Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

A biocompatible polymeric nanoparticle, TQ-PLGA-PF68, was developed through the interaction of the phytochemical thymoquinone (TQ) encapsulated in poly(L-lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-PEG) with Pluronics F68. So far, this combination has not been assessed on breast cancer cells resistant to anti-cancer drugs. Therefore, this study aimed to assess the cell death caused by TQ-PLGA-PF68 nanoparticles, particularly in resistant breast cancer cell lines expressing estrogen receptor (ER) positivity, such as TamR MCF-7.

Methods

The antiproliferative activity of TQ-PLGA-PF68 nanoparticles was measured using the MTS assay. The cytotoxic effects were further evaluated through colony formation assay and scratch-wound healing assay. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assay was performed to determine the characteristics of the apoptosis as well as cell cycle arrest induced by TQ-PLGA-PF68 nanoparticles. The localization of these nanoparticles in the cells was examined using Transmission Electron Microscopy (TEM).

Results

With a TQ concentration of 58.5 µM encapsulated within the nanoparticles, cytotoxicity analysis revealed a significant inhibition of cell proliferation (p<0.05). This finding was corroborated by the results of the colony formation assay. Treatment with TQ-PLGA-PF68 nanoparticles significantly decreased the number of surviving TamR MCF-7 cells by 35% (p<0.001) compared to untreated TamR MCF-7 cells. Concurrently, the scratch-wound healing assay indicated a closure rate of 50% versus >80% (p<0.05) in untreated TamR MCF-7 cells at 12 hours post-wounding. The TUNEL assay successfully confirmed the apoptosis characteristics associated with cell cycle arrest. TEM observation confirmed the cellular internalization of these nanoparticles, suggesting the therapeutic potential of the formulation.

Conclusion

In this study, a significant functional change in TamR MCF-7 cells induced by the TQ nanoparticles was observed. The unique incorporation of TQ into the PLGA-PEG and Pluronics F68 formulation preserved its bioactivity, thereby reducing the migratory and proliferative traits of drug-resistant cells. This discovery may pave the way for exploring the application of biocompatible polymeric TQ nanoparticles as a novel therapeutic approach in future studies pertaining to resistant breast cancer.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240347014241203065055
2025-01-15
2025-06-26
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.21442 29313949
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  3. XuY. GongM. WangY. YangY. LiuS. ZengQ. Global trends and forecasts of breast cancer incidence and deaths.Sci. Data202310133410.1038/s41597‑023‑02253‑5 37244901
    [Google Scholar]
  4. SedetaE. SungH. LaversanneM. BrayF. JemalA. Recent mortality patterns and time trends for the major cancers in 47 countries worldwide.Cancer Epidemiol. Biomarkers Prev.202332789490510.1158/1055‑9965.EPI‑22‑1133 37195435
    [Google Scholar]
  5. XuH. XuB. Breast cancer: Epidemiology, risk factors and screening.Chin. J. Cancer Res.202335656558310.21147/j.issn.1000‑9604.2023.06.02 38204449
    [Google Scholar]
  6. ZhangJ. LuY. ZhangN. Global burden of female breast cancer and its association with socioeconomic development status, 1990–2044.Cancer Rep.20236S1e182710.1002/cnr2.1827 37095062
    [Google Scholar]
  7. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.21551 30620402
    [Google Scholar]
  8. LazamN.M. ShairS.N. AsmuniN.H. JamaludinA. YusriA.A. Forecasting the incidence rates of top three cancers in Malaysia.AIP Conference Proceedings202310.1063/5.0110929
