Skip to content
2000
image of miR-144/451: A Regulatory Role in Inflammation

Abstract

Background

Inflammation is the natural defense mechanism of the body in response to injury, infection, or other stimuli. Excessive or persistent inflammatory responses can lead to the development of inflammatory diseases. Therefore, elucidating the regulatory mechanisms of inflammatory cells is crucial for understanding the pathogenesis of such diseases and devising novel therapeutic approaches. Moreover, miR-144/451 plays an important role in erythroid maturity and tumour development. Herein, we have reviewed the regulatory role of miR-144/451 in inflammation.

Methods

Papers on miR-144, miR-451, and inflammation were retrieved from PubMed and Web of Science to be analysed and summarised.

Results

miR-144/451 plays a significant role in modulating inflammatory responses. Pro- and anti-inflammatory gene transcription is regulated by miR-144/451 binding to the 3′ untranslated regions. Studies have shown that miR-451 inhibits the activation of various inflammatory cells, including macrophages, neutrophils, and T lymphocytes, thereby reducing the release of inflammatory mediators. However, miR-144 expression varies in different inflammatory diseases. miR-144 expression is downregulated in macrophages after induction by lipopolysaccharide, cysteine, or which promotes the secretion of inflammatory mediators; nonetheless, miR-144-3p overexpression in macrophages can aggravate atherosclerosis. Meanwhile, miR-144 overexpression prevents disruption of the lung endothelial cell barrier, whereas it exacerbates endothelial cell injury in Crohn’s disease.

Conclusion

miR-144/451 may serve as a potential target for the treatment of inflammatory diseases.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240327822241104060015
2024-11-05
2024-12-26
Loading full text...

Full text loading...

References

  1. Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004 116 2 281 297 10.1016/S0092‑8674(04)00045‑5 14744438
    [Google Scholar]
  2. Bartel D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009 136 2 215 233 10.1016/j.cell.2009.01.002 19167326
    [Google Scholar]
  3. Iborra M. Bernuzzi F. Invernizzi P. Danese S. MicroRNAs in autoimmunity and inflammatory bowel disease: Crucial regulators in immune response. Autoimmun. Rev. 2012 11 5 305 314 10.1016/j.autrev.2010.07.002 20627134
    [Google Scholar]
  4. Romero-Cordoba S.L. Salido-Guadarrama I. Rodriguez-Dorantes M. Hidalgo-Miranda A. miRNA biogenesis: Biological impact in the development of cancer. Cancer Biol. Ther. 2014 15 11 1444 1455 10.4161/15384047.2014.955442 25482951
    [Google Scholar]
  5. Singh R.P. Massachi I. Manickavel S. The role of miRNA in inflammation and autoimmunity. Autoimmun. Rev. 2013 12 12 1160 1165 10.1016/j.autrev.2013.07.003 23860189
    [Google Scholar]
  6. Bacha D. Walha M. Ben Slama S. Chronic gastritis classifications. Tunis. Med. 2018 96 7 405 410 30430483
    [Google Scholar]
  7. Huang J. Fu X. Chen X. Li Z. Huang Y. Liang C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 2021 12 686155 10.3389/fimmu.2021.686155 34305919
    [Google Scholar]
  8. Sayah A. English J.C. Rheumatoid arthritis: A review of the cutaneous manifestations. J. Am. Acad. Dermatol. 2005 53 2 191 209 10.1016/j.jaad.2004.07.023 16021111
