sarrafzadegan N. Does opium consumption have shared impact on atherosclerotic cardiovascular disease and cancer? Arch. Iran Med. 2022 25 1 50 63 10.34172/aim.2022.08 35128912
    [Google Scholar]
  15. Roayaei P. Aminorroaya A. Vasheghani-Farahani A. Oraii A. Sadeghian S. Poorhosseini H. Masoudkabir F. Opium and cardiovascular health: A devil or an angel? Indian Heart J. 2020 72 6 482 490 10.1016/j.ihj.2020.10.003 33357635
    [Google Scholar]
  16. Asadikaram G. Ram M. Izadi A. Sheikh Fathollahi M. Nematollahi M.H. Najafipour H. Shahoozehi B. Mirhoseini M. Masoumi M. Shahrokhi N. Arababadi M.K. The study of the serum level of IL‐4, TGF‐β, IFN‐γ, and IL‐6 in overweight patients with and without diabetes mellitus and hypertension. J. Cell. Biochem. 2019 120 3 4147 4157 10.1002/jcb.27700 30260038
    [Google Scholar]
  17. Nakhaee S. Ghasemi S. Karimzadeh K. Zamani N. Alinejad-Mofrad S. Mehrpour O. The effects of opium on the cardiovascular system: A review of side effects, uses, and potential mechanisms. Subst. Abuse Treat. Prev. Policy 2020 15 1 30 10.1186/s13011‑020‑00272‑8 32303254
    [Google Scholar]
  18. Akbari H. Asadikaram G. Jafari A. Nazari-Robati M. Ebrahimi G. Ebrahimi N. Masoumi M. Atorvastatin, losartan and captopril may upregulate IL-22 in hypertension and coronary artery disease; the role of gene polymorphism. Life Sci. 2018 207 525 531 10.1016/j.lfs.2018.07.005 29981321
    [Google Scholar]
  19. Akbari H. Asadikaram G. Vakili S. Masoumi M. Atorvastatin and losartan may upregulate renalase activity in hypertension but not coronary artery diseases: The role of gene polymorphism. J. Cell. Biochem. 2019 120 6 9159 9171 10.1002/jcb.28191 30548657
    [Google Scholar]
  20. Momeni-Moghaddam M.A. Asadikaram G. Masoumi M. Sadeghi E. Akbari H. Abolhassani M. Farsinejad A. Khaleghi M. Nematollahi M.H. Dabiri S. Arababadi M.K. Opium may affect coronary artery disease by inducing inflammation but not through the expression of CD9, CD36, and CD68. J. Investig. Med. 2023 71 3 191 201 10.1177/10815589221145030 36708288
    [Google Scholar]
  21. Koushki K. Shahbaz S.K. Mashayekhi K. Sadeghi M. Zayeri Z.D. Taba M.Y. Banach M. Al-Rasadi K. Johnston T.P. Sahebkar A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin. Rev. Allergy Immunol. 2021 60 2 175 199 10.1007/s12016‑020‑08791‑9 32378144
    [Google Scholar]
  22. Dimitroglou Y. Aggeli C. Theofilis P. Tsioufis P. Oikonomou E. Chasikidis C. Tsioufis K. Tousoulis D. Novel anti-inflammatory therapies in coronary artery disease and acute coronary syndromes. Life (Basel) 2023 13 8 1669 10.3390/life13081669 37629526
    [Google Scholar]
  23. Kochumon S. Hasan A. Al-Rashed F. Sindhu S. Thomas R. Jacob T. Al-Sayyar A. Arefanian H. Al Madhoun A. Al-Ozairi E. Alzaid F. Koistinen H.A. Al-Mulla F. Tuomilehto J. Ahmad R. Increased adipose tissue expression of IL-23 associates with inflammatory markers in people with high LDL cholesterol. Cells 2022 11 19 3072 10.3390/cells11193072 36231033
    [Google Scholar]
  24. Huai G. Markmann J.F. Deng S. Rickert C.G. TGF‐β‐secreting regulatory B cells: Unsung players in immune regulation. Clin. Transl. Immunology 2021 10 4 e1270 10.1002/cti2.1270 33815797
