Skip to content
2000
image of Recent Accomplishments in Exhaled Breath Condensate Analysis - Molecular Aspects

Abstract

Nowadays, the research of exhaled breath condensate (EBC) analysis is widely discussed in the scientific community. The growing interest in EBC analysis results is related to the ample advantages of non-invasive techniques in healthcare and related fields. In particular, EBC analysis can be used to diagnose respiratory diseases, monitor the disease’s course during therapy, and monitor drug intake and metabolism. This review aims to systematize the accumulated knowledge on EBC collection, concentration, storage, and analysis methods and compare them with similar procedures for exhaled breath (EB). We proposed a generalized chemical classification of EBC compounds that are biomarkers for various diseases. The potential transformation of substances during EB condensation was considered, and EBC analysis methods were systematically categorized based on this classification. Methods for EBC analysis using chromatographic separation with mass spectrometric detection (hyphenated methods) were separately discussed as the most promising methods for future research applications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240352590250217110256
2025-02-20
2025-06-15
Loading full text...

Full text loading...

References

  1. Effros R.M. Hoagland K.W. Bosbous M. Castillo D. Foss B. Dunning M. Gare M. Lin W. Sun F. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med. 2002 165 5 663 669 10.1164/ajrccm.165.5.2101018 11874811
    [Google Scholar]
  2. Hunt J. Exhaled breath condensate: An overview. Immunol. Allergy Clin. North Am. 2007 27 4 587 596 10.1016/j.iac.2007.09.001 17996577
    [Google Scholar]
  3. Phillips M. Herrera J. Krishnan S. Zain M. Greenberg J. Cataneo R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr., Biomed. Appl. 1999 729 1-2 75 88 10.1016/S0378‑4347(99)00127‑9 10410929
    [Google Scholar]
  4. Davis C. Beauchamp J. Volatile biomarkers: Non-invasive diagnosis in physiology and medicine. Newnes 2013
    [Google Scholar]
  5. Zhang X. Frankevich V. Ding J. Ma Y. Chingin K. Chen H. Direct mass spectrometry analysis of exhaled human breath in real‐time. Mass Spectrom. Rev. 2023 37565588
    [Google Scholar]
  6. Zhou J. Huang Z.A. Kumar U. Chen D.D.Y. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal. Chim. Acta 2017 996 1 9 10.1016/j.aca.2017.09.021 29137702
    [Google Scholar]
  7. Aksenov A.A. Zamuruyev K.O. Pasamontes A. Brown J.F. Schivo M. Foutouhi S. Weimer B.C. Kenyon N.J. Davis C.E. Analytical methodologies for broad metabolite coverage of exhaled breath condensate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1061-1062 17 25 10.1016/j.jchromb.2017.06.038 28697414
    [Google Scholar]
  8. Konstantinidi E.M. Lappas A.S. Tzortzi A.S. Behrakis P.K. Exhaled breath condensate: Technical and diagnostic aspects. ScientificWorldJournal 2015 2015 1 435160 10.1155/2015/435160 26106641
    [Google Scholar]
  9. Davis M.D. Montpetit A. Hunt J. Exhaled breath condensate: An overview. Immunology and Allergy Clinics 2012 32 3 363 375 22877615
    [Google Scholar]
  10. Rodrigues M. de Castro Mendes F. Paciência I. Cavaleiro Rufo J. Silva D. Delgado L. Moreira A. Moreira P. Diet quality and exhaled breath condensate markers in a sample of school-aged children. Children 2023 10 2 263 10.3390/children10020263 36832392
    [Google Scholar]
  11. Rahimpour E. Khoubnasabjafari M. Jouyban-Gharamaleki V. Jouyban A. Non-volatile compounds in exhaled breath condensate: Review of methodological aspects. Anal. Bioanal. Chem. 2018 410 25 6411 6440 10.1007/s00216‑018‑1259‑4 30046867
    [Google Scholar]
  12. Paget-Brown A.O. Ngamtrakulpanit L. Smith A. Bunyan D. Hom S. Nguyen A. Hunt J.F. Normative data for pH of exhaled breath condensate. Chest 2006 129 2 426 430 10.1378/chest.129.2.426 16478862
    [Google Scholar]
  13. Sidorenko G.I. Zborovskiĭ E.I. Levina D.I. Surface-active properties of the exhaled air condensate (a new method of studying lung function). Ter. Arkh. 1980 52 3 65 68 6892965
    [Google Scholar]
