Skip to content
2000
image of Exploring the Gut Microbiota as a Promising Target for Breast Cancer Treatment

Abstract

Breast cancer is a heterogeneous disease and highly prevalent malignancy affecting women globally. Breast cancer treatments have been demonstrated to elicit significant and long-lasting effects on various aspects of a patient's life, including physical, emotional, social, and financial, highlighting the need for comprehensive cancer care. Recent research suggests that the composition and activity of the gut microbiota may play a crucial role in anticancer responses. Various compositional features of the gut microbial population have been found to influence both the clinical and biological aspects of breast cancer. Notably, the dominance of specific microbial populations in the human intestine may significantly impact the effectiveness of cancer treatment strategies. Therefore, the manipulation of the microbiota to improve the anticancer effects of conventional tumor treatments represents a promising strategy for enhancing the efficacy of cancer therapy. Emerging evidence indicates that alterations in the gut microbiota composition and activity have the potential to impact breast cancer risk and treatment outcomes. In this paper, we conduct a comprehensive investigation of various databases and published articles to explore the impact of gut microbial composition on both the molecular and clinical aspects of breast cancer. We also discuss the implications of our findings for future research directions and clinical strategies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240351595250213103451
2025-02-14
2025-06-22
Loading full text...

Full text loading...

References

  1. Smolarz B. Nowak A.Z. Romanowicz H. Breast cancer—epidemiology, classification, pathogenesis and treatment (Review of Literature). Cancers (Basel) 2022 14 10 2569 10.3390/cancers14102569 35626173
    [Google Scholar]
  2. Huang J. Chan P.S.F. Lok V. Chen X. Ding H. Jin Y. Yuan J. Lao X. Zheng Z.J. Wong M.C.S. Global incidence and mortality of breast cancer: A trend analysis. Aging (Albany NY) 2021 13 4 5748 5803 10.18632/aging.202502 33592581
    [Google Scholar]
  3. Srikantamurthy M.M. Rallabandi V.P.S. Dudekula D.B. Natarajan S. Park J. Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Med. Imaging 2023 23 1 19 10.1186/s12880‑023‑00964‑0 36717788
    [Google Scholar]
  4. Brufsky A.M. Dickler M.N. Estrogen receptor-positive breast cancer: Exploiting signaling pathways implicated in endocrine resistance. Oncologist 2018 23 5 528 539 10.1634/theoncologist.2017‑0423 29352052
    [Google Scholar]
  5. Li Z. Wei H. Li S. Wu P. Mao X. The role of progesterone receptors in breast cancer. Drug Des. Devel. Ther. 2022 16 305 314 10.2147/DDDT.S336643 35115765
    [Google Scholar]
  6. Rakha E.A. Tse G.M. Quinn C.M. An update on the pathological classification of breast cancer. Histopathology 2023 82 1 5 16 10.1111/his.14786 36482272
    [Google Scholar]
  7. Wang J. Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther. 2019 4 1 34 10.1038/s41392‑019‑0069‑2 31637013
    [Google Scholar]
  8. Mustafa M Abbas K Alam M Ahmad W Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol. Cell. Biochem. 2024 479 4 895 913 10.1007/s11010‑023‑04772‑6 37247161
    [Google Scholar]
  9. Burguin A. Diorio C. Durocher F. Breast cancer treatments: Updates and new challenges. J. Pers. Med. 2021 11 8 808 10.3390/jpm11080808 34442452
    [Google Scholar]
  10. Soldato D. Arecco L. Agostinetto E. Franzoi M.A. Mariamidze E. Begijanashvili S. Brunetti N. Spinaci S. Solinas C. Vaz-Luis I. Di Meglio A. Lambertini M. The future of breast cancer research in the survivorship field. Oncol. Ther. 2023 11 2 199 229 10.1007/s40487‑023‑00225‑8 37005952
    [Google Scholar]
  11. Kinnel B. Singh S.K. Oprea-Ilies G. Singh R. Targeted therapy and mechanisms of drug resistance in breast cancer. Cancers (Basel) 2023 15 4 1320 10.3390/cancers15041320 36831661
    [Google Scholar]
  12. Zhao L.Y. Mei J.X. Yu G. Lei L. Zhang W.H. Liu K. Chen X.L. Kołat D. Yang K. Hu J.K. Role of the gut microbiota in anticancer therapy: From molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 2023 8 1 201 10.1038/s41392‑023‑01406‑7 37179402
    [Google Scholar]
  13. Huang J. Liu W. Kang W. He Y. Yang R. Mou X. Zhao W. Effects of microbiota on anticancer drugs: Current knowledge and potential applications. EBioMedicine 2022 83 104197 10.1016/j.ebiom.2022.104197 35933808
    [Google Scholar]
  14. Altveş S. Yildiz H.K. Vural H.C. Interaction of the microbiota with the human body in health and diseases. Biosci. Microbiota Food Health 2020 39 2 23 32 10.12938/bmfh.19‑023 32328397
    [Google Scholar]
  15. Lozenov S. Krastev B. Nikolaev G. Peshevska-Sekulovska M. Peruhova M. Velikova T. Gut microbiome composition and its metabolites are a key regulating factor for malignant transformation, metastasis and antitumor immunity. Int. J. Mol. Sci. 2023 24 6 5978 10.3390/ijms24065978 36983053
    [Google Scholar]