    [Google Scholar]
  9. LiuF. WuY. MiY. GuL. SangM. GengC. Identification of core genes and potential molecular mechanisms in breast cancer using bioinformatics analysis.Pathol. Res. Pract.2019215715243610.1016/j.prp.2019.152436 31076281
    [Google Scholar]
  10. WillM. LiangJ. MetcalfeC. ChandarlapatyS. Therapeutic resistance to anti-oestrogen therapy in breast cancer.Nat. Rev. Cancer2023231067368510.1038/s41568‑023‑00604‑3 37500767
    [Google Scholar]
  11. OsataphanN. PhrommintikulA. LeemasawatK. Effects of metformin and donepezil on the prevention of doxorubicin-induced cardiotoxicity in breast cancer: a randomized controlled trial.Sci. Rep.20231311275910.1038/s41598‑023‑40061‑4 37550350
    [Google Scholar]
  12. GaoY. WangR. JiangJ. HuY. LiH. WangY. ACEI/ARB and beta-blocker therapies for preventing cardiotoxicity of antineoplastic agents in breast cancer: a systematic review and meta-analysis.Heart Fail. Rev.20232861405141510.1007/s10741‑023‑10328‑z 37414918
    [Google Scholar]
  13. LiuC. ChenH. GuoS. Anti-breast cancer-induced cardiomyopathy: Mechanisms and future directions.Biomed. Pharmacother.202316611537310.1016/j.biopha.2023.115373 37647693
    [Google Scholar]
  14. VolkovaM. RussellR.III Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment.Curr. Cardiol. Rev.20127421422010.2174/157340311799960645 22758622
    [Google Scholar]
  15. CaiF. LuisM. LinX. Anthracycline induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment (Review).Mol. Clin. Oncol.2019111152310.3892/mco.2019.1854 31289672
    [Google Scholar]
  16. SuX. ZhangX. LiuW. YangX. AnN. YangF. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy.Semin Cancer Biol2022
    [Google Scholar]
  17. RawatP.S. JaiswalA. KhuranaA. BhattiJ.S. NavikU. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management.Biomed. Pharmacother.202113911170810.1016/j.biopha.2021.111708 34243633
    [Google Scholar]
  18. HenriksenP.A. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention.Heart20181041297197710.1136/heartjnl‑2017‑312103 29217634
    [Google Scholar]
  19. BansalN. AdamsM.J. GanatraS. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors.Cardiooncology2019511810.1186/s40959‑019‑0054‑5 32154024
    [Google Scholar]
  20. XieS. SunY. ZhaoX. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity.Front. Pharmacol.202415140624710.3389/fphar.2024.1406247 38989148
    [Google Scholar]
  21. ChenY. LiuR. LiC. Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator.Am. J. Cancer Res.202111734453460 34354854
    [Google Scholar]
  22. González-DíazS.N. Canel-ParedesA. Macías-WeinmannA. Vidal-GutiérrezO. Villarreal-GonzálezR.V. Atopy, allergen sensitization and development of hypersensitivity reactions to paclitaxel.J. Oncol. Pharm. Pract.202329481081710.1177/10781552221080415 35188862
    [Google Scholar]
  23. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms21093233 32370233
    [Google Scholar]
  24. MuleyH. FadóR. Rodríguez-RodríguezR. CasalsN. Drug uptake-based chemoresistance in breast cancer treatment.Biochem. Pharmacol.202017711395910.1016/j.bcp.2020.113959 32272110
    [Google Scholar]
  25. TangX. LocW.S. DongC. The use of nanoparticulates to treat breast cancer.Nanomedicine (Lond.)201712192367238810.2217/nnm‑2017‑0202 28868970
    [Google Scholar]
  26. SaghatelyanT. TananyanA. JanoyanN. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial.Phytomedicine20207015321810.1016/j.phymed.2020.153218 32335356
    [Google Scholar]
  27. GoyalS.N. PrajapatiC.P. GoreP.R. Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin.Front. Pharmacol.2017865610.3389/fphar.2017.00656 28983249