  14. Montuschi P. Barnes P.J. Analysis of exhaled breath condensate for monitoring airway inflammation. Trends Pharmacol. Sci. 2002 23 5 232 237 10.1016/S0165‑6147(02)02020‑5 12008001
    [Google Scholar]
  15. Grob N.M. Aytekin M. Dweik R.A. Biomarkers in exhaled breath condensate: A review of collection, processing and analysis. J. Breath Res. 2008 2 3 037004 10.1088/1752‑7155/2/3/037004 21386165
    [Google Scholar]
  16. Montuschi P. Review: Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther. Adv. Respir. Dis. 2007 1 1 5 23 10.1177/1753465807082373 19124344
    [Google Scholar]
  17. Jackson A.S. Sandrini A. Campbell C. Chow S. Thomas P.S. Yates D.H. Comparison of biomarkers in exhaled breath condensate and bronchoalveolar lavage. Am. J. Respir. Crit. Care Med. 2007 175 3 222 227 10.1164/rccm.200601‑107OC 17110649
    [Google Scholar]
  18. Mutlu G.M. Garey K.W. Robbins R.A. Danziger L.H. Rubinstein I. Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 2001 164 5 731 737 10.1164/ajrccm.164.5.2101032 11549524
    [Google Scholar]
  19. Kolbasina N.A. Gureev A.P. Serzhantova O.V. Mikhailov A.A. Moshurov I.P. Starkov A.A. Popov V.N. Lung cancer increases H2O2 concentration in the exhaled breath condensate, extent of mtDNA damage, and mtDNA copy number in buccal mucosa. Heliyon 2020 6 6 e04303 10.1016/j.heliyon.2020.e04303 32637695
    [Google Scholar]
  20. Sawano M. Takeshita K. Ohno H. Oka H. RT-PCR diagnosis of COVID-19 from exhaled breath condensate: A clinical study. J. Breath Res. 2021 15 3 037103 10.1088/1752‑7163/ac0414 34020435
    [Google Scholar]
  21. Moradi M. Jouyban A. Gharakhani A. Noshad H. Khoubnasabjafari M. Jouyban-Gharamaleki V. Rahimpour E. Utilizing Rayleigh light scattering of anthracene nanoparticles for determination of p-cresol in exhaled breath condensate. Microchem. J. 2023 187 108387 10.1016/j.microc.2023.108387
    [Google Scholar]
  22. Rolla G. Bruno M. Bommarito L. Heffler E. Ferrero N. Petrarulo M. Bagnis C. Bugiani M. Guida G. Breath analysis in patients with end‐stage renal disease: Effect of haemodialysis. Eur. J. Clin. Invest. 2008 38 10 728 733 10.1111/j.1365‑2362.2008.02016.x 18837798
    [Google Scholar]
  23. Leese E. Jones K. Bocca B. Bousoumah R. Castaño A. Galea K.S. Iavicoli I. López M.E. Leso V. Ndaw S. Porras S.P. Ruggieri F. Scheepers P.T.J. Santonen T. Anzion R. Cattaneo A. Cavallo D.M. De Palma G. Forte G. Lehtinen R. Lovreglio P. Melczer M. Senofonte M. Spankie S. van Dael M. HBM4EU chromates study – The measurement of hexavalent and trivalent chromium in exhaled breath condensate samples from occupationally exposed workers across Europe. Toxicol. Lett. 2023 375 59 68 10.1016/j.toxlet.2022.12.009 36535516
    [Google Scholar]
  24. Barreiros M.A. Pinheiro T. Félix P.M. Franco C. Santos M. Araújo F. Freitas M.C. Almeida S.M. Exhaled breath condensate as a biomonitor for metal exposure: A new analytical challenge. J. Radioanal. Nucl. Chem. 2013 297 3 377 382 10.1007/s10967‑012‑2366‑x
    [Google Scholar]
  25. Félix P.M. Franco C. Barreiros M.A. Batista B. Bernardes S. Garcia S.M. Almeida A.B. Almeida S.M. Wolterbeek H.T. Pinheiro T. Biomarkers of exposure to metal dust in exhaled breath condensate: Methodology optimization. Arch. Environ. Occup. Health 2013 68 2 72 79 10.1080/19338244.2011.638951 23428056
    [Google Scholar]
  26. de Gennaro G. Dragonieri S. Longobardi F. Musti M. Stallone G. Trizio L. Tutino M. Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subjects with similar professional asbestos exposure. Anal. Bioanal. Chem. 2010 398 7-8 3043 3050 10.1007/s00216‑010‑4238‑y 20924566
    [Google Scholar]
  27. Kononikhin A. Brzhozovskiy A. Ryabokon A. Fedorchenko K. Zakharova N. Spasskii A. Popov I. Ilyin V. Solovyova Z. Pastushkova L. Polyakov A. Varfolomeev S. Larina I. Nikolaev E. Proteome profiling of the exhaled breath condensate after long-term spaceflights. Int. J. Mol. Sci. 2019 20 18 4518 10.3390/ijms20184518 31547269
    [Google Scholar]
