Skip to content
2000
image of Potentiation of Tumor Hallmarks by the Loss of GULO, a Vitamin C Biosynthesis Gene in Humans

Abstract

Vitamin C plays a significant role in various physiological functions. Humans depend on external sources of vitamin C due to the loss of the L-gulono-γ-lactone oxidase (GULO) gene that contributes to the synthesis of vitamin C. During the evolutionary loss of the GULO gene, physical, chemical, and biological factors were different from the present environmental settings. Besides the evolutionary genetic loss of the GULO gene, there is a gap in the insightful discussion on the potential implications of the non-functional GULO gene towards the predisposition of humans to cancer that faces hostile and carcinogenic environments. Various methods by which vitamin C modulates cellular processes related to cancer, including DNA repair, epigenetic changes, and redox balance, are discussed. Furthermore, we present experimental and clinical evidence indicating that vitamin C deficiency promotes tumor growth, metastasis, and therapy resistance, emphasizing its potential as a cancer phenotypic modulator. Therapeutic implications of restoring vitamin C levels in cancer treatment range from improving the efficacy of conventional medicines to exploiting metabolic vulnerabilities in tumors. The relevance of assessing vitamin C status in cancer patients and the basis for additional research into vitamin C supplementation as an adjuvant therapy is emphasized. This paper presents a comprehensive overview of the implications associated with the functional deficiency of the GULO gene in human subjects exhibiting diverse tumor hallmarks, encompassing ECM remodeling, hypoxia, epigenetic reprogramming, oxidative stress, and drug responsiveness.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240328074241003110326
2024-10-14
2024-11-26
Loading full text...

Full text loading...

References

  1. Pauling L. Evolution and the need for ascorbic acid. Proc. Natl. Acad. Sci. USA 1970 67 4 1643 1648 10.1073/pnas.67.4.1643 5275366
    [Google Scholar]
  2. Weber P. Bendich A. Schalch W. Vitamin C and human health--a review of recent data relevant to human requirements. Int. J. Vitam. Nutr. Res. 1996 66 1 19 30 8698541
    [Google Scholar]
  3. Hemilä H. Vitamin C intake and susceptibility to pneumonia. Pediatr. Infect. Dis. J. 1997 16 9 836 837 10.1097/00006454‑199709000‑00003 9306475
    [Google Scholar]
  4. Padayatty S.J. Katz A. Wang Y. Eck P. Kwon O. Lee J.H. Chen S. Corpe C. Dutta A. Dutta S.K. Levine M. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003 22 1 18 35 10.1080/07315724.2003.10719272 12569111
    [Google Scholar]
  5. Du J. Cullen J.J. Buettner G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 2012 1826 2 443 457 22728050
    [Google Scholar]
  6. Camarena V. Wang G. The epigenetic role of vitamin C in health and disease. Cell. Mol. Life Sci. 2016 73 8 1645 1658 10.1007/s00018‑016‑2145‑x 26846695
    [Google Scholar]
  7. Agathocleous M. Meacham C.E. Burgess R.J. Piskounova E. Zhao Z. Crane G.M. Cowin B.L. Bruner E. Murphy M.M. Chen W. Spangrude G.J. Hu Z. DeBerardinis R.J. Morrison S.J. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 2017 549 7673 476 481 10.1038/nature23876 28825709
    [Google Scholar]