    [Google Scholar]
  28. AlmatroodiS.A. AlmatroudiA. AlsahliM.A. KhanA.A. RahmaniA.H. Thymoquinone, an active compound of Nigella sativa: role in prevention and treatment of cancer.Curr. Pharm. Biotechnol.202021111028104110.2174/1389201021666200416092743 32297580
    [Google Scholar]
  29. MajdalawiehA.F. FayyadM.W. NasrallahG.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa.Crit. Rev. Food Sci. Nutr.201757183911392810.1080/10408398.2016.1277971 28140613
    [Google Scholar]
  30. BalloutF. HabliZ. RahalO.N. FatfatM. Gali-MuhtasibH. Thymoquinone-based nanotechnology for cancer therapy: promises and challenges.Drug Discov. Today20182351089109810.1016/j.drudis.2018.01.043 29374534
    [Google Scholar]
  31. KhanM.A. TaniaM. WeiC. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition.Oncotarget2015623195801959110.18632/oncotarget.3973 26023736
    [Google Scholar]
  32. BashmailH.A. AlamoudiA.A. NoorwaliA. HegazyG.A. AjabnoorG.M. Al-AbdA.M. Thymoquinone enhances paclitaxel anti-breast cancer activity via inhibiting tumor-associated stem cells despite apparent mathematical antagonism.Molecules202025242610.3390/molecules25020426 31968657
    [Google Scholar]
  33. BhattacharjeeM. UpadhyayP. SarkerS. Combinatorial therapy of Thymoquinone and Emodin synergistically enhances apoptosis, attenuates cell migration and reduces stemness efficiently in breast cancer.Biochim. Biophys. Acta, Gen. Subj.202018641112969510.1016/j.bbagen.2020.129695 32735937
    [Google Scholar]
  34. KhanA. AlsahliM.A. AljasirM.A. Experimental and theoretical insights on chemopreventive effect of the liposomal thymoquinone against benzo [a] pyrene-induced lung cancer in Swiss albino mice.J. Inflamm. Res.2022152263228010.2147/JIR.S358632 35422652
    [Google Scholar]
  35. KhanM. LamS.K. YanS. The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigations.J. Cancer Res. Ther.20242041224123110.4103/jcrt.jcrt_883_23 39206985
    [Google Scholar]
  36. BrixN. SamagaD. HennelR. GehrK. ZitzelsbergerH. LauberK. The clonogenic assay: robustness of plating efficiency-based analysis is strongly compromised by cellular cooperation.Radiat. Oncol.202015124810.1186/s13014‑020‑01697‑y 33121517
    [Google Scholar]
  37. AhmadA. MishraR.K. VyawahareA. Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects.Saudi Pharm. J.20192781113112610.1016/j.jsps.2019.09.008 31885471
    [Google Scholar]
  38. SinghA.K. YadavD. MalviyaR. Splicing DNA damage adaptations for the management of cancer cells.Curr. Gene Ther.202424213514610.2174/0115665232258528231018113410 38282448
    [Google Scholar]
  39. KhanT. GuravP. PhytoNanotechnology: enhancing delivery of plant based anti-cancer drugs.Front. Pharmacol.20188100210.3389/fphar.2017.01002 29479316
    [Google Scholar]
  40. FangX. CaoJ. ShenA. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy.J. Drug Deliv. Sci. Technol.20205710166210.1016/j.jddst.2020.101662
    [Google Scholar]
  41. ElmowafyM. ShalabyK. ElkomyM.H. Polymeric nanoparticles for delivery of natural bioactive agents: recent advances and challenges.Polymers (Basel)2023155112310.3390/polym15051123 36904364
    [Google Scholar]
  42. HosseiniS.M. MohammadnejadJ. SalamatS. Beiram ZadehZ. TanhaeiM. RamakrishnaS. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review.Mater. Today Chem.20232910140010.1016/j.mtchem.2023.101400
    [Google Scholar]
  43. NoorN.S. KausN.H.M. SzewczukM.R. HamidS.B.S. Formulation, characterization and cytotoxicity effects of novel thymoquinone-PLGA-PF68 nanoparticles.Int. J. Mol. Sci.20212217942010.3390/ijms22179420 34502328