  16. Wu H. Ganguly S. Tollefsbol T.O. Modulating microbiota as a new strategy for breast cancer prevention and treatment. Microorganisms 2022 10 9 1727 10.3390/microorganisms10091727 36144329
    [Google Scholar]
  17. Libertucci J. Young V.B. The role of the microbiota in infectious diseases. Nat. Microbiol. 2018 4 1 35 45 10.1038/s41564‑018‑0278‑4 30546094
    [Google Scholar]
  18. Ogunrinola G.A. Oyewale J.O. Oshamika O.O. Olasehinde G.I. The human microbiome and its impacts on health. Int. J. Microbiol. 2020 2020 1 7 10.1155/2020/8045646 32612660
    [Google Scholar]
  19. Dieterich W. Schink M. Zopf Y. Microbiota in the gastrointestinal tract. Med. Sci. (Basel) 2018 6 4 116 10.3390/medsci6040116 30558253
    [Google Scholar]
  20. Zhang P. Influence of foods and nutrition on the gut microbiome and implications for intestinal health. Int. J. Mol. Sci. 2022 23 17 9588 10.3390/ijms23179588 36076980
    [Google Scholar]
  21. Hasan N. Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019 7 e7502 10.7717/peerj.7502 31440436
    [Google Scholar]
  22. Lynch J.B. Hsiao E.Y. Microbiomes as sources of emergent host phenotypes. Science 2019 365 6460 1405 1409 10.1126/science.aay0240 31604267
    [Google Scholar]
  23. Hacquard S. Garrido-Oter R. González A. Spaepen S. Ackermann G. Lebeis S. McHardy A.C. Dangl J.L. Knight R. Ley R. Schulze-Lefert P. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 2015 17 5 603 616 10.1016/j.chom.2015.04.009 25974302
    [Google Scholar]
  24. Zheng D. Liwinski T. Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020 30 6 492 506 10.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  25. Li Y. Ye Z. Zhu J. Fang S. Meng L. Zhou C. Effects of gut microbiota on host adaptive immunity under immune homeostasis and tumor pathology state. Front. Immunol. 2022 13 844335 10.3389/fimmu.2022.844335 35355998
    [Google Scholar]
  26. El Aidy S. Hooiveld G. Tremaroli V. Bäckhed F. Kleerebezem M. The gut microbiota and mucosal homeostasis. Gut Microbes 2013 4 2 118 124 10.4161/gmic.23362 23333858
    [Google Scholar]
  27. Domingues C. Cabral C. Jarak I. Veiga F. Dourado M. Figueiras A. The debate between the human microbiota and immune system in treating aerodigestive and digestive tract cancers: A review. Vaccines (Basel) 2023 11 3 492 10.3390/vaccines11030492 36992076
    [Google Scholar]
  28. Qiao B. Liu J. Deng N. Cai Y. Bian Y. Wu Y. Tan Z. Gut content microbiota dysbiosis and dysregulated lipid metabolism in diarrhea caused by high-fat diet in a fatigued state. Food Funct. 2023 14 8 3880 3892 10.1039/D3FO00378G 37038883
    [Google Scholar]
  29. Bourkas A.N. Lara-Corrales I. The role of nutrition, food allergies, and gut dysbiosis in immune-mediated inflammatory skin disease: A narrative review. Curr. Opin. Pediatr. 2023 35 4 452 459 10.1097/MOP.0000000000001262 37335275
    [Google Scholar]
  30. Kumar N. Sahoo N.K. Mehan S. verma B. The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Mult. Scler. Relat. Disord. 2023 71 104547 10.1016/j.msard.2023.104547 36805171
    [Google Scholar]
  31. Chen L. Liu B. Ren L. Du H. Fei C. Qian C. Li B. Zhang R. Liu H. Li Z. Ma Z. High-fiber diet ameliorates gut microbiota, serum metabolism and emotional mood in type 2 diabetes patients. Front. Cell. Infect. Microbiol. 2023 13 1069954 10.3389/fcimb.2023.1069954 36794003
    [Google Scholar]
  32. Haneishi Y. Furuya Y. Hasegawa M. Picarelli A. Rossi M. Miyamoto J. Inflammatory bowel diseases and gut microbiota. Int. J. Mol. Sci. 2023 24 4 3817 10.3390/ijms24043817 36835245
    [Google Scholar]
  33. Nesci A. Carnuccio C. Ruggieri V. D’Alessandro A. Di Giorgio A. Santoro L. Gasbarrini A. Santoliquido A. Ponziani F.R. Gut microbiota and cardiovascular disease: Evidence on the metabolic and inflammatory background of a complex relationship. Int. J. Mol. Sci. 2023 24 10 9087 10.3390/ijms24109087 37240434
    [Google Scholar]
  34. Deng K. Xu J. Shen L. Zhao H. Gou W. Xu F. Fu Y. Jiang Z. Shuai M. Li B. Hu W. Zheng J.S. Chen Y. Comparison of fecal and blood metabolome reveals inconsistent associations of the gut microbiota with cardiometabolic diseases. Nat. Commun. 2023 14 1 571 10.1038/s41467‑023‑36256‑y 36732517
    [Google Scholar]
  35. Lin L. Zhang K. Xiong Q. Zhang J. Cai B. Huang Z. Yang B. Wei B. Chen J. Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J. Autoimmun. 2023 141 103001 10.1016/j.jaut.2023.103001 36931952
    [Google Scholar]
  36. Choi H. Mook-Jung I. Functional effects of gut microbiota-derived metabolites in Alzheimer’s disease. Curr. Opin. Neurobiol. 2023 81 102730 10.1016/j.conb.2023.102730 37236067
    [Google Scholar]
  37. Kleine Bardenhorst S. Cereda E. Severgnini M. Barichella M. Pezzoli G. Keshavarzian A. Desideri A. Pietrucci D. Aho V.T.E. Scheperjans F. Hildebrand F. Weis S. Egert M. Karch A. Vital M. Rübsamen N. Gut microbiota dysbiosis in Parkinson disease: A systematic review and pooled analysis. Eur. J. Neurol. 2023 30 11 3581 3594 10.1111/ene.15671 36593694
    [Google Scholar]
