Skip to content
2000
image of Role of Immune Cells in Mediating the Causal Effect of Gut Microbiota on Type 2 Diabetes

Abstract

Background

Previous studies have suggested that gut microbiota and immune system regulation have potential links with type 2 diabetes (T2D). However, the causal association between gut microbiota and T2D and whether immune cells mediate this interaction is unclear.

Methods

A two-sample, two-step Mendelian randomization (MR) study utilizing an initial inverse-variance weighted (IVW) method was performed to explore the causal impact of gut microbiota on T2D and the intermediary role of immune cells.

Results

The MR analysis assigned 4 gut microbiota and metabolic pathways that increase the risk of T2D (G_Prevotella, g_Anaerotruncus, g_Streptococcus.s_Streptococcus_parasanguinis, and the pathway of PANTO-PWY) and other 4 gut microbiota and metabolic pathways that have a protective effect against T2D (PWY-5667, PWY-6892, PWY-7221, and the bacterial g_Paraprevotella.s_Paraprevotella_clara). Furthermore, 17 immune cell traits were identified as associated with T2D. The finding from mediation MR analysis revealed that PANTO-PWY increases T2D risk CD3 on HLA DR+ CD4+, whereas PWY-7221 reduces T2D risk through CD4 on CD4 Treg.

Conclusion

The research reveals a mediated causal link between the gut microbiota and T2D immune cells.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240322713241114051433
2025-01-30
2025-07-15
Loading full text...

Full text loading...

