Skip to content
2000
image of Combination Antitumor Activation of Anlotinib with Radiofrequency Ablation in Human Medullary Thyroid Carcinoma

Abstract

Introduction

Currently, Medullary Thyroid Carcinoma (MTC) is considered a kind of rare neuroendocrine tumor, and molecular-targeted drugs have previously been used for MTC treatment.

Method

However, the prognosis of MTC patients is still not significant. In the present work, we aimed to explore the antitumor activity of the molecularly targeted drug anlotinib in combination with radiofrequency ablation on MTC.

Result

The targets of anlotinib were clearly expressed in MTC tissue specimens, and the expression level of these factors was much higher in MTC clinical specimens than in nontumor tissues. At the same time, anlotinib or Radiofrequency Ablation (RFA) showed clear antitumor activity against the MTC cell line TT (TT cells) and the tumor tissue it formed. Anlotinib, in combination with RFA, significantly increased the antitumor activity of RFA.

Conclusion

These results indicated that the combination of anlotinib with radiofrequency ablation could be a promising therapeutic strategy for MTC treatment.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240323681241023100958
2024-10-28
2025-05-26
Loading full text...

Full text loading...

References

  1. Trimboli P. Mian C. Piccardo A. Treglia G. Diagnostic tests for medullary thyroid carcinoma: An umbrella review. Endocrine 2023 81 2 183 193 10.1007/s12020‑023‑03326‑6 36877452
    [Google Scholar]
  2. Davies L. Angelos P. Medullary thyroid carcinoma and population screening—the promise and pitfalls of genetic testing. JAMA Otolaryngol. Head Neck Surg. 2023 149 3 202 203 10.1001/jamaoto.2022.4196 36602793
    [Google Scholar]
  3. Papanikolaou V. Kyrodimos E. Mastronikolis N. Anti-EGFR/BRAF-tyrosine kinase inhibitors in thyroid carcinoma. Cancer Diagn Progn 2023 3 2 151 156 10.21873/cdp.10194 36875315
    [Google Scholar]
  4. Prete A. Gambale C. Torregrossa L. Clinical evolution of sporadic medullary thyroid carcinoma with biochemical incomplete response after initial treatment. J. Clin. Endocrinol. Metab. 2023 108 8 e613 e622 10.1210/clinem/dgad061 36722192
    [Google Scholar]
  5. Newbold K. Molecular genotyping in medullary thyroid cancer. Curr. Opin. Oncol. 2023 35 1 10 14 10.1097/CCO.0000000000000915 36475457
    [Google Scholar]
  6. Saltiki K. Simeakis G. Karapanou O. Paschou S.A. Alevizaki M. Metastatic medullary thyroid carcinoma (MTC): Disease course, treatment modalities and factors predisposing for drug resistance. Endocrine 2023 80 3 570 579 10.1007/s12020‑022‑03296‑1 36626081
    [Google Scholar]
  7. Oleinikov K. Yaakov E. Mizrachi A. A comparison of outcomes in medullary thyroid carcinoma patients with and without a preoperative diagnosis: A multicenter retrospective cohort study. Thyroid 2023 33 5 578 585 10.1089/thy.2022.0424 36792935
    [Google Scholar]
  8. Muhammad H. Santhanam P. Russell J.O. Radiofrequency ablation and thyroid nodules: Updated systematic review. Endocrine 2021 72 3 619 632 10.1007/s12020‑020‑02598‑6 33449296
    [Google Scholar]
  9. Yeow M. Zhao J.J. Fong K.Y. Radiofrequency ablation versus repeat hepatectomy for recurrent hepatocellular carcinoma: A systematic review and meta-analysis. World J. Surg. 2022 46 11 2778 2787 10.1007/s00268‑022‑06691‑x 35989371
    [Google Scholar]
  10. Sun J. Chang Z. Gao X. Novel nanoparticle CS-C60-Fe3O4 magnetically induces tissue-specific aggregation and enhances thermal ablation of hepatocellular carcinoma. Cancer Nanotechnol. 2024 15 1 8 10.1186/s12645‑024‑00245‑7
    [Google Scholar]
  11. Pace-Asciak P. Russell J.O. Tufano R.P. Surgical treatment of thyroid cancer: Established and novel approaches. Best Pract. Res. Clin. Endocrinol. Metab. 2023 37 1 101664 10.1016/j.beem.2022.101664 35534363
    [Google Scholar]