  38. Mehra A. Arora G. Sahni G. Kaur M. Singh H. Singh B. Kaur S. Gut microbiota and autism spectrum disorder: From pathogenesis to potential therapeutic perspectives. J. Tradit. Complement. Med. 2023 13 2 135 149 10.1016/j.jtcme.2022.03.001 36970459
    [Google Scholar]
  39. Van Hul M. Cani P.D. The gut microbiota in obesity and weight management: Microbes as friends or foe? Nat. Rev. Endocrinol. 2023 19 5 258 271 10.1038/s41574‑022‑00794‑0 36650295
    [Google Scholar]
  40. Ji L. Deng H. Xue H. Wang J. Hong K. Gao Y. Kang X. Fan G. Huang W. Zhan J. You Y. Research progress regarding the effect and mechanism of dietary phenolic acids for improving nonalcoholic fatty liver disease via gut microbiota. Compr. Rev. Food Sci. Food Saf. 2023 22 2 1128 1147 10.1111/1541‑4337.13106 36717374
    [Google Scholar]
  41. Li Y. Yang S. Jin X. Li D. Lu J. Wang X. Wu M. Mitochondria as novel mediators linking gut microbiota to atherosclerosis that is ameliorated by herbal medicine: A review. Front. Pharmacol. 2023 14 1082817 10.3389/fphar.2023.1082817 36733506
    [Google Scholar]
  42. Garbas K. Zapała P. Zapała Ł. Radziszewski P. The role of microbial factors in prostate cancer development—An up-to-date review. J. Clin. Med. 2021 10 20 4772 10.3390/jcm10204772 34682893
    [Google Scholar]
  43. Fernandes A. Oliveira A. Guedes C. Fernandes R. Soares R. Barata P. Effect of radium-223 on the gut microbiota of prostate cancer patients: A pilot case series study. Curr. Issues Mol. Biol. 2022 44 10 4950 4959 10.3390/cimb44100336 36286051
    [Google Scholar]
  44. Zeng D. Zhang L. Luo Q. Celastrol-regulated gut microbiota and bile acid metabolism alleviate hepatocellular carcinoma proliferation by regulating the interaction between FXR and RXRα in vivo and in vitro. Front. Pharmacol. 2023 14 1124240 10.3389/fphar.2023.1124240 36874033
    [Google Scholar]
  45. Quaranta G. Guarnaccia A. Fancello G. Agrillo C. Iannarelli F. Sanguinetti M. Masucci L. Fecal microbiota transplantation and other gut microbiota manipulation strategies. Microorganisms 2022 10 12 2424 10.3390/microorganisms10122424 36557677
    [Google Scholar]
  46. Tan Q. Orsso C.E. Deehan E.C. Kung J.Y. Tun H.M. Wine E. Madsen K.L. Zwaigenbaum L. Haqq A.M. Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: A systematic review. Autism Res. 2021 14 9 1820 1836 10.1002/aur.2560 34173726
    [Google Scholar]
  47. Buchta Rosean C. Feng T.Y. Azar F.N. Rutkowski M.R. Impact of the microbiome on cancer progression and response to anti-cancer therapies. Adv. Cancer Res. 2019 143 255 294 10.1016/bs.acr.2019.03.005 31202360
    [Google Scholar]
  48. McIlvanna E. Linden G.J. Craig S.G. Lundy F.T. James J.A. Fusobacterium nucleatum and oral cancer: A critical review. BMC Cancer 2021 21 1 1212 10.1186/s12885‑021‑08903‑4 34774023
    [Google Scholar]
  49. Sheh A. Fox J.G. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 2013 4 6 505 531 10.4161/gmic.26205 23962822
    [Google Scholar]
  50. Fakharian F. Asgari B. Nabavi-Rad A. Sadeghi A. Soleimani N. Yadegar A. Zali M.R. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front. Cell. Infect. Microbiol. 2022 12 953718 10.3389/fcimb.2022.953718 36046747
    [Google Scholar]
  51. Vojinovic D. Radjabzadeh D. Kurilshikov A. Amin N. Wijmenga C. Franke L. Ikram M.A. Uitterlinden A.G. Zhernakova A. Fu J. Kraaij R. van Duijn C.M. Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nat. Commun. 2019 10 1 5813 10.1038/s41467‑019‑13721‑1 31862950
    [Google Scholar]
  52. Ćesić D. Lugović Mihić L. Ozretić P. Lojkić I. Buljan M. Šitum M. Zovak M. Vidović D. Mijić A. Galić N. Tambić Andrašević A. Association of Gut Lachnospiraceae and chronic spontaneous urticaria. Life (Basel) 2023 13 6 1280 10.3390/life13061280 37374063
    [Google Scholar]
  53. Nemoto S. Kubota T. Ohno H. Exploring body weight-influencing gut microbiota by elucidating the association with diet and host gene expression. Sci. Rep. 2023 13 1 5593 10.1038/s41598‑023‑32411‑z 37019989
    [Google Scholar]
  54. Zafar H. Saier M.H. Jr Gut Bacteroides species in health and disease. Gut Microbes 2021 13 1 1848158 10.1080/19490976.2020.1848158 33535896
    [Google Scholar]
  55. Stojanov S. Berlec A. Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020 8 11 1715 10.3390/microorganisms8111715 33139627
    [Google Scholar]
  56. Sun D. Chen Y. Fang J.Y. Influence of the microbiota on epigenetics in colorectal cancer. Natl. Sci. Rev. 2019 6 6 1138 1148 10.1093/nsr/nwy160 34691992
    [Google Scholar]
  57. Woo V. Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes 2022 14 1 2022407 10.1080/19490976.2021.2022407 35000562
    [Google Scholar]
  58. Ting N.L.N. Lau H.C.H. Yu J. Cancer pharmacomicrobiomics: Targeting microbiota to optimise cancer therapy outcomes. Gut 2022 71 7 1412 1425 10.1136/gutjnl‑2021‑326264 35277453
    [Google Scholar]
  59. Zitvogel L. Daillère R. Roberti M.P. Routy B. Kroemer G. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 2017 15 8 465 478 10.1038/nrmicro.2017.44 28529325