  28. Fothergill D.M. Borras E. McCartney M.M. Schelegle E.S. Davis C.E. Exhaled breath condensate profiles of U.S. Navy divers following prolonged hyperbaric oxygen (HBO) and nitrogen-oxygen (Nitrox) chamber exposures. J. Breath Res. 2023 17 3 037105 10.1088/1752‑7163/acd715 37207635
    [Google Scholar]
  29. Borras E. Cheng A. Wun T. Reese K.L. Frank M. Schivo M. Davis C.E. Detecting opioid metabolites in exhaled breath condensate (EBC). J. Breath Res. 2019 13 4 046014 10.1088/1752‑7163/ab35fd 31349234
    [Google Scholar]
  30. Desai A. Tankasala D. Ng G.P. Thakkar P. Hoilett O.S. Mather K.J. Linnes J.C. Selective collection of exhaled breath condensate for noninvasive screening of breath glucose. J. Diabetes Sci. Technol. 2023 19322968231179728 10.1177/19322968231179728 37401788
    [Google Scholar]
  31. Halbritter S. Fedrigo M. Höllriegl V. Szymczak W. Maier J.M. Ziegler A.G. Hummel M. Human breath gas analysis in the screening of gestational diabetes mellitus. Diabetes Technol. Ther. 2012 14 10 917 925 10.1089/dia.2012.0076 22775148
    [Google Scholar]
  32. Nicola M.L. Carvalho H.B. Yoshida C.T. Anjos F.M. Nakao M. Santos U.P. Cardozo K.H.M. Carvalho V.M. Pinto E. Farsky S.H.P. Saldiva P.H.N. Rubin B.K. Nakagawa N.K. Young “healthy” smokers have functional and inflammatory changes in the nasal and the lower airways. Chest 2014 145 5 998 1005 10.1378/chest.13‑1355 24307008
    [Google Scholar]
  33. Hashemzadeh N. Rahimpour E. Jouyban A. Applications of exhaled breath condensate analysis for drug monitoring and bioequivalence study of inhaled drugs. J. Pharm. Pharm. Sci. 2023 25 391 401 10.18433/jpps33121 36608642
    [Google Scholar]
  34. Pleil J. Risby T. Herbig J. Breath biomonitoring in national security assessment, forensic THC testing, biomedical technology and quality assurance applications: Report from PittCon 2016. J. Breath Res. 2016 10 2 029001 10.1088/1752‑7155/10/2/029001 27137650
    [Google Scholar]
  35. Peralbo-Molina A. Calderón-Santiago M. Jurado-Gámez B. Luque de Castro M.D. Priego-Capote F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC–TOF/MS. Sci. Rep. 2017 7 1 1421 10.1038/s41598‑017‑01564‑z 28469199
    [Google Scholar]
  36. Allers M. Langejuergen J. Gaida A. Holz O. Schuchardt S. Hohlfeld J.M. Zimmermann S. Measurement of exhaled volatile organic compounds from patients with chronic obstructive pulmonary disease (COPD) using closed gas loop GC-IMS and GC-APCI-MS. J. Breath Res. 2016 10 2 026004 10.1088/1752‑7155/10/2/026004 27058460
    [Google Scholar]
  37. Pierre-Louis Odoom J. Freeberg M.A.T. Camus S.V. Toft R. Szomju B.B. Sanchez Rosado R.M. Jackson P.D. Allegood J.C. Silvey S. Liu J. Cowart L.A. Weiss E. Thatcher T.H. Sime P.J. Exhaled breath condensate identifies metabolic dysregulation in patients with radiation-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023 324 6 L863 L869 10.1152/ajplung.00439.2022 37039378
    [Google Scholar]
  38. Robroeks C.M.H.H.T. Van De Kant K.D.G. Jöbsis Q. Hendriks H.J.E. Van Gent R. Wouters E.F.M. Damoiseaux J.G.M.C. Bast A. Wodzig W.K.W.H. Dompeling E. Exhaled nitric oxide and biomarkers in exhaled breath condensate indicate the presence, severity and control of childhood asthma. Clin. Exp. Allergy 2007 37 9 1303 1311 10.1111/j.1365‑2222.2007.02788.x 17845410
    [Google Scholar]
  39. Lee J.S. Shin J.H. Hwang J.H. Baek J.E. Choi B.S. Malondialdehyde and 3-nitrotyrosine in exhaled breath condensate in retired elderly coal miners with chronic obstructive pulmonary disease. Saf. Health Work 2014 5 2 91 96 10.1016/j.shaw.2014.03.001 25180140
    [Google Scholar]
  40. Newport S. Amin N. Dozor A.J. Exhaled breath condensate pH and ammonia in cystic fibrosis and response to treatment of acute pulmonary exacerbations. Pediatr. Pulmonol. 2009 44 9 866 872 10.1002/ppul.21078 19670404
    [Google Scholar]
  41. Horak F. Jr Moeller A. Singer F. Straub D. Höller B. Helbich T.H. Schneider B. Eichler I. Wildhaber J.H. Hall G.L. Longitudinal monitoring of pediatric cystic fibrosis lung disease using nitrite in exhaled breath condensate. Pediatr. Pulmonol. 2007 42 12 1198 1206 10.1002/ppul.20719 17968999
    [Google Scholar]