  12. Xiao J. Yan L. Li Y. Radiofrequency ablation for papillary thyroid cancer located in isthmus: Comparison with that originated in thyroid lobe. Int. J. Hyperthermia 2023 40 1 2266668 10.1080/02656736.2023.2266668 37940133
    [Google Scholar]
  13. Kandil E. Issa P.P. Randolph G.W. Can thyroid nodules be managed with radiofrequency ablation? Adv. Surg. 2023 57 1 87 101 10.1016/j.yasu.2023.05.004 37536864
    [Google Scholar]
  14. Zhou J. Sun Y. Zhang W. Phase Ib study of anlotinib combined with TQB2450 in pretreated advanced biliary tract cancer and biomarker analysis. Hepatology 2022 77 1 65 76 10.1002/hep.32548 35491432
    [Google Scholar]
  15. Zhou W. Gao Y. Tong Y. Wu Q. Zhou Y. Li Y. Anlotinib enhances the antitumor activity of radiofrequency ablation on lung squamous cell carcinoma. Pharmacol. Res. 2021 164105392 10.1016/j.phrs.2020.105392 33348023
    [Google Scholar]
  16. Lee E.J. Kang H. Kwon H.J. Chung Y.J. Kim J.H. Lee S.H. Radiofrequency endometrial ablation with a novel endometrial tip for the management of heavy menstrual bleeding and abnormal uterine bleeding: A prospective study. Int. J. Hyperthermia 2020 37 1 772 776 10.1080/02656736.2020.1778196 32619371
    [Google Scholar]
  17. Roskoski R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2023 187106552 10.1016/j.phrs.2022.106552 36403719
    [Google Scholar]
  18. Roskoski R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol. Res. 2024 200107059 10.1016/j.phrs.2024.107059 38216005
    [Google Scholar]
  19. Lei T. Xu T. Zhang N. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis. Pharmacol. Res. 2023 188106668 10.1016/j.phrs.2023.106668 36681369
    [Google Scholar]
  20. Sun Y. Du F. Gao M. Anlotinib for the treatment of patients with locally advanced or metastatic medullary thyroid cancer. Thyroid 2018 28 11 1455 1461 10.1089/thy.2018.0022 30142994
    [Google Scholar]
  21. Meng Y. Li L. Wang H. Pralsetinib for the treatment of a RET-positive advanced non-small-cell lung cancer patient harboring both ANK-RET and CCDC6-RET fusions with coronary heart disease: A case report. Ann. Transl. Med. 2022 10 8 496 10.21037/atm‑22‑1237 35571397
    [Google Scholar]
  22. Xing P. Yang N. Hu X. The clinical significance of RET gene fusion among Chinese patients with lung cancer. Transl. Cancer Res. 2020 9 10 6455 6463 10.21037/tcr‑20‑754 35117253
    [Google Scholar]
  23. Bockorny B. Bullock A.J. Abrams T.A. Priming of sorafenib prior to radiofrequency ablation does not increase treatment effect in hepatocellular carcinoma. Dig. Dis. Sci. 2022 67 7 3455 3463 10.1007/s10620‑021‑07156‑2 34297268
    [Google Scholar]
  24. Feng F. Jiang Q. Jia H. Which is the best combination of TACE and Sorafenib for advanced hepatocellular carcinoma treatment? A systematic review and network meta-analysis. Pharmacol. Res. 2018 135 89 101 10.1016/j.phrs.2018.06.021 29959032
    [Google Scholar]
  25. Kim M. Kim B.H. Current guidelines for management of medullary thyroid carcinoma. Endocrinol. Metab. (Seoul) 2021 36 3 514 524 10.3803/EnM.2021.1082 34154310
    [Google Scholar]
  26. Li B. Feng F. Jia H. Rhamnetin decelerates the elimination and enhances the antitumor effect of the molecular-targeting agent sorafenib in hepatocellular carcinoma cells via the miR-148a/PXR axis. Food Funct. 2021 12 6 2404 2417 10.1039/D0FO02270E 33570057
    [Google Scholar]
  27. Li P. Hu X. Fan Z. Novel potent molecular glue degraders against broad range of hematological cancer cell lines via multiple neosubstrates degradation. J. Hematol. Oncol. 2024 17 1 77 10.1186/s13045‑024‑01592‑z 39218923
    [Google Scholar]
  28. Feng Y.Q. Li B.A. Feng F. Novel mTOR inhibitor enhances the sensitivity of hepatocellular carcinoma cells to molecular targeting agents. OncoTargets Ther. 2020 13 7165 7176 10.2147/OTT.S244474 32801748
    [Google Scholar]
  29. Ma D.B. Liu X.Y. Jia H. A Novel small-molecule inhibitor of SREBP-1 based on natural product monomers upregulates the sensitivity of lung squamous cell carcinoma cells to antitumor drugs. Front. Pharmacol. 2022 13895744 10.3389/fphar.2022.895744 35662712