    [Google Scholar]
  60. Viaud S. Saccheri F. Mignot G. Yamazaki T. Daillère R. Hannani D. Enot D.P The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013 342 6161 971 976 10.1126/science.1240537 24264990
    [Google Scholar]
  61. Viaud S. Flament C. Zoubir M. Pautier P. LeCesne A. Ribrag V. Soria J.C. Marty V. Vielh P. Robert C. Chaput N. Zitvogel L. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 2011 71 3 661 665 10.1158/0008‑5472.CAN‑10‑1259 21148486
    [Google Scholar]
  62. Iida N. Dzutsev A. Stewart C.A. Smith L. Bouladoux N. Weingarten R.A. Molina D.A. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013 342 6161 967 970 10.1126/science.1240527 24264989
    [Google Scholar]
  63. Siddik Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003 22 47 7265 7279 10.1038/sj.onc.1206933 14576837
    [Google Scholar]
  64. Ozben T. Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci. 2007 96 9 2181 2196 10.1002/jps.20874 17593552
    [Google Scholar]
  65. Apetoh L. Ghiringhelli F. Tesniere A. Obeid M. Ortiz C. Criollo A. Mignot G. Maiuri M.C. Ullrich E. Saulnier P. Yang H. Amigorena S. Ryffel B. Barrat F.J. Saftig P. Levi F. Lidereau R. Nogues C. Mira J.P. Chompret A. Joulin V. Clavel-Chapelon F. Bourhis J. André F. Delaloge S. Tursz T. Kroemer G. Zitvogel L. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 2007 13 9 1050 1059 10.1038/nm1622 17704786
    [Google Scholar]
  66. Ghiringhelli F. Apetoh L. Tesniere A. Aymeric L. Ma Y. Ortiz C. Vermaelen K. Panaretakis T. Mignot G. Ullrich E. Perfettini J.L. Schlemmer F. Tasdemir E. Uhl M. Génin P. Civas A. Ryffel B. Kanellopoulos J. Tschopp J. André F. Lidereau R. McLaughlin N.M. Haynes N.M. Smyth M.J. Kroemer G. Zitvogel L. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 2009 15 10 1170 1178 10.1038/nm.2028 19767732
    [Google Scholar]
  67. Chang C.W. Liu C.Y. Lee H.C. Huang Y.H. Li L.H. Chiau J.S.C. Wang T.E. Chu C.H. Shih S.C. Tsai T.H. Chen Y.J. Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front. Microbiol. 2018 9 983 10.3389/fmicb.2018.00983 29867884
    [Google Scholar]
  68. Guo H. Chou W.C. Lai Y. Liang K. Tam J.W. Brickey W.J. Chen L. Montgomery N.D. Li X. Bohannon L.M. Sung A.D. Chao N.J. Peled J.U. Gomes A.L.C. van den Brink M.R.M. French M.J. Macintyre A.N. Sempowski G.D. Tan X. Sartor R.B. Lu K. Ting J.P.Y. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 2020 370 6516 eaay9097 10.1126/science.aay9097 33122357
    [Google Scholar]
  69. Hobson C.A. Bonacorsi S. Baruchel A. Tenaillon O. Birgy A. The interplay between anticancer challenges and the microbial communities from the gut. Eur. J. Clin. Microbiol. Infect. Dis. 2022 41 5 691 711 10.1007/s10096‑022‑04435‑2 35353280
    [Google Scholar]
  70. Snyder A. Pamer E. Wolchok J. Could microbial therapy boost cancer immunotherapy? Science 2015 350 6264 1031 1032 10.1126/science.aad7706 26612936
    [Google Scholar]
  71. Hoos A. Development of immuno-oncology drugs — from CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 2016 15 4 235 247 10.1038/nrd.2015.35 26965203
    [Google Scholar]
  72. Vétizou M. Pitt J.M. Daillère R. Lepage P. Waldschmitt N. Flament C. Rusakiewicz S. Routy B. Roberti M.P. Duong C.P.M. Poirier-Colame V. Roux A. Becharef S. Formenti S. Golden E. Cording S. Eberl G. Schlitzer A. Ginhoux F. Mani S. Yamazaki T. Jacquelot N. Enot D.P. Bérard M. Nigou J. Opolon P. Eggermont A. Woerther P.L. Chachaty E. Chaput N. Robert C. Mateus C. Kroemer G. Raoult D. Boneca I.G. Carbonnel F. Chamaillard M. Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015 350 6264 1079 1084 10.1126/science.aad1329 26541610
    [Google Scholar]
  73. Li Y. Tinoco R. Elmén L. Segota I. Xian Y. Fujita Y. Sahu A. Zarecki R. Marie K. Feng Y. Khateb A. Frederick D.T. Ashkenazi S.K. Kim H. Perez E.G. Day C.P. Segura Muñoz R.S. Schmaltz R. Yooseph S. Tam M.A. Zhang T. Avitan-Hersh E. Tzur L. Roizman S. Boyango I. Bar-Sela G. Orian A. Kaufman R.J. Bosenberg M. Goding C.R. Baaten B. Levesque M.P. Dummer R. Brown K. Merlino G. Ruppin E. Flaherty K. Ramer-Tait A. Long T. Peterson S.N. Bradley L.M. Ronai Z.A. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5−/− mice. Nat. Commun. 2019 10 1 1492 10.1038/s41467‑019‑09525‑y 30940817
    [Google Scholar]
  74. Bachem A. Makhlouf C. Binger K.J. de Souza D.P. Tull D. Hochheiser K. Whitney P.G Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 2019 51 2 285 297.e5 10.1016/j.immuni.2019.06.002
    [Google Scholar]
  75. Luu M. Weigand K. Wedi F. Breidenbend C. Leister H. Pautz S. Adhikary T. Visekruna A. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 2018 8 1 14430 10.1038/s41598‑018‑32860‑x 30258117
    [Google Scholar]
  76. Jiang C. Wang H. Xia C. Dong Q. Chen E. Qiu Y. Su Y. Xie H. Zeng L. Kuang J. Ao F. Gong X. Li J. Chen T. A randomized, double‐blind, placebo‐controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer 2019 125 7 1081 1090 10.1002/cncr.31907 30521105
    [Google Scholar]