    [Google Scholar]
  44. JiangC. ZhuY. ChenH. Targeting c-Jun inhibits fatty acid oxidation to overcome tamoxifen resistance in estrogen receptor-positive breast cancer.Cell Death Dis.2023141065310.1038/s41419‑023‑06181‑5 37803002
    [Google Scholar]
  45. PattenDK CorleoneG GyőrffyB Enhancer mapping uncovers phenotypic heterogeneity and evolution in patients with luminal breast cancer.Nat. Med.20182491469148010.1038/s41591‑018‑0091‑x 30038216
    [Google Scholar]
  46. SakashitaT. HamadaN. KawaguchiI. A framework for analysis of abortive colony size distributions using a model of branching processes in irradiated normal human fibroblasts.PLoS One201387e7029110.1371/journal.pone.0070291 23894635
    [Google Scholar]
  47. BanupriyaS.K. KavithaaK. PoornimaA. SumathiS. Mechanistic study on thymoquinone conjugated ZnO nanoparticles mediated cytotoxicity and anticancer activity in triple-negative breast cancer cells.Anticancer. Agents Med. Chem.202222231332710.2174/1871520621666210412104731
    [Google Scholar]
  48. ÜnalT.D. HamurcuZ. DelibaşıN ÇınarV GülerA GökçeS Thymoquinone inhibits proliferation and migration of MDA-MB-231 triple negative breast cancer cells by suppressing autophagy, Beclin-1 and LC3.Anticancer. Agents Med. Chem.2021213355364
    [Google Scholar]
  49. LiS. CaoJ. ZhangW. Protein tyrosine phosphatase PTPN3 promotes drug resistance and stem cell-like characteristics in ovarian cancer.Sci. Rep.2016613687310.1038/srep36873 27833130
    [Google Scholar]
  50. ArnoldK.M. OpdenakerL.M. FlynnD. Sims-MourtadaJ. Wound healing and cancer stem cells: inflammation as a driver of treatment resistance in breast cancer.Cancer Growth Metastasis2015811310.4137/CGM.S11286
    [Google Scholar]
  51. DeyellM. GarrisC.S. LaughneyA.M. Cancer metastasis as a non-healing wound.Br. J. Cancer202112491491150210.1038/s41416‑021‑01309‑w 33731858
    [Google Scholar]
  52. UpadhyayP. SarkerS. GhoshA. Transferrin-decorated thymoquinone-loaded PEG-PLGA nanoparticles exhibit anticarcinogenic effect in non-small cell lung carcinoma via the modulation of miR-34a and miR-16.Biomater. Sci.20197104325434410.1039/C9BM00912D 31411213
    [Google Scholar]
  53. MoghaddamF.A. EbrahimianM. OroojalianF. Yazdian-RobatiR. KalaliniaF. TayebiL. Effect of thymoquinone-loaded lipid–polymer nanoparticles as an oral delivery system on anticancer efficiency of doxorubicin.J. Nanostructure Chem.2021112
    [Google Scholar]
  54. BhattacharyaS. GhoshA. MaitiS. Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer.J. Control. Release202032235737410.1016/j.jconrel.2020.03.033 32243981
    [Google Scholar]
  55. AlalawyA.I. Key genes and molecular mechanisms related to paclitaxel resistance.Cancer Cell Int.202424124410.1186/s12935‑024‑03415‑0 39003454
    [Google Scholar]
  56. LiZ.H. WengX. XiongQ.Y. miR-34a expression in human breast cancer is associated with drug resistance.Oncotarget201786310627010628210.18632/oncotarget.22286 29290947
    [Google Scholar]
  57. DeyA. VarelasX. GuanK.L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine.Nat. Rev. Drug Discov.202019748049410.1038/s41573‑020‑0070‑z 32555376
    [Google Scholar]
  58. LiuJ. PengY. WeiW. Cell cycle on the crossroad of tumorigenesis and cancer therapy.Trends Cell Biol.2022321304410.1016/j.tcb.2021.07.001 34304958
    [Google Scholar]
  59. MatthewsH.K. BertoliC. de BruinR.A.M. Cell cycle control in cancer.Nat. Rev. Mol. Cell Biol.2022231748810.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  60. BhattacharyaS. AhirM. PatraP. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a.Biomaterials2015519110710.1016/j.biomaterials.2015.01.007 25771001