    [Google Scholar]
  30. Meng H. Li B. Xu W. miR-140-3p enhances the sensitivity of LUAD cells to antitumor agents by targeting the ADAM10/Notch pathway. J. Cancer 2022 13 15 3660 3673 10.7150/jca.78835 36606198
    [Google Scholar]
  31. Yang H. Yang Y. Zou X. NIO-1, a novel inhibitor of OCT1, enhances the antitumor action of radiofrequency ablation against hepatocellular carcinoma. Curr. Mol. Med. 2024 24 5 637 647 10.2174/1566524023666230526154739 37246325
    [Google Scholar]
  32. Hemmati-Dinarvand M. Mokhtari H. Alipourfard I. Cancer drug resistance reduction via co-treatment with oxaliplatin and nitazoxanide: Targeting the ABC transporters. Curr. Mol. Med. 2023 23 8 834 841 10.2174/1566524023666220820154623 35996253
    [Google Scholar]
  33. Ma Y. Chai N. Jiang Q. DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents. Pharmacol. Res. 2020 160105071 10.1016/j.phrs.2020.105071 32659427
    [Google Scholar]
  34. Yin F. Feng F. Wang L. Wang X. Li Z. Cao Y. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis. 2019 10 9 672 10.1038/s41419‑019‑1884‑7 31511501
    [Google Scholar]
  35. Li P. Lin Q. Sun S. Inhibition of cannabinoid receptor type 1 sensitizes triple-negative breast cancer cells to ferroptosis via regulating fatty acid metabolism. Cell Death Dis. 2022 13 9 808 10.1038/s41419‑022‑05242‑5 36130940
    [Google Scholar]
  36. Wu Q. Tan Z. Xiong Y. Comprehensive analysis of ferroptosis-related genes for clinical and biological significance in hepatocellular carcinoma. Discov Oncol 2023 14 1 69 10.1007/s12672‑023‑00677‑4 37198416
    [Google Scholar]
  37. Shao Z. Li Y. Dai W. ETS-1 induces Sorafenib-resistance in hepatocellular carcinoma cells via regulating transcription factor activity of PXR. Pharmacol. Res. 2018 135 188 200 10.1016/j.phrs.2018.08.003 30114438
    [Google Scholar]
  38. Hao J. Chen Q. Feng Y. Combination treatment with FAAH inhibitors/URB597 and ferroptosis inducers significantly decreases the growth and metastasis of renal cell carcinoma cells via the PI3K-AKT signaling pathway. Cell Death Dis. 2023 14 4 247 10.1038/s41419‑023‑05779‑z 37024452
    [Google Scholar]
  39. Wang H. Chu F. Zhang X. TPX2 enhances the transcription factor activation of PXR and enhances the resistance of hepatocellular carcinoma cells to antitumor drugs. Cell Death Dis. 2023 14 1 64 10.1038/s41419‑022‑05537‑7 36707511
    [Google Scholar]
  40. Xie H. Yu H. Tian S. MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation. Oncotarget 2018 9 20 15252 15265 10.18632/oncotarget.24165 29632641
    [Google Scholar]
  41. Xie H. Tian S. Yu H. A new apatinib microcrystal formulation enhances the effect of radiofrequency ablation treatment on hepatocellular carcinoma. OncoTargets Ther. 2018 11 3257 3265 10.2147/OTT.S165000 29910621
    [Google Scholar]
  42. Subbiah V. Shen T. Terzyan S.S. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol. 2021 32 2 261 268 10.1016/j.annonc.2020.10.599 33161056
    [Google Scholar]
  43. Wang H. Tang J. Su Z. YAP confers resistance to vandetanib in medullary thyroid cancer. Biochem. Cell Biol. 2020 98 3 443 448 10.1139/bcb‑2019‑0354 32449862
    [Google Scholar]
  44. Aksoy Y.A. Xu B. Viswanathan K. Novel prognostic nomogram for predicting recurrence-free survival in medullary thyroid carcinoma. Histopathology 2024 84 6 947 959 10.1111/his.15141 38253940
    [Google Scholar]
  45. Hou Y. Yang Y. Chen G. The impact of preoperative calcitonin screening on the prognosis of patients with medullary thyroid cancer: A retrospective multicenter cohort study. Endocrine 2024 85 2 827 836 10.1007/s12020‑024‑03897‑y 38834859
    [Google Scholar]
  46. Memar M. Farazmandfar T. Sabaghian A. Shahbazi M. Golalipour M. Transcriptome profiling of cisplatin resistance in triple-negative breast cancer: New insight into the role of PI3k/Akt pathway. Curr. Mol. Med. 2023 23 6 559 568 10.2174/1566524022666220517102423 35585821