  77. Riquelme E. Zhang Y. Zhang L. Montiel M. Zoltan M. Dong W. Quesada P. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 2019 178 4 795 806.e12 10.1016/j.cell.2019.07.008 31398337
    [Google Scholar]
  78. Routy B. Le Chatelier E. Derosa L. Duong C.P.M. Alou M.T. Daillère R. Fluckiger A. Messaoudene M. Rauber C. Roberti M.P. Fidelle M. Flament C. Poirier-Colame V. Opolon P. Klein C. Iribarren K. Mondragón L. Jacquelot N. Qu B. Ferrere G. Clémenson C. Mezquita L. Masip J.R. Naltet C. Brosseau S. Kaderbhai C. Richard C. Rizvi H. Levenez F. Galleron N. Quinquis B. Pons N. Ryffel B. Minard-Colin V. Gonin P. Soria J.C. Deutsch E. Loriot Y. Ghiringhelli F. Zalcman G. Goldwasser F. Escudier B. Hellmann M.D. Eggermont A. Raoult D. Albiges L. Kroemer G. Zitvogel L. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018 359 6371 91 97 10.1126/science.aan3706 29097494
    [Google Scholar]
  79. Cheng W.Y. Wu C.Y. Yu J. The role of gut microbiota in cancer treatment: Friend or foe? Gut 2020 69 10 1867 1876 10.1136/gutjnl‑2020‑321153 32759302
    [Google Scholar]
  80. Sampsell K. Hao D. Reimer R.A. The gut microbiota: A potential gateway to improved health outcomes in breast cancer treatment and survivorship. Int. J. Mol. Sci. 2020 21 23 9239 10.3390/ijms21239239 33287442
    [Google Scholar]
  81. Zhu J. Liao M. Yao Z. Liang W. Li Q. Liu J. Yang H. Ji Y. Wei W. Tan A. Liang S. Chen Y. Lin H. Zhu X. Huang S. Tian J. Tang R. Wang Q. Mo Z. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 2018 6 1 136 10.1186/s40168‑018‑0515‑3 30081953
    [Google Scholar]
  82. Parida S. Sharma D. The power of small changes: Comprehensive analyses of microbial dysbiosis in breast cancer. Biochim. Biophys. Acta Rev. Cancer 2019 1871 2 392 405 10.1016/j.bbcan.2019.04.001 30981803
    [Google Scholar]
  83. Jaye K. Chang D. Li C.G. Bhuyan D.J. Gut metabolites and breast cancer: The continuum of dysbiosis, breast cancer risk, and potential breast cancer therapy. Int. J. Mol. Sci. 2022 23 16 9490 10.3390/ijms23169490 36012771
    [Google Scholar]
  84. Ruo S.W. Alkayyali T. Win M. Tara A. Joseph C. Kannan A. Srivastava K. Ochuba O. Sandhu J.K. Went T.R. Sultan W. Kantamaneni K. Poudel S. Role of gut microbiota dysbiosis in breast cancer and novel approaches in prevention, diagnosis, and treatment. Cureus 2021 13 8 e17472 10.7759/cureus.17472 34513524
    [Google Scholar]
  85. Lakritz J.R. Poutahidis T. Mirabal S. Varian B.J. Levkovich T. Ibrahim Y.M. Ward J.M. Teng E.C. Fisher B. Parry N. Lesage S. Alberg N. Gourishetti S. Fox J.G. Ge Z. Erdman S.E. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 2015 6 11 9387 9396 10.18632/oncotarget.3328 25831236
    [Google Scholar]
  86. Chen C. Khismatullin D.B. Lipopolysaccharide induces the interactions of breast cancer and endothelial cells via activated monocytes. Cancer Lett. 2014 345 1 75 84 10.1016/j.canlet.2013.11.022 24333719
    [Google Scholar]
  87. Ma J. Sun L. Liu Y. Ren H. Shen Y. Bi F. Zhang T. Wang X. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiol. 2020 20 1 82 10.1186/s12866‑020‑01739‑1 32272885
    [Google Scholar]
  88. Mikó E. Vida A. Kovács T. Ujlaki G. Trencsényi G. Márton J. Sári Z. Kovács P. Boratkó A. Hujber Z. Csonka T. Antal-Szalmás P. Watanabe M. Gombos I. Csoka B. Kiss B. Vígh L. Szabó J. Méhes G. Sebestyén A. Goedert J.J. Bai P. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim. Biophys. Acta Bioenerg. 2018 1859 9 958 974 10.1016/j.bbabio.2018.04.002 29655782
    [Google Scholar]
  89. Yoon H.J. Kim H.N. Bang J.I. Lim W. Moon B.I. Paik N.S. Kim B.S. Kim H.L. Physiologic intestinal 18F-FDG uptake is associated with alteration of gut microbiota and proinflammatory cytokine levels in breast cancer. Sci. Rep. 2019 9 1 18273 10.1038/s41598‑019‑54680‑3 31797893
    [Google Scholar]
  90. Wu A.H. Tseng C. Vigen C. Yu Y. Cozen W. Garcia A.A. Spicer D. Gut microbiome associations with breast cancer risk factors and tumor characteristics: A pilot study. Breast Cancer Res. Treat. 2020 182 2 451 463 10.1007/s10549‑020‑05702‑6 32468338
    [Google Scholar]
  91. Bobin-Dubigeon C. Luu H.T. Leuillet S. Lavergne S.N. Carton T. Le Vacon F. Michel C. Nazih H. Bard J.M. Faecal microbiota composition varies between patients with breast cancer and healthy women: A comparative case-control study. Nutrients 2021 13 8 2705 10.3390/nu13082705 34444865
    [Google Scholar]
  92. Frugé A.D. Van der Pol W. Rogers L.Q. Morrow C.D. Tsuruta Y. Demark-Wahnefried W. Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast cancer participating in a presurgical weight loss trial. J. Acad. Nutr. Diet. 2020 120 4 650 659 10.1016/j.jand.2018.08.164 30420171
    [Google Scholar]
  93. He C. Liu Y. Ye S. Yin S. Gu J. Changes of intestinal microflora of breast cancer in premenopausal women. Eur. J. Clin. Microbiol. Infect. Dis. 2021 40 3 503 513 10.1007/s10096‑020‑04036‑x 32936397
    [Google Scholar]