  8. DiTroia S.P. Percharde M. Guerquin M.J. Wall E. Collignon E. Ebata K.T. Mesh K. Mahesula S. Agathocleous M. Laird D.J. Livera G. Ramalho-Santos M. Maternal vitamin C regulates reprogramming of DNA methylation and germline development. Nature 2019 573 7773 271 275 10.1038/s41586‑019‑1536‑1 31485074
    [Google Scholar]
  9. Traber K.E. Dimbo E.L. Symer E.M. Korkmaz F.T. Jones M.R. Mizgerd J.P. Quinton L.J. Roles of interleukin-11 during acute bacterial pneumonia. PLoS One 2019 14 8
    [Google Scholar]
  10. Granger M Eck P Dietary vitamin C in human health Adv. Food Nutr. Res. 2018 83 281 310 10.1016/bs.afnr.2017.11.006
    [Google Scholar]
  11. Ferrada L. Barahona M.J. Salazar K. Vandenabeele P. Nualart F. Vitamin C controls neuronal necroptosis under oxidative stress. Redox Biol. 2020 29 101408 10.1016/j.redox.2019.101408 31926631
    [Google Scholar]
  12. Roy R.N. Guha B.C. Species difference in regard to the biosynthesis of ascorbic acid. Nature 1958 182 4631 319 320 10.1038/182319a0 13577829
    [Google Scholar]
  13. Chatterjee I.B. Kar N.C. Ghosh N.C. Guha B.C. Aspects of ascorbic acid biosynthesis in animals. Ann. N. Y. Acad. Sci. 1961 92 1 36 56 10.1111/j.1749‑6632.1961.tb46105.x 13692611
    [Google Scholar]
  14. Chatterjee I.B. Kar N.C. Ghosh N.C. Guha B.C. Biosynthesis of L-ascorbic acid: Missing steps in animals incapable of synthesizing the vitamin. Nature 1961 192 4798 163 164 10.1038/192163a0 13878430
    [Google Scholar]
  15. Flier J.S. Underhill L.H. Levine M. New concepts in the biology and biochemistry of ascorbic acid. N. Engl. J. Med. 1986 314 14 892 902 10.1056/NEJM198604033141407 3513016
    [Google Scholar]
  16. GULO [L-gulono-gamma-lactone oxidase] [Bostaurus [cattle. Gene ID 286812[. Bethesda [MD]: National Library of Medicine [US], National Center for Biotechnology Information, 2004. Available from: https://www.ncbi.nlm.nih.gov/gene/ 2004
    [Google Scholar]
  17. Prasad A.B. Allard M.W. Green E.D. NISC Comparative Sequencing Program Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol. Biol. Evol. 2008 25 9 1795 1808 10.1093/molbev/msn104 18453548
    [Google Scholar]
  18. Cui J. Pan Y.H. Zhang Y. Jones G. Zhang S. Progressive pseudogenization: Vitamin C synthesis and its loss in bats. Mol. Biol. Evol. 2011 28 2 1025 1031 10.1093/molbev/msq286 21037206
    [Google Scholar]
  19. Drouin G. Godin J.R. Pagé B. The genetics of vitamin C loss in vertebrates. Curr. Genomics 2011 12 5 371 378 10.2174/138920211796429736 22294879
    [Google Scholar]
  20. Huang W. Tsai L. Li Y. Hua N. Sun C. Wei C. Widespread of horizontal gene transfer in the human genome. BMC Genomics 2017 18 1 274 10.1186/s12864‑017‑3649‑y 28376762
    [Google Scholar]
  21. Paciolla C. Fortunato S. Dipierro N. Paradiso A. De Leonardis S. Mastropasqua L. de Pinto M.C. Vitamin C in plants: From functions to biofortification. Antioxidants 2019 8 11 519 10.3390/antiox8110519 31671820
    [Google Scholar]
  22. Koh J. Itahana Y. Mendenhall I.H. Low D. Soh E.X.Y. Guo A.K. Chionh Y.T. Wang L.F. Itahana K. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nat. Commun. 2019 10 1 2820 10.1038/s41467‑019‑10495‑4 31249297
    [Google Scholar]
  23. Yang H. Conserved or lost: Molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis. Biochem. Genet. 2013 51 5-6 413 425 10.1007/s10528‑013‑9574‑0 23404229