    [Google Scholar]
  9. Formosa A. Turgeon P. dos Santos C.C. Role of miRNA dysregulation in sepsis. Mol. Med. 2022 28 1 99 10.1186/s10020‑022‑00527‑z 35986237
    [Google Scholar]
  10. Yu D. dos Santos C.O. Zhao G. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes Dev. 2010 24 15 1620 1633 10.1101/gad.1942110 20679398
    [Google Scholar]
  11. Fang X. Shen F. Lechauve C. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica 2018 103 3 406 416 10.3324/haematol.2017.177394 29269522
    [Google Scholar]
  12. Keith J. Christakopoulos G.E. Fernandez A.G. Loss of miR-144/451 alleviates β-thalassemia by stimulating ULK1-mediated autophagy of free α-globin. Blood 2023 142 10 918 932 10.1182/blood.2022017265 37339583
    [Google Scholar]
  13. Xu L. Wu F. Yang L. miR‐144/451 inhibits c‐Myc to promote erythroid differentiation. FASEB J. 2020 34 10 13194 13210 10.1096/fj.202000941R 33319407
    [Google Scholar]
  14. Xu P. Palmer L.E. Lechauve C. Regulation of gene expression by miR-144/451 during mouse erythropoiesis. Blood 2019 133 23 2518 2528 10.1182/blood.2018854604 30971389
    [Google Scholar]
  15. Ding L. Zhang Y. Han L. Activating and sustaining c-Myc by depletion of miR-144/451 gene locus contributes to B-lymphomagenesis. Oncogene 2018 37 10 1293 1307 10.1038/s41388‑017‑0055‑5 29284789
    [Google Scholar]
  16. Gits C.M.M. van Kuijk P.F. Jonkers M.B.E. MicroRNA expression profiles distinguish liposarcoma subtypes and implicate miR-145 and miR-451 as tumor suppressors. Int. J. Cancer 2014 135 2 348 361 10.1002/ijc.28694 24375455
    [Google Scholar]
  17. Gao Z. Zhang P. Xie M. Gao H. Yin L. Liu R. miR-144/451 cluster plays an oncogenic role in esophageal cancer by inhibiting cell invasion. Cancer Cell Int. 2018 18 1 184 10.1186/s12935‑018‑0679‑8 30479563
    [Google Scholar]
  18. Rodrigo-Muñoz J.M. Gil-Martínez M. Lorente-Sorolla C. miR-144-3p is a biomarker related to severe corticosteroid-dependent asthma. Front. Immunol. 2022 13 858722 10.3389/fimmu.2022.858722 35432357
    [Google Scholar]
  19. Sun J. Zhang W. Huc-MSC-derived exosomal miR-144 alleviates inflammation in LPS-induced preeclampsia-like pregnant rats via the FosB/Flt-1 pathway. Heliyon 2024 10 2 e24575 10.1016/j.heliyon.2024.e24575 38304844
    [Google Scholar]
  20. Scott K.M. Cohen D.J. Hays M. Regulation of inflammatory and catabolic responses to IL-1β in rat articular chondrocytes by microRNAs miR-122 and miR-451. Osteoarthritis Cartilage 2021 29 1 113 123 10.1016/j.joca.2020.09.004 33161100
    [Google Scholar]
  21. Zhang J. Xu X. Huang X. Analysis of microRNA expression profiles in porcine PBMCs after LPS stimulation. Innate Immun. 2020 26 5 435 446 10.1177/1753425920901560 31969027
    [Google Scholar]
  22. Wu F. Yuan X. Liu W. Deletion of the miR-144/451 cluster aggravates lethal sepsis-induced lung epithelial oxidative stress and apoptosis. Ann. Transl. Med. 2022 10 10 538 10.21037/atm‑22‑1024 35722395
    [Google Scholar]
  23. Lin Z. Xie X. Gu M. microRNA-144/451 decreases dendritic cell bioactivity via targeting interferon-regulatory factor 5 to limit DSS-induced colitis. Front. Immunol. 2022 13 928593 10.3389/fimmu.2022.928593 35967345
    [Google Scholar]