  94. Ubachs J. Ziemons J. Soons Z. Aarnoutse R. van Dijk D.P.J. Penders J. van Helvoort A. Smidt M.L. Kruitwagen R.F.P.M. Baade-Corpelijn L. Olde Damink S.W.M. Rensen S.S. Gut microbiota and short‐chain fatty acid alterations in cachectic cancer patients. J. Cachexia Sarcopenia Muscle 2021 12 6 2007 2021 10.1002/jcsm.12804 34609073
    [Google Scholar]
  95. Laborda-Illanes A. Sanchez-Alcoholado L. Dominguez-Recio M.E. Jimenez-Rodriguez B. Lavado R. Comino-Méndez I. Alba E. Queipo-Ortuño M.I. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers (Basel) 2020 12 9 2465 10.3390/cancers12092465 32878124
    [Google Scholar]
  96. Chan A.A. Bashir M. Rivas M.N. Duvall K. Sieling P.A. Pieber T.R. Vaishampayan P.A. Love S.M. Lee D.J. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci. Rep. 2016 6 1 28061 10.1038/srep28061 27324944
    [Google Scholar]
  97. Muccee F. Ghazanfar S. Ajmal W. Al-Zahrani M. In-silico characterization of estrogen reactivating β-glucuronidase enzyme in git associated microbiota of normal human and breast cancer patients. Genes (Basel) 2022 13 9 1545 10.3390/genes13091545 36140713
    [Google Scholar]
  98. Smith K.S. Tissier A. Bail J.R. Novak J.R. Morrow C.D. Demark-Wahnefried W. Frugé A.D. Health-related quality of life is associated with fecal microbial composition in breast cancer survivors. Support. Care Cancer 2023 31 1 10 10.1007/s00520‑022‑07496‑3 36512109
    [Google Scholar]
  99. Hossain F. Majumder S. David J. Bunnell B.A. Miele L. Obesity modulates the gut microbiome in triple-negative breast cancer. Nutrients 2021 13 10 3656 10.3390/nu13103656 34684657
    [Google Scholar]
  100. Newman T.M. Vitolins M.Z. Cook K.L. From the table to the tumor: The role of mediterranean and western dietary patterns in shifting microbial-mediated signaling to impact breast cancer risk. Nutrients 2019 11 11 2565 10.3390/nu11112565 31652909
    [Google Scholar]
  101. Jarman R. Ribeiro-Milograna S. Kalle W. Potential of the microbiome as a biomarker for early diagnosis and prognosis of breast cancer. J. Breast Cancer 2020 23 6 579 587 10.4048/jbc.2020.23.e60 33408884
    [Google Scholar]
  102. Hou M.F. Ou-Yang F. Li C.L. Chen F.M. Chuang C.H. Kan J.Y. Wu C.C. Shih S.L. Shiau J.P. Kao L.C. Kao C.N. Lee Y.C. Moi S.H. Yeh Y.T. Cheng C.J. Chiang C.P. Comprehensive profiles and diagnostic value of menopausal-specific gut microbiota in premenopausal breast cancer. Exp. Mol. Med. 2021 53 10 1636 1646 10.1038/s12276‑021‑00686‑9 34707191
    [Google Scholar]
  103. Álvarez-Mercado A.I. del Valle Cano A. Fernández M.F. Fontana L. Gut microbiota and breast cancer: The dual role of microbes. Cancers (Basel) 2023 15 2 443 10.3390/cancers15020443 36672391
    [Google Scholar]
  104. Yang P. Wang Z. Peng Q. Lian W. Chen D. Comparison of the gut microbiota in patients with benign and malignant breast tumors: A pilot study. Evol. Bioinform. Online 2021 17 11769343211057573 10.1177/11769343211057573 34795472
    [Google Scholar]
  105. Banerjee S. Wei Z. Tian T. Bose D. Shih N.N.C. Feldman M.D. Khoury T. De Michele A. Robertson E.S. Prognostic correlations with the microbiome of breast cancer subtypes. Cell Death Dis. 2021 12 9 831 10.1038/s41419‑021‑04092‑x 34482363
    [Google Scholar]
  106. Nguyen S.M. Tran H.T.T. Long J. Shrubsole M.J. Cai H. Yang Y. Nguyen L.M. Nguyen G.H. Nguyen C.V. Ta T.V. Wu J. Cai Q. Zheng W. Tran T.V. Shu X.O. Gut microbiome of patients with breast cancer in vietnam. JCO Glob. Oncol. 2024 10 10 e2300234 10.1200/GO.23.00234 38359370
    [Google Scholar]
  107. Terrisse S. Derosa L. Iebba V. Ghiringhelli F. Vaz-Luis I. Kroemer G. Fidelle M. Christodoulidis S. Segata N. Thomas A.M. Martin A.L. Sirven A. Everhard S. Aprahamian F. Nirmalathasan N. Aarnoutse R. Smidt M. Ziemons J. Caldas C. Loibl S. Denkert C. Durand S. Iglesias C. Pietrantonio F. Routy B. André F. Pasolli E. Delaloge S. Zitvogel L. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ. 2021 28 9 2778 2796 10.1038/s41418‑021‑00784‑1 33963313
    [Google Scholar]
  108. Guan X. Ma F. Sun X. Li C. Li L. Liang F. Li S. Yi Z. Liu B. Xu B. Gut microbiota profiling in patients with HER2-negative metastatic breast cancer receiving metronomic chemotherapy of capecitabine compared to those under conventional dosage. Front. Oncol. 2020 10 902 10.3389/fonc.2020.00902 32733788
    [Google Scholar]
  109. Wenhui Y. Zhongyu X. Kai C. Zhaopeng C. Jinteng L. Mengjun M. Zepeng S. Yunshu C. Peng W. Yanfeng W. Huiyong S. Variations in the gut microbiota in breast cancer occurrence and bone metastasis. Front. Microbiol. 2022 13 894283 10.3389/fmicb.2022.894283 35722347
    [Google Scholar]
  110. Yao Z-W. Yang X. Zhao B-C. Deng F. Jiang Y-M. Pan W-Y. Chen X.D. Zhou B.W. Zhang W.J. Hu J.J. Zhu L. Liu K.X. Predictive and preventive potential of preoperative gut microbiota in chronic postoperative pain in breast cancer survivors. Anesth. Analg. 2022 134 4 699 709 34403381
    [Google Scholar]
  111. Carter S.J. Hunter G.R. Blackston J.W. Liu N. Lefkowitz E.J. Van Der Pol W.J. Morrow C.D. Paulsen J.A. Rogers L.Q. Gut microbiota diversity is associated with cardiorespiratory fitness in post‐primary treatment breast cancer survivors. Exp. Physiol. 2019 104 4 529 539 10.1113/EP087404 30763983