    [Google Scholar]
  24. Luca F. Perry G.H. Di Rienzo A. Evolutionary adaptations to dietary changes. Annu. Rev. Nutr. 2010 30 1 291 314 10.1146/annurev‑nutr‑080508‑141048 20420525
    [Google Scholar]
  25. Sonja P. Mihevc, Peter Dovc. Mammary tumors in ruminants. Acta Agric. Slov. 2013 102 2 83 86
    [Google Scholar]
  26. Hanahan D. Weinberg R. A. Hallmarks of cancer: The next generation Cell 2011 144 5 646 674
    [Google Scholar]
  27. Lee Chong T. Ahearn E.L. Cimmino L. Reprogramming the epigenome with Vitamin C. Front. Cell Dev. Biol. 2019 7 128 10.3389/fcell.2019.00128 31380368
    [Google Scholar]
  28. Ngo B. Van Riper J.M. Cantley L.C. Yun J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 2019 19 5 271 282 10.1038/s41568‑019‑0135‑7 30967651
    [Google Scholar]
  29. Mayland C.R. Bennett M.I. Allan K. Vitamin C deficiency in cancer patients. Palliat. Med. 2005 19 1 17 20 10.1191/0269216305pm970oa 15690864
    [Google Scholar]
  30. Yeom C.H. Lee G. Park J.H. Yu J. Park S. Yi S.Y. Lee H.R. Hong Y.S. Yang J. Lee S. High dose concentration administration of ascorbic acid inhibits tumor growth in BALB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis. J. Transl. Med. 2009 7 1 70 10.1186/1479‑5876‑7‑70 19671184
    [Google Scholar]
  31. Tantamango-Bartley Y. Jaceldo-Siegl K. Fan J. Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol. Biomarkers Prev. 2013 22 2 286 294 10.1158/1055‑9965.EPI‑12‑1060 23169929
    [Google Scholar]
  32. Klimant E. Wright H. Rubin D. Seely D. Markman M. Intravenous vitamin C in the supportive care of cancer patients: A review and rational approach. Curr. Oncol. 2018 25 2 139 148 10.3747/co.25.3790 29719430
    [Google Scholar]
  33. Lee Y. Role of vitamin C in targeting cancer stem cells and cellular plasticity. Cancers. 2023 15 23 5657 10.3390/cancers15235657 38067361
    [Google Scholar]
  34. Liotta L.A. Kohn E.C. The microenvironment of the tumour–host interface. Nature 2001 411 6835 375 379 10.1038/35077241 11357145
    [Google Scholar]
  35. Wise L.N. Bryan J.N. Sellon D.C. Hines M.T. Ramsay J. Seino K.K. A retrospective analysis of renal carcinoma in the horse. J. Vet. Intern. Med. 2009 23 4 913 918 10.1111/j.1939‑1676.2009.0326.x 19496911
    [Google Scholar]
  36. Meacham C.E. Morrison S.J. Tumour heterogeneity and cancer cell plasticity. Nature 2013 501 7467 328 337 10.1038/nature12624 24048065
    [Google Scholar]
  37. Shibue T. Weinberg R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017 14 10 611 629 10.1038/nrclinonc.2017.44 28397828
    [Google Scholar]
  38. Pfeffer F. Casanueva E. Kamar J. Guerra A. Perichart O. Vadillo-Ortega F. Modulation of 72-kilodalton type IV collagenase (Matrix metalloproteinase-2) by ascorbic acid in cultured human amnion-derived cells. Biol. Reprod. 1998 59 2 326 329 10.1095/biolreprod59.2.326 9687303
    [Google Scholar]
  39. Mikirova N.A. Ichim T.E. Riordan N.H. Anti-angiogenic effect of high doses of ascorbic acid. J. Transl. Med. 2008 6 1 50 10.1186/1479‑5876‑6‑50 18789157
    [Google Scholar]
  40. Cha J. Roomi M.W. Ivanov V. Kalinovsky T. Niedzwiecki A. Rath M. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int. J. Oncol. 2013 42 1 55 64 10.3892/ijo.2012.1712 23175106
    [Google Scholar]