  24. Bartel S. Schulz N. Alessandrini F. Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma. Sci. Rep. 2017 7 1 46026 10.1038/srep46026 28383034
    [Google Scholar]
  25. Rosenberger C.M. Podyminogin R.L. Diercks A.H. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog. 2017 13 4 e1006305 10.1371/journal.ppat.1006305 28380049
    [Google Scholar]
  26. Wang M. Liu Y. Zhang Y. Zhang L. LncRNA LOC729178 acts as a sponge of miR-144-3p to mitigate cigarette smoke extract-induced inflammatory injury via regulating PHLPP2 in 16HBE cells. J. Mol. Histol. 2021 52 3 437 447 10.1007/s10735‑021‑09972‑2 33847879
    [Google Scholar]
  27. Chung S. Lee Y.G. Karpurapu M. Depletion of microRNA-451 in response to allergen exposure accentuates asthmatic inflammation by regulating Sirtuin2. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020 318 5 L921 L930 10.1152/ajplung.00457.2019 32159972
    [Google Scholar]
  28. Prajzlerová K. Kryštůfková O. Hánová P. High miR-451 expression in peripheral blood mononuclear cells from subjects at risk of developing rheumatoid arthritis. Sci. Rep. 2021 11 1 4719 10.1038/s41598‑021‑84004‑3 33633196
    [Google Scholar]
  29. Diener C. Keller A. Meese E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 2022 38 6 613 626 10.1016/j.tig.2022.02.006 35303998
    [Google Scholar]
  30. Li Y. Lu X. Li W. The circRERE/miR-144-3p/TLR2/MMP9 signaling axis in COPD pulmonary monocytes promotes the EMT of pulmonary epithelial cells. Biochem. Biophys. Res. Commun. 2022 625 1 8 10.1016/j.bbrc.2022.07.119 35939870
    [Google Scholar]
  31. Shi X. Ma W. Li Y. MiR-144-5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage-associated inflammation: Suppression of TLR2 and OLR1. J. Mol. Cell. Cardiol. 2020 143 1 14 10.1016/j.yjmcc.2020.04.008 32278833
    [Google Scholar]
  32. Zhou G. Li Y. Ni J. Jiang P. Bao Z. Role and mechanism of miR-144-5p in LPS-induced macrophages. Exp. Ther. Med. 2020 19 1 241 247 31853295
    [Google Scholar]
  33. Wu H. Li Z. Yang Y. Rap1A accelerates homocysteine-induced ANA-1 cells inflammation via synergy of FoxO1 and DNMT3a. Cell. Signal. 2023 106 110627 10.1016/j.cellsig.2023.110627 36791985
    [Google Scholar]
  34. Zhang H. Hao Y. Yang A. TGFB3-AS1 promotes Hcy-induced inflammation of macrophages via inhibiting the maturity of miR-144 and upregulating Rap1a. Mol. Ther. Nucleic Acids 2021 26 1318 1335 10.1016/j.omtn.2021.10.031 34853730
    [Google Scholar]
  35. Ahluwalia P.K. Pandey R.K. Sehajpal P.K. Prajapati V.K. Perturbed microRNA expression by Mycobacterium tuberculosis promotes macrophage polarization leading to pro-survival foam cell. Front. Immunol. 2017 8 107 10.3389/fimmu.2017.00107 28228760
    [Google Scholar]
  36. Liu H.Y. Down-regulation of miR-144 after Mycobacterium tuberculosis infection promotes inflammatory factor secretion from macrophages through the Tpl2/ERK pathway. Cell. Mol. Biol. 2016 62 2 87 93 26950457
    [Google Scholar]
  37. Zhang D. Wu Y. Li Z. MiR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1. J. Nanobiotechnology 2021 19 1 226 10.1186/s12951‑021‑00964‑8 34340698
    [Google Scholar]
  38. Libby P. Ridker P.M. Maseri A. Inflammation and athero-sclerosis. Circulation 2002 105 9 1135 1143 10.1161/hc0902.104353 11877368
    [Google Scholar]