    [Google Scholar]
  47. Yao C. Wang Y. Gong D. Anti-TLR4 IgG2 prevents acetaminophen-induced acute liver injury through the toll-like receptor 4/MAPKs signaling pathway in mice. Curr. Mol. Med. 2023 23 5 453 469 10.2174/1566524022666220516141728 35578873
    [Google Scholar]
  48. Vodopivec D.M. Hu M.I. RET kinase inhibitors for RET -altered thyroid cancers. Ther. Adv. Med. Oncol. 2022 14 10.1177/17588359221101691 35756966
    [Google Scholar]
  49. Cevatemre B. Ulukaya E. Dere E. Dilege S. Acilan C. Pyruvate dehydrogenase contributes to drug resistance of lung cancer cells through epithelial mesenchymal transition. Front. Cell Dev. Biol. 2022 9738916 10.3389/fcell.2021.738916 35083212
    [Google Scholar]
  50. Jia H. Liu M. Wang X. Cimigenoside functions as a novel γ-secretase inhibitor and inhibits the proliferation or metastasis of human breast cancer cells by γ-secretase/Notch axis. Pharmacol. Res. 2021 169105686 10.1016/j.phrs.2021.105686 34022397
    [Google Scholar]
  51. Deshmukh A.P. Vasaikar S.V. Tomczak K. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proc. Natl. Acad. Sci. USA 2021 118 19 e2102050118 10.1073/pnas.2102050118 33941680
    [Google Scholar]
  52. Chegeni H. Ebrahiminik H. Mosadegh Khah A. Ultrasound-guided radiofrequency ablation of locally recurrent thyroid carcinoma. Cardiovasc. Intervent. Radiol. 2022 45 5 677 684 10.1007/s00270‑021‑03042‑6 35066613
    [Google Scholar]
  53. Tong M.Y. Li H.S. Che Y. Recurrent medullary thyroid carcinoma treated with percutaneous ultrasound-guided radiofrequency ablation: A case report. World J. Clin. Cases 2021 9 4 864 870 10.12998/wjcc.v9.i4.864 33585633
    [Google Scholar]
  54. Nervo A. Ragni A. Retta F. Interventional radiology approaches for liver metastases from thyroid cancer: A case series and overview of the literature. J. Gastrointest. Cancer 2021 52 3 823 832 10.1007/s12029‑021‑00646‑6 33999355
    [Google Scholar]
  55. Biamonte E. Solbiati L. Ierace T. Medullary thyroid carcinoma treated with percutaneous ultrasound-guided radiofrequency ablation. Endocrine 2019 65 3 515 519 10.1007/s12020‑019‑01995‑w 31273680
    [Google Scholar]
  56. Li D. Chi Y. Chen X. Anlotinib in locally advanced or metastatic medullary thyroid carcinoma: A randomized, double-blind phase IIB trial. Clin. Cancer Res. 2021 27 13 3567 3575 10.1158/1078‑0432.CCR‑20‑2950 33832949
    [Google Scholar]
  57. Sun Y. Niu W. Du F. Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors. J. Hematol. Oncol. 2016 9 1 105 10.1186/s13045‑016‑0332‑8 27716285
    [Google Scholar]
  58. Zhao J. Chi Y. Hu C. Anlotinib in patients with medullary thyroid carcinoma with negative prognostic factors: A sub-analysis based on the ALTER01031 study. Front. Oncol. 2022 12852032 10.3389/fonc.2022.852032 36483043
    [Google Scholar]
  59. Elisei R. Schlumberger M.J. Müller S.P. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 2013 31 29 3639 3646 10.1200/JCO.2012.48.4659 24002501
    [Google Scholar]
  60. Fallahi P. Ferrari S.M. Galdiero M.R. Molecular targets of tyrosine kinase inhibitors in thyroid cancer. Semin. Cancer Biol. 2022 79 180 196 10.1016/j.semcancer.2020.11.013 33249201
    [Google Scholar]
  61. Cabanillas M.E. Habra M.A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat. Rev. 2016 42 47 55 10.1016/j.ctrv.2015.11.003 26678514
    [Google Scholar]
  62. Spiliotis A.E. Gäbelein G. Holländer S. Scherber P.R. Glanemann M. Patel B. Microwave ablation compared with radiofrequency ablation for the treatment of liver cancer: A systematic review and meta-analysis. Radiol. Oncol. 2021 55 3 247 258 10.2478/raon‑2021‑0030 34167181
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240323681241023100958
Loading
/content/journals/cmm/10.2174/0115665240323681241023100958
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test