  42. Almeida S.M. Felix P.M. Franco C. Freitas M.D.C. Alves L.C. Pinheiro T. Barreiros M.A. Garcia S.M. Using the exhaled breath condensate as a tool for non-invasive evaluation of pollutant exposure. Int. J. Environ. Health 2010 4 2/3 293 304 10.1504/IJENVH.2010.033715
    [Google Scholar]
  43. Ladva C.N. Golan R. Greenwald R. Yu T. Sarnat S.E. Flanders W.D. Uppal K. Walker D.I. Tran V. Liang D. Jones D.P. Sarnat J.A. Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with potential for air toxics detection. J. Breath Res. 2017 12 1 016008 10.1088/1752‑7163/aa863c 28808178
    [Google Scholar]
  44. Rahimpour E. Khoubnasabjafari M. Hosseini M.B. Jouyban A. Copper nanocluster-based sensor for determination of vancomycin in exhaled breath condensate: A synchronous fluorescence spectroscopy. J. Pharm. Biomed. Anal. 2021 196 113906 10.1016/j.jpba.2021.113906 33486448
    [Google Scholar]
  45. Hoseininezhad-Namin M.S. Seyfinejad B. Ozkan S.A. Soleymani J. Khoubnasabjafari M. Jouyban-Gharamaleki V. Rahimpour E. Jouyban A. Electromembrane extraction of tramadol from exhaled breath condensate and its liquid chromatographic analysis. J. Pharm. Biomed. Anal. 2022 219 114959 10.1016/j.jpba.2022.114959 35907318
    [Google Scholar]
  46. Beck O. Drugs in breath. Breathborne biomarkers and the human volatilome. Elsevier 2020 493 507 10.1016/B978‑0‑12‑819967‑1.00030‑X
    [Google Scholar]
  47. Garzinsky A.M. Thomas A. Krug O. Thevis M. Probing for the presence of doping agents in exhaled breath using chromatographic/mass spectrometric approaches. Rapid Commun. Mass Spectrom. 2021 35 1 e8939 10.1002/rcm.8939 32881194
    [Google Scholar]
  48. Heaney L.M. Lindley M.R. Translation of exhaled breath volatile analyses to sport and exercise applications. Metabolomics 2017 13 11 139 10.1007/s11306‑017‑1266‑z
    [Google Scholar]
  49. Zamuruyev K.O. Aksenov A.A. Pasamontes A. Brown J.F. Pettit D.R. Foutouhi S. Weimer B.C. Schivo M. Kenyon N.J. Delplanque J.P. Davis C.E. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler. J. Breath Res. 2016 11 1 016001 10.1088/1752‑7163/11/1/016001 28004639
    [Google Scholar]
  50. Beauchamp J. Inhaled today, not gone tomorrow: Pharmacokinetics and environmental exposure of volatiles in exhaled breath. J. Breath Res. 2011 5 3 037103 10.1088/1752‑7155/5/3/037103 21654021
    [Google Scholar]
  51. Koureas M. Kirgou P. Amoutzias G. Hadjichristodoulou C. Gourgoulianis K. Tsakalof A. Target analysis of volatile organic compounds in exhaled breath for lung cancer discrimination from other pulmonary diseases and healthy persons. Metabolites 2020 10 8 317 10.3390/metabo10080317 32756521
    [Google Scholar]
  52. Ahmadzai H. Huang S. Hettiarachchi R. Lin J.L. Thomas P.S. Zhang Q. Exhaled breath condensate: A comprehensive update. Clin. Chem. Lab. Med. 2013 51 7 1343 1361 10.1515/cclm‑2012‑0593 23420285
    [Google Scholar]
  53. Leung T.F. Li C.Y. Yung E. Liu E.K.H. Lam C.W.K. Wong G.W.K. Clinical and technical factors affecting pH and other biomarkers in exhaled breath condensate. Pediatr. Pulmonol. 2006 41 1 87 94 10.1002/ppul.20296 16292777
    [Google Scholar]
  54. Kononikhin A.S. Starodubtseva N.L. Chagovets V.V. Ryndin A.Y. Burov A.A. Popov I.A. Bugrova A.E. Dautov R.A. Tokareva A.O. Podurovskaya Y.L. Ionov O.V. Frankevich V.E. Nikolaev E.N. Sukhikh G.T. Exhaled breath condensate analysis from intubated newborns by nano-HPLC coupled to high resolution MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1047 97 105 10.1016/j.jchromb.2016.12.036 28040456
    [Google Scholar]
  55. Loyola B.R. Bhushan A. Schivo M. Kenyon N.J. Davis C.E. Temperature changes in exhaled breath condensate collection devices affect observed acetone concentrations. J. Breath Res. 2008 2 3 037005 10.1088/1752‑7155/2/3/037005 21386166
    [Google Scholar]
  56. Soyer O.U. Dizdar E.A. Keskin O. Lilly C. Kalayci O. Comparison of two methods for exhaled breath condensate collection. Allergy 2006 61 8 1016 1018 10.1111/j.1398‑9995.2006.01064.x 16867057
    [Google Scholar]
  57. Tufvesson E. Bjermer L. Methodological improvements for measuring eicosanoids and cytokines in exhaled breath condensate. Respir. Med. 2006 100 1 34 38 10.1016/j.rmed.2005.04.007 15894480