  39. Østerud B. Bjørklid E. Role of monocytes in atherogenesis. Physiol. Rev. 2003 83 4 1069 1112 10.1152/physrev.00005.2003 14506301
    [Google Scholar]
  40. Tabas I. Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications. J. Clin. Invest. 2002 110 7 905 911 10.1172/JCI0216452 12370266
    [Google Scholar]
  41. Hu Y.W. Hu Y.R. Zhao J.Y. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One 2014 9 4 e94997 10.1371/journal.pone.0094997 24733347
    [Google Scholar]
  42. Bandres E. Bitarte N. Arias F. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin. Cancer Res. 2009 15 7 2281 2290 10.1158/1078‑0432.CCR‑08‑1818 19318487
    [Google Scholar]
  43. Liu J. Xing F. Fu Q. hUC‐MSCs exosomal miR‐451 alleviated acute lung injury by modulating macrophage M2 polarization via regulating MIF‐PI3K‐AKT signaling pathway. Environ. Toxicol. 2022 37 12 2819 2831 10.1002/tox.23639 35997581
    [Google Scholar]
  44. Lee Y.G. Reader B.F. Herman D. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 2019 4 4 e124710 10.1172/jci.insight.124710 30668546
    [Google Scholar]
  45. Babadjouni R.M. Radwanski R.E. Walcott B.P. Neuroprotective strategies following intraparenchymal hemorrhage. J. Neurointerv. Surg. 2017 9 12 1202 1207 10.1136/neurintsurg‑2017‑013197 28710084
    [Google Scholar]
  46. Wang X. Hong Y. Wu L. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ. Front. Neurol. 2021 11 551411 10.3389/fneur.2020.551411 33510702
    [Google Scholar]
  47. Sun X. Zhang H. miR-451 elevation relieves inflammatory pain by suppressing microglial activation-evoked inflammatory response via targeting TLR4. Cell Tissue Res. 2018 374 3 487 495 10.1007/s00441‑018‑2898‑7 30069596
    [Google Scholar]
  48. Hong Z. Cheng J. Ye Y. Chen X. Zhang F. MicroRNA-451 attenuates the inflammatory response of activated microglia by downregulating nucleotide binding oligomerization domain-like receptor protein 3. World Neurosurg. 2022 167 e1128 e1137 10.1016/j.wneu.2022.08.139 36087911
    [Google Scholar]
  49. Jiang J.M. Mo M.L. Long X.P. Xie L.H. MiR-144-3p induced by SP1 promotes IL-1β-induced pyroptosis in chondrocytes via PTEN/PINK1/Parkin axis. Autoimmunity 2022 55 1 21 31 10.1080/08916934.2021.1983802 34730058
    [Google Scholar]
  50. McInnes I.B. Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007 7 6 429 442 10.1038/nri2094 17525752
    [Google Scholar]
  51. Zhao S. Wang Y. Liang Y. MicroRNA‐126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 2011 63 5 1376 1386 10.1002/art.30196 21538319
    [Google Scholar]
  52. Berzat A. Hall A. Cellular responses to extracellular guidance cues. EMBO J. 2010 29 16 2734 2745 10.1038/emboj.2010.170 20717143
    [Google Scholar]
  53. Shahrara S. Pickens S.R. Dorfleutner A. Pope R.M. IL-17 induces monocyte migration in rheumatoid arthritis. J. Immunol. 2009 182 6 3884 3891 10.4049/jimmunol.0802246 19265168
    [Google Scholar]
  54. Murata K. Yoshitomi H. Furu M. MicroRNA-451 down-regulates neutrophil chemotaxis via p38 MAPK. Arthritis Rheumatol. 2014 66 3 549 559 10.1002/art.38269 24574214
    [Google Scholar]
  55. Kukoyi A.T. Fan X. Staitieh B.S. MiR-144 mediates Nrf2 inhibition and alveolar epithelial dysfunction in HIV-1 transgenic rats. Am. J. Physiol. Cell Physiol. 2019 317 2 C390 C397 10.1152/ajpcell.00038.2019 31091144