    [Google Scholar]
  112. Okubo R. Kinoshita T. Katsumata N. Uezono Y. Xiao J. Matsuoka Y.J. Impact of chemotherapy on the association between fear of cancer recurrence and the gut microbiota in breast cancer survivors. Brain Behav. Immun. 2020 85 186 191 10.1016/j.bbi.2019.02.025 30818031
    [Google Scholar]
  113. Viswanathan S. Parida S. Lingipilli B.T. Krishnan R. Podipireddy D.R. Muniraj N. Role of gut microbiota in breast cancer and drug resistance. Pathogens 2023 12 3 468 10.3390/pathogens12030468 36986390
    [Google Scholar]
  114. Maximiano S. Magalhães P. Guerreiro M.P. Morgado M. Trastuzumab in the treatment of breast cancer. BioDrugs 2016 30 2 75 86 10.1007/s40259‑016‑0162‑9 26892619
    [Google Scholar]
  115. Di Modica M. Gargari G. Regondi V. Bonizzi A. Arioli S. Belmonte B. De Cecco L. Fasano E. Bianchi F. Bertolotti A. Tripodo C. Villani L. Corsi F. Guglielmetti S. Balsari A. Triulzi T. Tagliabue E. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 2021 81 8 2195 2206 10.1158/0008‑5472.CAN‑20‑1659 33483370
    [Google Scholar]
  116. Li Y. Dong B. Wu W. Wang J. Jin H. Chen K. Huang K. Huang S. Yao Y. Metagenomic analyses reveal distinct gut microbiota signature for predicting the neoadjuvant chemotherapy responsiveness in breast cancer patients. Front. Oncol. 2022 12 865121 10.3389/fonc.2022.865121 35433455
    [Google Scholar]
  117. Vitorino M. Baptista de Almeida S. Alpuim Costa D. Faria A. Calhau C. Azambuja Braga S. Human microbiota and immunotherapy in breast cancer-a review of recent developments. Front. Oncol. 2022 11 815772 10.3389/fonc.2021.815772 35155205
    [Google Scholar]
  118. Bruce E. Makaranka S. Urquhart G. Elsberger B. Does the gut microbiome environment influence response to systemic breast cancer treatment? Explor. Target. Antitumor Ther. 2021 2 4 374 384 10.37349/etat.2021.00051 36046753
    [Google Scholar]
  119. Hinshaw D.C. Swain C.A. Chen D. Hanna A. Molina P.A. Maynard C.L. Lee G. McFarland B.C. Samant R.S. Shevde L.A. Hedgehog blockade remodels the gut microbiota and the intestinal effector CD8+ T cells in a mouse model of mammary carcinoma. Lab. Invest. 2022 102 11 1236 1244 10.1038/s41374‑022‑00828‑1 35907952
    [Google Scholar]
  120. Ciernikova S. Mego M. Chovanec M. Exploring the potential role of the gut microbiome in chemotherapy-induced neurocognitive disorders and cardiovascular toxicity. Cancers (Basel) 2021 13 4 782 10.3390/cancers13040782 33668518
    [Google Scholar]
  121. Nguyen S.M. Tran H.T.T. Long J. Shrubsole M.J. Cai H. Yang Y. Cai Q. Tran T.V. Zheng W. Shu X.O. Gut microbiome in association with chemotherapy‐induced toxicities among patients with breast cancer. Cancer 2024 130 11 2014 2030 10.1002/cncr.35229 38319284
    [Google Scholar]
  122. Roviello G. Iannone L.F. Bersanelli M. Mini E. Catalano M. The gut microbiome and efficacy of cancer immunotherapy. Pharmacol. Ther. 2022 231 107973 10.1016/j.pharmthera.2021.107973 34453999
    [Google Scholar]
  123. Chang J.W.C. Hsieh J.J. Tsai C.Y. Chiu H.Y. Lin Y.F. Wu C.E. Shen Y.C. Hou M.M. Chang C.Y. Chen J.A. Chen C.L. Chiu C.T. Yeh Y.M. Chiu C.H. Gut microbiota and clinical response to immune checkpoint inhibitor therapy in patients with advanced cancer. Biomed. J. 2024 47 5 100698 10.1016/j.bj.2024.100698 38280521
    [Google Scholar]
  124. Liang H. Jo J.H. Zhang Z. MacGibeny M.A. Han J. Proctor D.M. Taylor M.E. Che Y. Juneau P. Apolo A.B. McCulloch J.A. Davar D. Zarour H.M. Dzutsev A.K. Brownell I. Trinchieri G. Gulley J.L. Kong H.H. Predicting cancer immunotherapy response from gut microbiomes using machine learning models. Oncotarget 2022 13 1 876 889 10.18632/oncotarget.28252 35875611
    [Google Scholar]
  125. Schettini F. Fontana A. Gattazzo F. Strina C. Milani M. Cappelletti M.R. Cervoni V. Morelli L. Curigliano G. Iebba V. Generali D. Faecal microbiota composition is related to response to CDK4/6-inhibitors in metastatic breast cancer: A prospective cross-sectional exploratory study. Eur. J. Cancer 2023 191 112948 10.1016/j.ejca.2023.112948 37454444
    [Google Scholar]
  126. Barroso-Sousa R. Li T. Damania A.V. DiLullo M.K. Keenan T. Wulf G.M. Spring L.M. Abstract PD11-05: PD11-05 Gut microbiome signatures correlate with overall survival among patients receiving eribulin with or without pembrolizumab for hormone receptor-positive metastatic breast cancer. Cancer Res. 2023 83 5_Supplement PD11-05 10.1158/1538‑7445.SABCS22‑PD11‑05
    [Google Scholar]
  127. Mendoza L. Potential effect of probiotics in the treatment of breast cancer. Oncol. Rev. 2019 13 2 422 10.4081/oncol.2019.422 31583054
    [Google Scholar]
  128. Pellegrini M. Ippolito M. Monge T. Violi R. Cappello P. Ferrocino I. Cocolin L.S. De Francesco A. Bo S. Finocchiaro C. Gut microbiota composition after diet and probiotics in overweight breast cancer survivors: A randomized open-label pilot intervention trial. Nutrition 2020 74 110749 10.1016/j.nut.2020.110749 32234652
    [Google Scholar]