    [Google Scholar]
  58. McCafferty J.B. Bradshaw T.A. Tate S. Greening A.P. Innes J.A. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations. Thorax 2004 59 8 694 698 10.1136/thx.2003.016949 15282391
    [Google Scholar]
  59. Greenwald R. Ferdinands J.M. Teague W.G. Ionic determinants of exhaled breath condensate pH before and after exercise in adolescent athletes. Pediatr. Pulmonol. 2009 44 8 768 777 10.1002/ppul.21055 19598280
    [Google Scholar]
  60. Gajdocsi R. Bikov A. Antus B. Horvath I. Barnes P.J. Kharitonov S.A. Assessment of reproducibility of exhaled hydrogen peroxide concentration and the effect of breathing pattern in healthy subjects. J. Aerosol Med. Pulm. Drug Deliv. 2011 24 6 271 275 10.1089/jamp.2011.0875 21689021
    [Google Scholar]
  61. Zaitsev V.N. Zui M.F. Preconcentration by solid-phase microextraction. J. Anal. Chem. 2014 69 8 715 727 10.1134/S1061934814080139
    [Google Scholar]
  62. Pedersen-Bjergaard S. Rasmussen K.E. Electrokinetic migration across artificial liquid membranes. J. Chromatogr. A 2006 1109 2 183 190 10.1016/j.chroma.2006.01.025 16445928
    [Google Scholar]
  63. Peralbo-Molina A. Calderón-Santiago M. Priego-Capote F. Jurado-Gámez B. Luque de Castro M.D. Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography–mass spectrometry in high resolution mode. Anal. Chim. Acta 2015 887 118 126 10.1016/j.aca.2015.07.008 26320793
    [Google Scholar]
  64. De S. Kushwah G.D.S. 2023 Stability of exhaled breath condensate pH in frozen storage. Am J Respir Crit Care Med 2023 207 A4053 A4053 10.1164/ajrccm‑conference.2023.207.1_MeetingAbstracts.A4053
    [Google Scholar]
  65. Horváth I. Lázár Z. Gyulai N. Kollai M. Losonczy G. Exhaled biomarkers in lung cancer. Eur. Respir. J. 2009 34 1 261 275 10.1183/09031936.00142508 19567608
    [Google Scholar]
  66. Sun X. Shao K. Wang T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 2016 408 11 2759 2780 10.1007/s00216‑015‑9200‑6 26677028
    [Google Scholar]
  67. Alonso M. Sanchez J.M. Analytical challenges in breath analysis and its application to exposure monitoring. Trends Analyt. Chem. 2013 44 78 89 10.1016/j.trac.2012.11.011
    [Google Scholar]
  68. Phillips M. Cataneo R.N. Cummin A.R.C. Gagliardi A.J. Gleeson K. Greenberg J. Maxfield R.A. Rom W.N. Detection of lung cancer with volatile markers in the breath. Chest 2003 123 6 2115 2123 10.1378/chest.123.6.2115 12796197
    [Google Scholar]
  69. Binson V.A. Subramoniam M. Mathew L. Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose. J. Breath Res. 2021 15 4 046003 10.1088/1752‑7163/ac1326 34243176
    [Google Scholar]
  70. Chapman E.A. Thomas P.S. Stone E. Lewis C. Yates D.H. A breath test for malignant mesothelioma using an electronic nose. Eur. Respir. J. 2012 40 2 448 454 10.1183/09031936.00040911 22183490
    [Google Scholar]
  71. Gaspar E.M. Lucena A.F. Duro da Costa J. Chaves das Neves H. Organic metabolites in exhaled human breath—A multivariate approach for identification of biomarkers in lung disorders. J. Chromatogr. A 2009 1216 14 2749 2756 10.1016/j.chroma.2008.10.125 19036381
    [Google Scholar]
  72. Miekisch W. Kischkel S. Sawacki A. Liebau T. Mieth M. Schubert J.K. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2008 2 2 026007 10.1088/1752‑7155/2/2/026007 21383448
    [Google Scholar]
  73. Exhaled N.O. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005 171 8 912 930 10.1164/rccm.200406‑710ST 15817806
    [Google Scholar]
  74. Horváth I. Hunt J. Barnes P.J. Alving K. Antczak A. Baraldi E. Becher G. van Beurden W.J. Corradi M. Dekhuijzen R. Dweik R.A. Dwyer T. Effros R. Erzurum S. Gaston B. Gessner C. Greening A. Ho L.P. Hohlfeld J. Jöbsis Q. Laskowski D. Loukides S. Marlin D. Montuschi P. Olin A.C. Redington A.E. Reinhold P. van Rensen E.L. Rubinstein I. Silkoff P. Toren K. Vass G. Vogelberg C. Wirtz H. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005 26 3 523 548 10.1183/09031936.05.00029705 16135737
    [Google Scholar]
  75. Vaks V.L. Domracheva E.G. Sobakinskaya E.A. Chernyaeva M.B. Exhaled breath analysis: Physical methods, instruments, and medical diagnostics. Phys. Uspekhi 2014 57 7 684 701 10.3367/UFNe.0184.201407d.0739