    [Google Scholar]
  56. Li H. Shi H. Gao M. Ma N. Sun R. Long non-coding RNA CASC2 improved acute lung injury by regulating miR-144-3p/AQP1 axis to reduce lung epithelial cell apoptosis. Cell Biosci. 2018 8 1 15 10.1186/s13578‑018‑0205‑7 29492259
    [Google Scholar]
  57. Manfredi A.A. Covino C. Rovere-Querini P. Maugeri N. Instructive influences of phagocytic clearance of dying cells on neutrophil extracellular trap generation. Clin. Exp. Immunol. 2014 179 1 24 29 10.1111/cei.12320 24611549
    [Google Scholar]
  58. Le A. Wu Y. Liu W. MiR‐144‐induced KLF2 inhibition and NF‐kappaB/CXCR1 activation promote neutrophil extracellular trap–induced transfusion‐related acute lung injury. J. Cell. Mol. Med. 2021 25 14 6511 6523 10.1111/jcmm.16650 34120407
    [Google Scholar]
  59. Li R.D. Shen C.H. Tao Y.F. MicroRNA-144 suppresses the expression of cytokines through targeting RANKL in the matured immune cells. Cytokine 2018 108 197 204 10.1016/j.cyto.2018.03.043 29684757
    [Google Scholar]
  60. Rosenberger C.M. Podyminogin R.L. Navarro G. miR-451 regulates dendritic cell cytokine responses to influenza infection. J. Immunol. 2012 189 12 5965 5975 10.4049/jimmunol.1201437 23169590
    [Google Scholar]
  61. Ghisi M. Corradin A. Basso K. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood 2011 117 26 7053 7062 10.1182/blood‑2010‑12‑326629 21551231
    [Google Scholar]
  62. Rouas R. Fayyad-Kazan H. El Zein N. Human natural Treg microRNA signature: Role of microRNA‐31 and microRNA‐21 in FOXP3 expression. Eur. J. Immunol. 2009 39 6 1608 1618 10.1002/eji.200838509 19408243
    [Google Scholar]
  63. Jiang S. Li C. Olive V. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 2011 118 20 5487 5497 10.1182/blood‑2011‑05‑355644 21972292
    [Google Scholar]
  64. Guenin-Macé L. Carrette F. Asperti-Boursin F. Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression. Proc. Natl. Acad. Sci. USA 2011 108 31 12833 12838 10.1073/pnas.1016496108 21768364
    [Google Scholar]
  65. Lu T.X. Hartner J. Lim E.J. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 2011 187 6 3362 3373 10.4049/jimmunol.1101235 21849676
    [Google Scholar]
  66. Li X. Sanda T. Look A.T. Novina C.D. von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J. Exp. Med. 2011 208 4 663 675 10.1084/jem.20102384 21464222
    [Google Scholar]
  67. Smigielska-Czepiel K. van den Berg A. Jellema P. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 2014 15 2 115 125 10.1038/gene.2013.69 24401767
    [Google Scholar]
  68. Morandi F. Pistoia V. Soluble HLA-G modulates miRNA-210 and miRNA-451 expression in activated CD4+ T lymphocytes. Int. Immunol. 2013 25 5 279 285 10.1093/intimm/dxs108 23220581
    [Google Scholar]
  69. Chapman L.M. Ture S.K. Field D.J. Morrell C.N. miR-451 limits CD4+ T cell proliferative responses to infection in mice. Immunol. Res. 2017 65 4 828 840 10.1007/s12026‑017‑8919‑x 28378118
    [Google Scholar]
  70. Amado T. Amorim A. Enguita F.J. MicroRNA-181a regulates IFN-γ expression in effector CD8+ T cell differentiation. J. Mol. Med. (Berl.) 2020 98 2 309 320 10.1007/s00109‑019‑01865‑y 32002568
    [Google Scholar]