    [Google Scholar]
  25. Musiol S. Alessandrini F. Jakwerth C.A. Chaker A.M. Schneider E. Guerth F. Schnautz B. Grosch J. Ghiordanescu I. Ullmann J.T. Kau J. Plaschke M. Haak S. Buch T. Schmidt-Weber C.B. Zissler U.M. TGF-β1 Drives inflammatory th cell but not treg cell compartment upon allergen exposure. Front. Immunol. 2022 12 763243 10.3389/fimmu.2021.763243 35069535
    [Google Scholar]
  26. Sepehri Z. Masoumi M. Ebrahimi N. Kiani Z. Nasiri A.A. Kohan F. Sheikh Fathollahi M. Kazemi Arababadi M. Asadikaram G. Atorvastatin, losartan and captopril lead to upregulation of TGF-β, and downregulation of IL-6 in coronary artery disease and hypertension. PLoS One 2016 11 12 e0168312 10.1371/journal.pone.0168312 28033321
    [Google Scholar]
  27. Ayatollahi-Mousavi S.A. Asadikaram G. Nakhaee N. Izadi A. Keikha N. The effects of opium addiction on the immune system function in patients with fungal infection. Addict. Health 2016 8 4 218 226 28819552
    [Google Scholar]
  28. Asadikaram G. Igder S. Jamali Z. Shahrokhi N. Najafipour H. Shokoohi M. Jafarzadeh A. Kazemi-Arababadi M. Effects of different concentrations of opium on the secretion of interleukin-6, interferon-γ and transforming growth factor beta cytokines from jurkat cells. Addict. Health 2015 7 1-2 47 53 26322210
    [Google Scholar]
  29. Wang I.C. Sugai J.V. Majzoub J. Johnston J. Giannobile W.V. Wang H.L. Pro‐inflammatory profiles in cardiovascular disease patients with peri‐implantitis. J. Periodontol. 2022 93 6 824 836 10.1002/JPER.21‑0419 34807456
    [Google Scholar]
  30. Li H. Shen C. Chen B. Du J. Peng B. Wang W. Chi F. Dong X. Huang Z. Yang C. Interleukin‑37 is increased in peripheral blood mononuclear cells of coronary heart disease patients and inhibits the inflammatory reaction. Mol. Med. Rep. 2020 21 1 151 160 31746393
    [Google Scholar]
  31. Liu S. Wang C. Guo J. Yang Y. Huang M. Li L. Wang Y. Qin Y. Zhang M. Serum cytokines predict the severity of coronary artery disease without acute myocardial infarction. Front. Cardiovasc. Med. 2022 9 896810 10.3389/fcvm.2022.896810 35651907
    [Google Scholar]
  32. Imam T. Park S. Kaplan M.H. Olson M.R. Effector T helper cell subsets in inflammatory bowel diseases. Front. Immunol. 2018 9 1212 10.3389/fimmu.2018.01212 29910812
    [Google Scholar]
  33. Paul A. Anandabaskar N. Mathaiyan J. Raj G.M. Essentials of Systemic Pharmacology : From Principles to Practice. Introduction to Basics of Pharmacology and Toxicology Cham Springer Nature 2021 2 1175
    [Google Scholar]
  34. Bering J. DiBaise J.K. Short bowel syndrome: Complications and management. Nutr. Clin. Pract. 2023 38 S1 Suppl. 1 S46 S58 10.1002/ncp.10978 37115034
    [Google Scholar]
  35. Mendes V. Galvão I. Vieira A.T. Mechanisms by which the gut microbiota influences cytokine production and modulates host inflammatory responses. J. Interferon Cytokine Res. 2019 39 7 393 409 10.1089/jir.2019.0011 31013453
    [Google Scholar]
  36. Zhao Y. Chen L. Effects of intestinal bacteria on cardiovascular disease. Biotechnol. Genet. Eng. Rev. 2022 38 2 270 287 10.1080/02648725.2022.2074696 35775836
    [Google Scholar]