    [Google Scholar]
  76. Alving K. Weitzberg E. Lundberg J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993 6 9 1368 1370 10.1183/09031936.93.06091368 7507065
    [Google Scholar]
  77. Kharitonov S. Alving K. Barnes P.J. Exhaled and nasal nitric oxide measurements: Recommendations. Eur. Respir. J. 1997 10 7 1683 1693 10.1183/09031936.97.10071683 9230267
    [Google Scholar]
  78. Prasad A. Langford B. Stradling J.R. Ho L.P. Exhaled nitric oxide as a screening tool for asthma in school children. Respir. Med. 2006 100 1 167 173 10.1016/j.rmed.2005.03.039 15885997
    [Google Scholar]
  79. Kim H.B. Eckel S.P. Kim J.H. Gilliland F.D. Exhaled NO: Determinants and clinical application in children with allergic airway disease. Allergy Asthma Immunol. Res. 2016 8 1 12 21 10.4168/aair.2016.8.1.12 26540497
    [Google Scholar]
  80. Gessner C. Hammerschmidt S. Kuhn H. Hoheisel G. Gillissen A. Sack U. Wirtz H. Breath condensate nitrite correlates with hyperinflation in chronic obstructive pulmonary disease. Respir. Med. 2007 101 11 2271 2278 10.1016/j.rmed.2007.06.024 17693071
    [Google Scholar]
  81. Ricciardolo F.L.M. Di Stefano A. Sabatini F. Folkerts G. Reactive nitrogen species in the respiratory tract. Eur. J. Pharmacol. 2006 533 1-3 240 252 10.1016/j.ejphar.2005.12.057 16464450
    [Google Scholar]
  82. Cumeras R. Correig X. Volatile organic compound analysis in biomedical diagnosis applications. CRC Press 2018 10.1201/9780429433580
    [Google Scholar]
  83. Kischkel S. Miekisch W. Sawacki A. Straker E.M. Trefz P. Amann A. Schubert J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects — Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010 411 21-22 1637 1644 10.1016/j.cca.2010.06.005 20542019
    [Google Scholar]
  84. Oguma T. Nagaoka T. Kurahashi M. Kobayashi N. Yamamori S. Tsuji C. Takiguchi H. Niimi K. Tomomatsu H. Tomomatsu K. Hayama N. Aoki T. Urano T. Magatani K. Takeda S. Abe T. Asano K. Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer. PLoS One 2017 12 4 e0174802 10.1371/journal.pone.0174802 28384298
    [Google Scholar]
  85. Marzorati D. Mainardi L. Sedda G. Gasparri R. Spaggiari L. Cerveri P. A review of exhaled breath: A key role in lung cancer diagnosis. J. Breath Res. 2019 13 3 034001 10.1088/1752‑7163/ab0684 30754033
    [Google Scholar]
  86. van Mastrigt E. de Jongste J.C. Pijnenburg M.W. The analysis of volatile organic compounds in exhaled breath and biomarkers in exhaled breath condensate in children – Clinical tools or scientific toys? Clin. Exp. Allergy 2015 45 7 1170 1188 10.1111/cea.12454 25394891
    [Google Scholar]
  87. Ulanowska A. Kowalkowski T. Trawińska E. Buszewski B. The application of statistical methods using VOCs to identify patients with lung cancer. J. Breath Res. 2011 5 4 046008 10.1088/1752‑7155/5/4/046008 22071773
    [Google Scholar]
  88. Buszewski B. Ulanowska A. Ligor T. Denderz N. Amann A. Analysis of exhaled breath from smokers, passive smokers and non‐smokers by solid‐phase microextraction gas chromatography/mass spectrometry. Biomed. Chromatogr. 2009 23 5 551 556 10.1002/bmc.1141 19039804
    [Google Scholar]
  89. Zhang X. Ren X. Zhong Y. Chingin K. Chen H. Rapid and sensitive detection of acetone in exhaled breath through the ambient reaction with water radical cations. Analyst 2021 146 16 5037 5044 10.1039/D1AN00402F 34231556
    [Google Scholar]
  90. Marcondes-Braga F.G. Gutz I.G.R. Batista G.L. Saldiva P.H.N. Ayub-Ferreira S.M. Issa V.S. Mangini S. Bocchi E.A. Bacal F. Exhaled acetone as a new biomaker of heart failure severity. Chest 2012 142 2 457 466 10.1378/chest.11‑2892 22345382
    [Google Scholar]
  91. Yokokawa T. Sugano Y. Shimouchi A. Shibata A. Jinno N. Nagai T. Kanzaki H. Aiba T. Kusano K. Shirai M. Takeishi Y. Yasuda S. Ogawa H. Anzai T. Exhaled acetone concentration is related to hemodynamic severity in patients with non-ischemic chronic heart failure. Circ. J. 2016 80 5 1178 1186 10.1253/circj.CJ‑16‑0011 27026173
    [Google Scholar]