  71. Hernández-Walias F. Ruiz-de-León M.J. Rosado-Sánchez I. New signatures of poor CD4 cell recovery after suppressive antiretroviral therapy in HIV-1-infected individuals: Involvement of miR-192, IL-6, sCD14 and miR-144. Sci. Rep. 2020 10 1 2937 10.1038/s41598‑020‑60073‑8 32076107
    [Google Scholar]
  72. Liu Y. Wang X. Jiang J. Cao Z. Yang B. Cheng X. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol. Immunol. 2011 48 9-10 1084 1090 10.1016/j.molimm.2011.02.001 21367459
    [Google Scholar]
  73. Zhao C. Li X. Yang Y. An analysis of Treg/Th17 cells imbalance associated microRNA networks regulated by moxibustion therapy on Zusanli (ST36) and Shenshu (BL23) in mice with collagen induced arthritis. Am. J. Transl. Res. 2019 11 7 4029 4045 31396316
    [Google Scholar]
  74. Liu R. Jiang C. Li J. Serum-derived exosomes containing NEAT1 promote the occurrence of rheumatoid arthritis through regulation of miR-144-3p/ROCK2 axis. Ther. Adv. Chronic Dis. 2021 12 2040622321991705 10.1177/2040622321991705 33995991
    [Google Scholar]
  75. Siddiqui M.R. Akhtar S. Shahid M. Tauseef M. McDonough K. Shanley T.P. miR-144–mediated inhibition of ROCK1 protects against LPS-induced lung endothelial hyperpermeability. Am. J. Respir. Cell Mol. Biol. 2019 61 2 257 265 10.1165/rcmb.2018‑0235OC 30811958
    [Google Scholar]
  76. Qu P. Xie X. Chi J. Circulating exosomal miR-144-3p from Crohn’s Disease patients inhibits human umbilical vein endothelial cell function by targeting FN1. Dis. Markers 2022 2022 1 12 10.1155/2022/8219557 35692876
    [Google Scholar]
  77. Liu Y. Xu J. Gu R. Circulating exosomal miR-144-3p inhibits the mobilization of endothelial progenitor cells post myocardial infarction via regulating the MMP9 pathway. Aging (Albany NY) 2020 12 16 16294 16303 10.18632/aging.103651 32843584
    [Google Scholar]
  78. Feng L. Yang X. Liang S. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part. Fibre Toxicol. 2019 16 1 16 10.1186/s12989‑019‑0300‑x 30975181
    [Google Scholar]
  79. Tang W. Shen Z. Guo J. Sun S. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016 11 2951 2964 10.2147/COPD.S109570 27932875
    [Google Scholar]
  80. Song B. Chen Y. Long non-coding RNA SNHG4 aggravates cigarette smoke-induced COPD by regulating miR-144-3p/EZH2 axis. BMC Pulm. Med. 2023 23 1 513 10.1186/s12890‑023‑02818‑5 38114929
    [Google Scholar]
  81. Xu R. Shao Z. Cao Q. MicroRNA-144-3p enhances LPS induced septic acute lung injury in mice through downregulating Caveolin-2. Immunol. Lett. 2021 231 18 25 10.1016/j.imlet.2020.12.015 33418009
    [Google Scholar]
  82. McGrath K. Edi R. Diabetic kidney disease: Diagnosis, treatment, and prevention. Am. Fam. Physician 2019 99 12 751 759 31194487
    [Google Scholar]
  83. Zhang Z. Luo X. Ding S. MicroRNA‐451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett. 2012 586 1 20 26 10.1016/j.febslet.2011.07.042 21827757
    [Google Scholar]
  84. Sun Y. Peng R. Peng H. miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy. Mol. Cell. Endocrinol. 2016 433 75 86 10.1016/j.mce.2016.06.004 27264074
    [Google Scholar]
  85. Wei H. Li J. Li Y. Song J. MicroRNA-451 inhibits inflammation and proliferation of glomerular mesangial cells through down-regulating PSMD11 and NF-κB p65. Biosci. Rep. 2019 39 10 BSR20191455 10.1042/BSR20191455 31652441
    [Google Scholar]