  37. Tregubenko P. Zvonarev V. Impact of opioid use in hematological malignancies: Clinical, immunological and concomitant aspects. J. Hematol. (Brossard) 2020 9 3 41 54 10.14740/jh689 32855752
    [Google Scholar]
  38. Adams S.P. Tsang M. Wright J.M. Lipid lowering efficacy of atorvastatin. Cochr. Datab. Syst. Rev. 2012 12 CD008226 10.1002/14651858.CD008226.pub2 23235655
    [Google Scholar]
  39. LaRosa J.C. Grundy S.M. Waters D.D. Shear C. Barter P. Fruchart J.C. Gotto A.M. Greten H. Kastelein J.J.P. Shepherd J. Wenger N.K. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med. 2005 352 14 1425 1435 10.1056/NEJMoa050461 15755765
    [Google Scholar]
  40. Krause B.R. Newton R.S. Lipid-lowering activity of atorvastatin and lovastatin in rodent species: Triglyceride-lowering in rats correlates with efficacy in LDL animal models. Atherosclerosis 1995 117 2 237 244 10.1016/0021‑9150(95)05576‑I 8801869
    [Google Scholar]
  41. Black D.M. Bakker-Arkema R.G. Nawrocki J.W. An overview of the clinical safety profile of atorvastatin (lipitor), a new HMG-CoA reductase inhibitor. Arch. Intern. Med. 1998 158 6 577 584 10.1001/archinte.158.6.577 9521221
    [Google Scholar]
  42. Luo M. Liu A. Wang S. Wang T. Hu D. Wu S. Peng D. ApoCIII enrichment in HDL impairs HDL-mediated cholesterol efflux capacity. Sci. Rep. 2017 7 1 2312 10.1038/s41598‑017‑02601‑7 28539597
    [Google Scholar]
  43. Ali K.M. Wonnerth A. Huber K. Wojta J. Cardiovascular disease risk reduction by raising HDL cholesterol – current therapies and future opportunities. Br. J. Pharmacol. 2012 167 6 1177 1194 10.1111/j.1476‑5381.2012.02081.x 22725625
    [Google Scholar]
  44. Mami S. Eghbali M. Cheraghi J. Mami F. Borujeni M.P. Salati A.P. Effect of opium addiction on some serum parameters in rabbit. Glob. Vet. 2011 7 3 310 314
    [Google Scholar]
  45. Asgary S. Sarrafzadegan N. Naderi G.A. Rozbehani R. Effect of opium addiction on new and traditional cardiovascular risk factors: Do duration of addiction and route of administration matter? Lipids Health Dis. 2008 7 1 42 10.1186/1476‑511X‑7‑42 18980684
    [Google Scholar]
  46. Rahimi N. Gozashti M.H. Najafipour H. Shokoohi M. Marefati H. Potential effect of opium consumption on controlling diabetes and some cardiovascular risk factors in diabetic patients. Addict. Health 2014 6 1-2 1 6 25140211
    [Google Scholar]
  47. Najarzadegan M.R. Aghadavoudi O. Eizadi-Mood N. Comparing cardiovascular factors in opium abusers and non-users candidate for coronary artery bypass graft surgery. Adv. Biomed. Res. 2015 4 1 12 10.4103/2277‑9175.148294 25625118
    [Google Scholar]
  48. Mohammadi A. Darabi M. Nasry M. Saabet-Jahromi M.J. Malek-Pour-Afshar R. Sheibani H. Effect of opium addiction on lipid profile and atherosclerosis formation in hypercholesterolemic rabbits. Exp. Toxicol. Pathol. 2009 61 2 145 149 10.1016/j.etp.2008.08.001 18838257
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240353642250306032936
Loading
/content/journals/cmm/10.2174/0115665240353642250306032936
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: opium ; Cytokines ; TGF-β ; coronary artery disease ; IL-23 ; inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test