  92. Ryabtsev S.V. Shaposhnick A.V. Lukin A.N. Domashevskaya E.P. Application of semiconductor gas sensors for medical diagnostics. Sens. Actuators B Chem. 1999 59 1 26 29 10.1016/S0925‑4005(99)00162‑8
    [Google Scholar]
  93. Mansoor J.K. Schelegle E.S. Davis C.E. Walby W.F. Zhao W. Aksenov A.A. Pasamontes A. Figueroa J. Allen R. Analysis of volatile compounds in exhaled breath condensate in patients with severe pulmonary arterial hypertension. PLoS One 2014 9 4 e95331 10.1371/journal.pone.0095331 24748102
    [Google Scholar]
  94. Peralbo-Molina A. Calderón-Santiago M. Priego-Capote F. Jurado-Gámez B. Luque de Castro M.D. Identification of metabolomics panels for potential lung cancer screening by analysis of exhaled breath condensate. J. Breath Res. 2016 10 2 026002 10.1088/1752‑7155/10/2/026002 27007686
    [Google Scholar]
  95. Celik M. Tuncer A. Soyer O.U. Saçkesen C. Tanju Besler H. Kalayci O. Oxidative stress in the airways of children with asthma and allergic rhinitis. Pediatr. Allergy Immunol. 2012 23 6 556 561 10.1111/j.1399‑3038.2012.01294.x 22435922
    [Google Scholar]
  96. Nunez-Naveira L. Marinas-Pardo L.A. Amor-Carro O. Montero-Martinez C. Determination of ELISA reproducibility to detect protein markers in exhaled breath condensate. J. Breath Res. 2012 6 4 046003 10.1088/1752‑7155/6/4/046003 23095251
    [Google Scholar]
  97. Guillen-del Castillo A. Sánchez-Vidaurre S. Simeón-Aznar C.P. Cruz M.J. Fonollosa-Pla V. Muñoz X. Prognostic role of exhaled breath condensate pH and fraction exhaled nitric oxide in systemic sclerosis related interstitial lung disease. Arch. Bronconeumol. 2017 53 3 120 127 10.1016/j.arbr.2016.11.023 28038794
    [Google Scholar]
  98. Anaev E. Chuchalin A. Exhaled breath condensate in diagnostcis and therapy efficiency evaluation of patients with respiratory diseases. Pulmonologiya 2006 4 12 20
    [Google Scholar]
  99. Somboot W. Awiphan S. Jakmunee J. Prapamontol T. Kanyanee T. Rapid fluorometric determination of ammonium in exhaled breath condensate based on digital image of a windowless falling drop cell via a low-cost digital microscope. Talanta Open 2023 7 100208 10.1016/j.talo.2023.100208
    [Google Scholar]
  100. Mohammadzadeh Abachi S. Rezaei H. Khoubnasabjafari M. Jouyban-Gharamaleki V. Rahimpour E. Jouyban A. Utilizing nanoparticle catalyzed TMB/H2O2 system for determination of aspirin in exhaled breath condensate. Ulum-i Daruyi 2023 29 3 368 375 10.34172/PS.2022.21
    [Google Scholar]
  101. Khajir S. Karimzadeh Z. Khoubnasabjafari M. Jouyban-Gharamaleki V. Rahimpour E. Jouyban A. A Rayleigh light scattering technique based on β- cyclodextrin modified gold nanoparticles for phenytoin determination in exhaled breath condensate. J. Pharm. Biomed. Anal. 2023 223 115141 10.1016/j.jpba.2022.115141 36356404
    [Google Scholar]
  102. Mazzone P.J. Wang X.F. Xu Y. Mekhail T. Beukemann M.C. Na J. Kemling J.W. Suslick K.S. Sasidhar M. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J. Thorac. Oncol. 2012 7 1 137 142 10.1097/JTO.0b013e318233d80f 22071780
    [Google Scholar]
  103. Hasanzadeh M. Mokhtari F. Shadjou N. Eftekhari A. Mokhtarzadeh A. Jouyban-Gharamaleki V. Mahboob S. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. Mater. Sci. Eng. C 2017 75 247 258 10.1016/j.msec.2017.02.025 28415460
    [Google Scholar]
  104. Kambara H. Ogawa Y. Mitsui Y. Kanomata I. Carbon monoxide detection in nitrogen gas by atmospheric pressure ionization mass spectrometry. Anal. Chem. 1980 52 9 1500 1503 10.1021/ac50059a027
    [Google Scholar]
  105. de Laurentiis G. Paris D. Melck D. Maniscalco M. Marsico S. Corso G. Motta A. Sofia M. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur. Respir. J. 2008 32 5 1175 1183 10.1183/09031936.00072408 18653649
    [Google Scholar]
  106. Montuschi P. Paris D. Montella S. Melck D. Mirra V. Santini G. Mores N. Montemitro E. Majo F. Lucidi V. Bush A. Motta A. Santamaria F. Nuclear magnetic resonance-based metabolomics discriminates primary ciliary dyskinesia from cystic fibrosis. Am. J. Respir. Crit. Care Med. 2014 190 2 229 233 10.1164/rccm.201402‑0249LE 25025356
    [Google Scholar]