  41. Polireddy K. Dong R. Reed G. Yu J. Chen P. Williamson S. Violet P.C. Pessetto Z. Godwin A.K. Fan F. Levine M. Drisko J.A. Chen Q. High dose parenteral ascorbate inhibited pancreatic cancer growth and metastasis: Mechanisms and a phase I/IIa study Sci. Rep. 2017 7 1 17188 10.1038/s41598‑017‑17568‑8 29215048
    [Google Scholar]
  42. Ryan H.E. Poloni M. McNulty W. Elson D. Gassmann M. Arbeit J.M. Johnson R.S. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000 60 15 4010 4015 10945599
    [Google Scholar]
  43. Höckel M. Vaupel P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001 93 4 266 276 10.1093/jnci/93.4.266 11181773
    [Google Scholar]
  44. Flett T. Campbell E. Phillips E. Vissers M. Dachs G. Gulonolactone Addition to Human Hepatocellular Carcinoma Cells with Gene Transfer of Gulonolactone Oxidase Restores Ascorbate Biosynthesis and Reduces Hypoxia Inducible Factor 1. Biomedicines 2014 2 1 98 109 10.3390/biomedicines2010098 28548062
    [Google Scholar]
  45. Brahimi-Horn M.C. Chiche J. Pouysségur J. Hypoxia and cancer. J. Mol. Med. 2007 85 12 1301 1307 10.1007/s00109‑007‑0281‑3 18026916
    [Google Scholar]
  46. Janke R. Dodson A.E. Rine J. Metabolism and epigenetics. Annu. Rev. Cell Dev. Biol. 2015 31 1 473 496 10.1146/annurev‑cellbio‑100814‑125544 26359776
    [Google Scholar]
  47. Monfort A. Wutz A. Breathing‐in epigenetic change with vitamin C. EMBO Rep. 2013 14 4 337 346 10.1038/embor.2013.29 23492828
    [Google Scholar]
  48. Yin R. Mao S.Q. Zhao B. Chong Z. Yang Y. Zhao C. Zhang D. Huang H. Gao J. Li Z. Jiao Y. Li C. Liu S. Wu D. Gu W. Yang Y.G. Xu G.L. Wang H. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J. Am. Chem. Soc. 2013 135 28 10396 10403 10.1021/ja4028346 23768208
    [Google Scholar]
  49. Ebata K.T. Mesh K. Liu S. Bilenky M. Fekete A. Acker M.G. Hirst M. Garcia B.A. Ramalho-Santos M. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b. Epigenetics Chromatin 2017 10 1 36 10.1186/s13072‑017‑0143‑3 28706564
    [Google Scholar]
  50. Cimmino L. Neel B.G. Aifantis I. Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol. 2018 28 9 698 708 10.1016/j.tcb.2018.04.001 29724526
    [Google Scholar]
  51. Baylin S.B. Jones P.A. A decade of exploring the cancer epigenome — biological and translational implications. Nat. Rev. Cancer 2011 11 10 726 734 10.1038/nrc3130 21941284
    [Google Scholar]
  52. Cyr A.R. Domann F.E. The redox basis of epigenetic modifications: From mechanisms to functional consequences. Antioxid. Redox Signal. 2011 15 2 551 589 10.1089/ars.2010.3492 20919933
    [Google Scholar]
  53. Reuter S. Gupta S.C. Chaturvedi M.M. Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010 49 11 1603 1616 10.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  54. Poprac P. Jomova K. Simunkova M. Kollar V. Rhodes C.J. Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017 38 7 592 607 10.1016/j.tips.2017.04.005 28551354
    [Google Scholar]
  55. Iqbal M.J. Kabeer A. Abbas Z. Siddiqui H.A. Calina D. Sharifi-Rad J. Cho W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal. 2024 22 1 7 10.1186/s12964‑023‑01398‑5 38167159
    [Google Scholar]
  56. Klaunig J.E. Kamendulis L.M. Hocevar B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 2010 38 1 96 109 10.1177/0192623309356453 20019356
    [Google Scholar]