  86. Li J. Wang R. Ge Y. Chen D. Wu B. Fang F. Assessment of microRNA‐144‐5p and its putative targets in inflamed gingiva from chronic periodontitis patients. J. Periodontal Res. 2019 54 3 266 277 10.1111/jre.12627 30450635
    [Google Scholar]
  87. Li Q. Hu Z. Yang F. Peng Y. Circ_0066881 targets miR-144-5p/RORA axis to alleviate LPS-induced apoptotic and inflammatory damages in human periodontal ligament cells. Innate Immun. 2022 28 5 164 173 10.1177/17534259221079812 35635221
    [Google Scholar]
  88. Lin Y.Y. Ko C.Y. Liu S.C. miR‐144‐3p ameliorates the progression of osteoarthritis by targeting IL‐1β: Potential therapeutic implications. J. Cell. Physiol. 2021 236 10 6988 7000 10.1002/jcp.30361 33772768
    [Google Scholar]
  89. Wang Z.C. Lu H. Zhou Q. MiR-451 inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion in rheumatoid arthritis through mediating p38MAPK signaling pathway. Int. J. Clin. Exp. Pathol. 2015 8 11 14562 14567 26823778
    [Google Scholar]
  90. Glémain A. Néel M. Néel A. Neutrophil-derived extracellular vesicles induce endothelial inflammation and damage through the transfer of miRNAs. J. Autoimmun. 2022 129 102826 10.1016/j.jaut.2022.102826 35378380
    [Google Scholar]
  91. Meng S. Tang C. Deng M. Tropoelastin-pretreated exosomes from adipose-derived stem cells improve the synthesis of cartilage matrix and alleviate osteoarthritis. J. Funct. Biomater. 2023 14 4 203 10.3390/jfb14040203 37103293
    [Google Scholar]
  92. Lam L.K.M. Murphy S. Kokkinaki D. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci. Transl. Med. 2021 13 616 eabj1008 10.1126/scitranslmed.abj1008 34669439
    [Google Scholar]
  93. Ashrafizadeh M. Zarrabi A. Mostafavi E. Non-coding RNA-based regulation of inflammation. Semin. Immunol. 2022 59 101606 10.1016/j.smim.2022.101606 35691882
    [Google Scholar]
  94. Bashi A. Lekpor C. Hood J.L. Thompson W.E. Stiles J.K. Driss A. Modulation of heme-induced inflammation using microRNA-loaded liposomes: Implications for hemolytic disorders such as malaria and sickle cell disease. Int. J. Mol. Sci. 2023 24 23 16934 10.3390/ijms242316934 38069257
    [Google Scholar]
  95. Lee S.W.L. Paoletti C. Campisi M. MicroRNA delivery through nanoparticles. J. Control. Release 2019 313 80 95 10.1016/j.jconrel.2019.10.007 31622695
    [Google Scholar]
  96. Lai J.J. Chau Z.L. Chen S.Y. Exosome processing and characterization approaches for research and technology development. Adv. Sci. (Weinh.) 2022 9 15 2103222 10.1002/advs.202103222 35332686
    [Google Scholar]
  97. Fei Q. Shalosky E.M. Barnes R. Macrophage-targeted lipid nanoparticle delivery of microRNA-146a to mitigate hemorrhagic shock-induced acute respiratory distress syndrome. ACS Nano 2023 17 17 16539 16552 10.1021/acsnano.3c01814 37595605
    [Google Scholar]
  98. Zhu J. Yang S. Qi Y. Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 2022 8 13 eabk0011 10.1126/sciadv.abk0011 35353555
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240327822241104060015
Loading
/content/journals/cmm/10.2174/0115665240327822241104060015
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: macrophage ; miR-144/451 ; epithelial cell ; T lymphocyte ; endothelial cell ; dendritic cell ; neutrophil
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test