  107. Montuschi P. Corradi M. Ciabattoni G. Nightingale J. Kharitonov S.A. Barnes P.J. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care Med. 1999 160 1 216 220 10.1164/ajrccm.160.1.9809140 10390403
    [Google Scholar]
  108. Abdollahi E. Abdouss M. Mohammadi A. Synthesis of a nano molecularly imprinted polymeric sorbent for solid phase extraction and determination of phenytoin in plasma, urine, and wastewater by HPLC. RSC Advances 2016 6 45 39095 39105 10.1039/C6RA00421K
    [Google Scholar]
  109. Hösli R. König S. Mühlebach S.F. Development and validation of an LC-MS/MS method and comparison with a GC-MS method to measure phenytoin in human brain dialysate, blood, and saliva. J. Anal. Methods Chem. 2018 2018 1 8 10.1155/2018/8274131 29805839
    [Google Scholar]
  110. Tobler A. Hösli R. König S. Mühlebach S. A quantitative phenytoin GC-MS method and its validation for samples from human ex situ brain microdialysis, blood and saliva using solid-phase extraction. J. Anal. Toxicol. 2013 37 2 102 109
    [Google Scholar]
  111. Jansod S. Afshar M.G. Crespo G.A. Bakker E. Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes. Biosens. Bioelectron. 2016 79 114 120 10.1016/j.bios.2015.12.011 26703989
    [Google Scholar]
  112. Astles J.R. Miller W.G. Measurement of free phenytoin in blood with a self-contained fiber-optic immunosensor. Anal. Chem. 1994 66 10 1675 1682 10.1021/ac00082a013 8030781
    [Google Scholar]
  113. Ryabokon A.M. Zakharova N.V. Indeikina M.I. Kononikhin A.S. Shogenova L.V. Medvedev O.S. Chuchalin A.G. Changes in the proteomics of exhaled breath condensate under the influence of inhaled hydrogen in patients with post-COVID syndrome. Cardiovasc. Ther. Prev. 2023 22 3 3517
    [Google Scholar]
  114. Westhoff M. Litterst P. Freitag L. Urfer W. Bader S. Baumbach J-I. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: Results of a pilot study. Thorax 2009 64 9 744 748 10.1136/thx.2008.099465 19158121
    [Google Scholar]
  115. Devata S. Cleaves H.J. Dimandja J. Heist C.A. Meringer M. Comparative evaluation of electron ionization mass spectral prediction methods. J. Am. Soc. Mass Spectrom. 2023 34 8 1584 1592 10.1021/jasms.3c00059 37390315
    [Google Scholar]
  116. Sorokin A. Pekov S. Zavorotnyuk D. Shamraeva M. Bormotov D. Popov I. Modern Machine‐learning applications in ambient ionization mass spectrometry. Mass Spectrom. Rev. 2024 2024 1 15 10.1002/mas.21886 38671553
    [Google Scholar]
  117. Muccilli V. Saletti R. Cunsolo V. Ho J. Gili E. Conte E. Sichili S. Vancheri C. Foti S. Protein profile of exhaled breath condensate determined by high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2015 105 134 149 10.1016/j.jpba.2014.11.050 25555262
    [Google Scholar]
  118. Khoubnasabjafari M. Altunay N. Tuzen M. Kaya S. Katin K.P. Farajzadeh M.A. Hosseini M. Afshar Mogaddam M.R. Jouyban A. Experimental and theoretical observations in a mixed mode dispersive solid phase extraction of exogenous surfactants from exhaled breath condensate prior to HPLC-MS/MS analysis. J. Mol. Struct. 2023 1281 135096 10.1016/j.molstruc.2023.135096
    [Google Scholar]
  119. Beck O. Sandqvist S. Eriksen P. Franck J. Palmskog G. Determination of methadone in exhaled breath condensate by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2011 35 3 129 133 10.1093/anatox/35.3.129 21439147
    [Google Scholar]
  120. Winters B.R. Pleil J.D. Angrish M.M. Stiegel M.A. Risby T.H. Madden M.C. Standardization of the collection of exhaled breath condensate and exhaled breath aerosol using a feedback regulated sampling device. J. Breath Res. 2017 11 4 047107 10.1088/1752‑7163/aa8bbc 28894051
    [Google Scholar]
  121. Maniscalco M. Candia C. Fuschillo S. Ambrosino P. Paris D. Motta A. Exhaled breath condensate (EBC) in respiratory diseases: Recent advances and future perspectives in the age of omic sciences. J. Breath Res. 2024 18 4 045001 10.1088/1752‑7163/ad7a9a 39270682
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240352590250217110256
Loading
/content/journals/cmm/10.2174/0115665240352590250217110256
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test