  129. Saneei Totmaj A. Haghighat S. Jaberzadeh S. Navaei M. Vafa S. Janani L. Emamat H. Salehi Z. Izad M. Zarrati M. The effects of synbiotic supplementation on serum anti-inflammatory factors in the survivors of breast cancer with lymphedema following a low calorie diet: A randomized, double-blind, clinical trial. Nutr. Cancer 2022 74 3 869 881 10.1080/01635581.2021.1933096 34085881
    [Google Scholar]
  130. Navaei M. Haghighat S. Janani L. Vafa S. Saneei Totmaj A. Raji Lahiji M. Emamat H. Salehi Z. Amirinejad A. Izad M. Zarrati M. The effects of synbiotic supplementation on antioxidant capacity and arm volumes in survivors of breast cancer-related lymphedema. Nutr. Cancer 2020 72 1 62 73 10.1080/01635581.2019.1616781 31135225
    [Google Scholar]
  131. Raji Lahiji M. Najafi S. Janani L. Yazdani B. Razmpoosh E. Zarrati M. The effect of synbiotic on glycemic profile and sex hormones in overweight and obese breast cancer survivors following a weight-loss diet: A randomized, triple-blind, controlled trial. Clin. Nutr. 2021 40 2 394 403 10.1016/j.clnu.2020.05.043 32698957
    [Google Scholar]
  132. Raji Lahiji M. Zarrati M. Najafi S. Yazdani B. Cheshmazar E. Razmpoosh E. Janani L. Raji Lahiji M. Shidfar F. Effects of synbiotic supplementation on serum adiponectin and inflammation status of overweight and obese breast cancer survivors: A randomized, triple-blind, placebo-controlled trial. Support. Care Cancer 2021 29 7 4147 4157 10.1007/s00520‑020‑05926‑8 33404812
    [Google Scholar]
  133. Juan Z. Chen J. Ding B. Yongping L. Liu K. Wang L. Le Y. Liao Q. Shi J. Huang J. Wu Y. Ma D. Ouyang W. Tong J. Probiotic supplement attenuates chemotherapy-related cognitive impairment in patients with breast cancer: A randomised, double-blind, and placebo-controlled trial. Eur. J. Cancer 2022 161 10 22 10.1016/j.ejca.2021.11.006 34896904
    [Google Scholar]
  134. Xue K. Li J. Huang R. The immunoregulatory role of gut microbiota in the incidence, progression, and therapy of breast cancer. Front. Cell. Infect. Microbiol. 2024 14 1411249 10.3389/fcimb.2024.1411249 39035351
    [Google Scholar]
  135. Nandi D. Parida S. Sharma D. The gut microbiota in breast cancer development and treatment: The good, the bad, and the useful! Gut Microbes 2023 15 1 2221452 10.1080/19490976.2023.2221452 37305949
    [Google Scholar]
  136. Wang J. Zhang P. Chen S. Duan H. Xie L. Microbiota and gut health: Promising prospects for clinical trials from bench to bedside. Advanced Gut & Microbiome Research 2022 2022 1 17 10.1155/2022/2290052
    [Google Scholar]
  137. Liu L. Wang H. Chen X. Xie P. Gao T. Hao X. Gut microbiota: A new insight into neurological diseases. Chin. Med. J. (Engl.) 2023 136 11 1261 1277 10.1097/CM9.0000000000002212 35830286
    [Google Scholar]
  138. Millán Rodríguez F. Sabiote Rubio L. Girón Nanne I. Sánchez Martín F. Emiliani E. Angerri Feu O. The relationship between calcium oxalate lithiasis and chronic proinflammatory intestinal dysbiosis pattern: A prospective study. Urolithiasis 2020 48 4 321 328 10.1007/s00240‑020‑01181‑y 32107580
    [Google Scholar]
  139. Mann M. Kumar C. Zeng W.F. Strauss M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021 12 8 759 770 10.1016/j.cels.2021.06.006 34411543
    [Google Scholar]
  140. Ciaramella A. Di Nardo E. Terracciano D. Conte L. Febbraio F. Cimmino A. A new biomarker panel of ultraconserved long non-coding RNAs for bladder cancer prognosis by a machine learning based methodology. BMC Bioinformatics 2023 23 S6 Suppl. 6 569 10.1186/s12859‑023‑05167‑6 36879192
    [Google Scholar]
  141. Iadanza E. Fabbri R. Bašić-ČiČak D. Amedei A. Telalovic J.H. Gut microbiota and artificial intelligence approaches: A scoping review. Health Technol. (Berl.) 2020 10 6 1343 1358 10.1007/s12553‑020‑00486‑7
    [Google Scholar]
  142. Mao A.W. Barck H. Young J. Paley A. Mao J.H. Chang H. Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients. Clin. Transl. Oncol. 2022 24 3 597 604 10.1007/s12094‑021‑02725‑3 34741726
    [Google Scholar]
  143. Pérez J.C. Fungi of the human gut microbiota: Roles and significance. Int. J. Med. Microbiol. 2021 311 3 151490 10.1016/j.ijmm.2021.151490 33676239
    [Google Scholar]
  144. Shiao S.L. Kershaw K.M. Limon J.J. You S. Yoon J. Ko E.Y. Guarnerio J. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell 2021 39 9 1202 1213.e6 10.1016/j.ccell.2021.07.002 34329585
    [Google Scholar]
  145. Nguyen S.M. Tran H.T. Long J. Shrubsole M.J. Cai H. Yang Y. Cai Q. Tran T.V. Zheng W. Shu X-O. Abstract 3041: Gut microbiome in association with chemotherapy-induced toxicities among breast cancer patients. Cancer Res. 2023 83 7_Supplement 3041 3041 10.1158/1538‑7445.AM2023‑3041
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240351595250213103451
Loading
/content/journals/cmm/10.2174/0115665240351595250213103451
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gut flora ; gut microbiota ; Breast cancer ; microorganism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test