    [Google Scholar]
  61. Ali SalimL.Z. OthmanR. AbdullaM.A. Thymoquinone inhibits murine leukemia WEHI-3 cells in vivo and in vitro.PLoS One2014912e11534010.1371/journal.pone.0115340 25531768
    [Google Scholar]
  62. BashmailH.A. AlamoudiA.A. NoorwaliA. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities.Sci. Rep.2018811167410.1038/s41598‑018‑30046‑z 30076320
    [Google Scholar]
  63. BertoliC. SkotheimJ.M. de BruinR.A.M. Control of cell cycle transcription during G1 and S phases.Nat. Rev. Mol. Cell Biol.201314851852810.1038/nrm3629 23877564
    [Google Scholar]
  64. HumeS. DianovG.L. RamadanK. A unified model for the G1/S cell cycle transition.Nucleic Acids Res.20204822124831250110.1093/nar/gkaa1002 33166394
    [Google Scholar]
  65. SangerG. WonggoD. TaherN. Green seaweed Caulerpa racemosa - Chemical constituents, cytotoxicity in breast cancer cells and molecular docking simulation.J. Agric. Food Res.20231210062110.1016/j.jafr.2023.100621
    [Google Scholar]
  66. PitchaiP. SubramaniP. SelvarajanR. SankarR. VilwanathanR. SibandaT. Green synthesis of gold nanoparticles (AuNPs) using Caulerpa racemosa and evaluation of its antibacterial and cytotoxic activity against human lung cancer cell line.Arab J. Basic Appl. Sci.202229135136210.1080/25765299.2022.2127510
    [Google Scholar]
  67. WuH. ChenL. ZhuF. HanX. SunL. ChenK. The cytotoxicity effect of resveratrol: cell cycle arrest and induced apoptosis of breast cancer 4T1 cells.Toxins (Basel)2019111273110.3390/toxins11120731 31847250
    [Google Scholar]
  68. RehmM. DüßmannH. PrehnJ.H.M. Real-time single cell analysis of Smac/DIABLO release during apoptosis.J. Cell Biol.200316261031104310.1083/jcb.200303123 12975347
    [Google Scholar]
  69. KhingT.M. ChoiW.S. KimD.M. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells.Sci. Rep.20211112349010.1038/s41598‑021‑02503‑9 34873207
    [Google Scholar]
  70. ShabanN.Z. IbrahimN.K. SaadaH.N. miR-34a and miR-21 as biomarkers in evaluating the response of chemo-radiotherapy in Egyptian breast cancer patients.J Radiat Res Appl Sci202215328529210.1016/j.jrras.2022.08.001
    [Google Scholar]
  71. Sousa de AlmeidaM. SusnikE. DraslerB. Taladriz-BlancoP. Petri-FinkA. Rothen-RutishauserB. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.Chem. Soc. Rev.20215095397543410.1039/D0CS01127D 33666625
    [Google Scholar]
  72. YıldırımM AcetÖ Önal AcetB KarakoçV OdabaşıM. Innovative approach against cancer: Thymoquinone-loaded PHEMA-based magnetic nanoparticles and their effects on MCF-7 breast cancer.Biochem. Biophys. Res. Commun.202473415046410.1016/j.bbrc.2024.150464 39083970
    [Google Scholar]
  73. FakhouryI. SaadW. BouhadirK. NygrenP. Schneider-StockR. Gali-MuhtasibH. Uptake, delivery, and anticancer activity of thymoquinone nanoparticles in breast cancer cells.J. Nanopart. Res.201618721010.1007/s11051‑016‑3517‑8
    [Google Scholar]
  74. IbiyeyeK.M. NordinN. AjatM. ZukiA.B.Z. Ultrastructural changes and antitumor effects of doxorubicin/thymoquinone-loaded CaCO3 nanoparticles on breast cancer cell line.Front. Oncol.2019959910.3389/fonc.2019.00599 31334120
    [Google Scholar]
  75. MehannaM.M. SarieddineR. AlwattarJ.K. ChouaibR. Gali-MuhtasibH. Anticancer activity of thymoquinone cubic phase nanoparticles against human breast cancer: Formulation, cytotoxicity and subcellular localization.Int. J. Nanomedicine2020159557957010.2147/IJN.S263797 33293807
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240347014241203065055
Loading
/content/journals/cmm/10.2174/0115665240347014241203065055
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test