  57. Hayes JD Dinkova-Kostova AT Tew KD Oxidative stress in cancer Cancer Cell 2020 10 38 167 197 10.1016/j.ccell.2020.06.001
    [Google Scholar]
  58. Zhao X. Liu M. Li C. Liu X. Zhao J. Ma H. Zhang S. Qu J. High dose Vitamin C inhibits PD-L1 by ROS-pSTAT3 signal pathway and enhances T cell function in TNBC. Int. Immunopharmacol. 2024 126 111321 10.1016/j.intimp.2023.111321 38041955
    [Google Scholar]
  59. Didier A.J. Stiene J. Fang L. Watkins D. Dworkin L.D. Creeden J.F. Antioxidant and anti-tumor effects of dietary vitamins A, C, and E. Antioxidants 2023 12 3 632 10.3390/antiox12030632 36978880
    [Google Scholar]
  60. Tran D. Luu X. Tran H. Myung S.K. Dietary and supplementary vitamin C intake and the risk of lung cancer: A meta‑analysis of cohort studies. Oncol. Lett. 2023 27 1 10 10.3892/ol.2023.14144 38034488
    [Google Scholar]
  61. Fan D. Liu X. Shen Z. Wu P. Zhong L. Lin F. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed. Pharmacother. 2023 162 114695 10.1016/j.biopha.2023.114695 37058822
    [Google Scholar]
  62. Machmouchi A. Chehade L. Temraz S. Shamseddine A. Overcoming EGFR Resistance in Metastatic Colorectal Cancer Using Vitamin C: A Review. Biomedicines 2023 11 3 678 10.3390/biomedicines11030678 36979659
    [Google Scholar]
  63. Dagogo-Jack I. Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018 15 2 81 94 10.1038/nrclinonc.2017.166 29115304
    [Google Scholar]
  64. Nilendu P. Sarode S.C. Jahagirdar D. Tandon I. Patil S. Sarode G.S. Pal J.K. Sharma N.K. Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell Oncol. 2018 41 4 353 367 10.1007/s13402‑018‑0388‑2 30027403
    [Google Scholar]
  65. Seluanov A. Gladyshev V.N. Vijg J. Gorbunova V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 2018 18 7 433 441 10.1038/s41568‑018‑0004‑9 29622806
    [Google Scholar]
  66. Wong K. van der Weyden L. Schott C.R. Foote A. Constantino-Casas F. Smith S. Dobson J.M. Murchison E.P. Wu H. Yeh I. Fullen D.R. Joseph N. Bastian B.C. Patel R.M. Martincorena I. Robles-Espinoza C.D. Iyer V. Kuijjer M.L. Arends M.J. Brenn T. Harms P.W. Wood G.A. Adams D.J. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat. Commun. 2019 10 1 353 10.1038/s41467‑018‑08081‑1 30664638
    [Google Scholar]
  67. Linster C.L. Van Schaftingen E. Vitamin C. Vitamin C. FEBS J. 2007 274 1 1 22 10.1111/j.1742‑4658.2006.05607.x 17222174
    [Google Scholar]
  68. Wallace B.D. Roberts A.B. Pollet R.M. Ingle J.D. Biernat K.A. Pellock S.J. Venkatesh M.K. Guthrie L. O’Neal S.K. Robinson S.J. Dollinger M. Figueroa E. McShane S.R. Cohen R.D. Jin J. Frye S.V. Zamboni W.C. Pepe-Ranney C. Mani S. Kelly L. Redinbo M.R. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity Chem. Biol. 2015 22 9 1238 1249 10.1016/j.chembiol.2015.08.005 26364932
    [Google Scholar]
  69. Cha J. Roomi M.W. Ivanov V. Kalinovsky T. Niedzwiecki A. Rath M. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice. Exp. Oncol. 2011 33 4 226 230 22217712
    [Google Scholar]
  70. Jiao Y. Zhang J. Yan J. Stuart J. Gibson G. Lu L. Willaims R. Wang Y.J. Gu W. Differential gene expression between wild-type and Gulo-deficient mice supplied with vitamin C. Genet. Mol. Biol. 2011 34 3 386 395 10.1590/S1415‑47572011005000031 21931508
    [Google Scholar]
  71. Fujii J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J. Clin. Biochem. Nutr. 2021 69 1 20-181 10.3164/jcbn.20‑181 34376908
    [Google Scholar]
  72. Teafatiller T. Agrawal S. De Robles G. Rahmatpanah F. Subramanian V.S. Agrawal A. Vitamin C. Vitamin C enhances antiviral functions of lung epithelial cells Biomolecules 2021 11 8 1148 10.3390/biom11081148 34439814
    [Google Scholar]
  73. Bhatt A.P. Pellock S.J. Biernat K.A. Walton W.G. Wallace B.D. Creekmore B.C. Letertre M.M. Swann J.R. Wilson I.D. Roques J.R. Darr D.B. Bailey S.T. Montgomery S.A. Roach J.M. Azcarate-Peril M.A. Sartor R.B. Gharaibeh R.Z. Bultman S.J. Redinbo M.R. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc. Natl. Acad. Sci. USA 2020 117 13 7374 7381 10.1073/pnas.1918095117 32170007
    [Google Scholar]
  74. Li X.Y. Meng L. Shen L. Ji H.F. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res. Int. 2023 169 112749 10.1016/j.foodres.2023.112749 37254375
    [Google Scholar]
  75. Zhao L.Y. Mei J.X. Yu G. Lei L. Zhang W.H. Liu K. Chen X.L. Kołat D. Yang K. Hu J.K. Role of the gut microbiota in anticancer therapy: From molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 2023 8 1 201 10.1038/s41392‑023‑01406‑7 37179402
    [Google Scholar]
  76. Roy R. Singh S.K. The microbiome modulates the immune system to influence cancer therapy Cancers (Basel) 2024 16 4 779 10.3390/cancers16040779 38398170
    [Google Scholar]
  77. Linster C.L. Van Schaftingen E. Glucuronate, the precursor of vitamin C, is directly formed from UDP‐glucuronate in liver. FEBS J. 2006 273 7 1516 1527 10.1111/j.1742‑4658.2006.05172.x 16689937
    [Google Scholar]
  78. Allain E.P. Rouleau M. Lévesque E. Guillemette C. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br. J. Cancer 2020 122 9 1277 1287 10.1038/s41416‑019‑0722‑0 32047295
    [Google Scholar]
  79. Liu W. Li J. Zhao R. Lu Y. Huang P. The Uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: The role in tumor cell metabolism. Front. Oncol. 2023 12 1088458 10.3389/fonc.2022.1088458 36741721
    [Google Scholar]
  80. Primorac D. Höppner W. Bach-Rojecky L. Pharmacogenomics in clinical practice. 1st ed 2024
    [Google Scholar]
  81. Duque P. Vieira C.P. Bastos B. Vieira J. The evolution of vitamin C biosynthesis and transport in animals. BMC Ecol. Evol. 2022 22 1 84 10.1186/s12862‑022‑02040‑7 35752765
    [Google Scholar]
  82. Jarrar Y. Lee S.J. The functionality of UDP-Glucuronosyltransferase genetic variants and their association with drug responses and human diseases. J. Pers. Med. 2021 11 6 554 10.3390/jpm11060554 34198586
    [Google Scholar]
  83. Duque P. Vieira C.P. Vieira J. Advances in novel animal vitamin C biosynthesis pathways and the role of prokaryote-based inferences to understand their origin. Genes (Basel) 2022 13 10 1917 10.3390/genes13101917 36292802
    [Google Scholar]
  84. Sato A. Kondo Y. Ishigami A. The evidence to date: Implications of l-ascorbic acid in the pathophysiology of aging. J. Physiol. Sci. 2024 74 1 29 10.1186/s12576‑024‑00922‑7 38730366
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240328074241003110326
Loading
/content/journals/cmm/10.2174/0115665240328074241003110326
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Evolution ; Vitamin C ; GULO ; Horizontal gene transfer ; Cancer ; Glucuronidase ; Nutrients
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test