References

  1. Teufel F. Seiglie J.A. Geldsetzer P. Theilmann M. Marcus M.E. Ebert C. Arboleda W.A.L. Agoudavi K. Andall-Brereton G. Aryal K.K. Bicaba B.W. Brian G. Bovet P. Dorobantu M. Gurung M.S. Guwatudde D. Houehanou C. Houinato D. Jorgensen J.M.A. Kagaruki G.B. Karki K.B. Labadarios D. Martins J.S. Mayige M.T. McClure R.W. Mwangi J.K. Mwalim O. Norov B. Crooks S. Farzadfar F. Moghaddam S.S. Silver B.K. Sturua L. Wesseh C.S. Stokes A.C. Essien U.R. De Neve J.W. Atun R. Davies J.I. Vollmer S. Bärnighausen T.W. Ali M.K. Meigs J.B. Wexler D.J. Manne-Goehler J. Body-mass index and diabetes risk in 57 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data in 685 616 adults. Lancet 2021 398 10296 238 248 10.1016/S0140‑6736(21)00844‑8 34274065
    [Google Scholar]
  2. Anuradha E.M. Wang W.Y.C. Michael M. Comprehensive factors for predicting the complications of diabetes mellitus: A systematic review. Curr. Diabetes Rev. 2024
    [Google Scholar]
  3. Dickson I. Microbiome signatures for cirrhosis and diabetes. Nat. Rev. Gastroenterol. Hepatol. 2020 17 9 532 10.1038/s41575‑020‑0351‑3 32704165
    [Google Scholar]
  4. Takeuchi T. Kubota T. Nakanishi Y. Tsugawa H. Suda W. Kwon A.T.J. Yazaki J. Ikeda K. Nemoto S. Mochizuki Y. Kitami T. Yugi K. Mizuno Y. Yamamichi N. Yamazaki T. Takamoto I. Kubota N. Kadowaki T. Arner E. Carninci P. Ohara O. Arita M. Hattori M. Koyasu S. Ohno H. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature 2023 621 7978 389 395 10.1038/s41586‑023‑06466‑x 37648852
    [Google Scholar]
  5. Vatanen T. Franzosa E.A. Schwager R. Tripathi S. Arthur T.D. Vehik K. Lernmark Å. Hagopian W.A. Rewers M.J. She J.X. Toppari J. Ziegler A.G. Akolkar B. Krischer J.P. Stewart C.J. Ajami N.J. Petrosino J.F. Gevers D. Lähdesmäki H. Vlamakis H. Huttenhower C. Xavier R.J. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018 562 7728 589 594 10.1038/s41586‑018‑0620‑2 30356183
    [Google Scholar]
  6. Zhou W. Sailani M.R. Contrepois K. Zhou Y. Ahadi S. Leopold S.R. Zhang M.J. Rao V. Avina M. Mishra T. Johnson J. Lee-McMullen B. Chen S. Metwally A.A. Tran T.D.B. Nguyen H. Zhou X. Albright B. Hong B.Y. Petersen L. Bautista E. Hanson B. Chen L. Spakowicz D. Bahmani A. Salins D. Leopold B. Ashland M. Dagan-Rosenfeld O. Rego S. Limcaoco P. Colbert E. Allister C. Perelman D. Craig C. Wei E. Chaib H. Hornburg D. Dunn J. Liang L. Rose S.M.S.F. Kukurba K. Piening B. Rost H. Tse D. McLaughlin T. Sodergren E. Weinstock G.M. Snyder M. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 2019 569 7758 663 671 10.1038/s41586‑019‑1236‑x 31142858
    [Google Scholar]
  7. Yang K. Niu J. Zuo T. Sun Y. Xu Z. Tang W. Liu Q. Zhang J. Ng E.K.W. Wong S.K.H. Yeoh Y.K. Chan P.K.S. Chan F.K.L. Miao Y. Ng S.C. Alterations in the gut virome in obesity and type 2 diabetes mellitus. Gastroenterology 2021 161 4 1257 1269.e13 10.1053/j.gastro.2021.06.056 34175280
    [Google Scholar]
  8. Wu Z. Zhang B. Chen F. Xia R. Zhu D. Chen B. Lin A. Zheng C. Hou D. Li X. Zhang S. Chen Y. Hou K. Fecal microbiota transplantation reverses insulin resistance in type 2 diabetes: A randomized, controlled, prospective study. Front. Cell. Infect. Microbiol. 2023 12 1089991 10.3389/fcimb.2022.1089991 36704100
    [Google Scholar]
  9. Ng S.C. Xu Z. Mak J.W.Y. Yang K. Liu Q. Zuo T. Tang W. Lau L. Lui R.N. Wong S.H. Tse Y.K. Li A.Y.L. Cheung K. Ching J.Y.L. Wong V.W.S. Kong A.P.S. Ma R.C.W. Chow E.Y.K. Wong S.K.H. Ho I.C.H. Chan P.K.S. Chan F.K.L. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: A 24-week, double-blind, randomised controlled trial. Gut 2022 71 4 716 723 10.1136/gutjnl‑2020‑323617 33785557
    [Google Scholar]
  10. Ding D. Yong H. You N. Lu W. Yang X. Ye X. Wang Y. Cai T. Zheng X. Chen H. Cui B. Zhang F. Liu X. Mao J.H. Lu Y. Chang H. Prospective study reveals host microbial determinants of clinical response to fecal microbiota transplant therapy in type 2 diabetes patients. Front. Cell. Infect. Microbiol. 2022 12 820367 10.3389/fcimb.2022.820367 35402293
    [Google Scholar]
  11. da Ponte Neto A.M. Clemente A.C.O. Rosa P.W. Ribeiro I.B. Funari M.P. Nunes G.C. Moreira L. Sparvoli L.G. Cortez R. Taddei C.R. Mancini M.C. de Moura E.G.H. Fecal microbiota transplantation in patients with metabolic syndrome and obesity: A randomized controlled trial. World J. Clin. Cases 2023 11 19 4612 4624 10.12998/wjcc.v11.i19.4612 37469721
    [Google Scholar]
  12. Green J.E. Davis J.A. Berk M. Hair C. Loughman A. Castle D. Athan E. Nierenberg A.A. Cryan J.F. Jacka F. Marx W. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: A systematic review and meta-analysis. Gut Microbes 2020 12 1 1854640 10.1080/19490976.2020.1854640 33345703
    [Google Scholar]
  13. Fujimoto K. Kimura Y. Allegretti J.R. Yamamoto M. Zhang Y. Katayama K. Tremmel G. Kawaguchi Y. Shimohigoshi M. Hayashi T. Uematsu M. Yamaguchi K. Furukawa Y. Akiyama Y. Yamaguchi R. Crowe S.E. Ernst P.B. Miyano S. Kiyono H. Imoto S. Uematsu S. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterology 2021 160 6 2089 2102.e12 10.1053/j.gastro.2021.02.013 33577875
    [Google Scholar]
  14. Akdis C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol. 2021 21 11 739 751 10.1038/s41577‑021‑00538‑7 33846604
    [Google Scholar]
  15. Riedel S. Pheiffer C. Johnson R. Louw J. Muller C.J.F. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front. Endocrinol. (Lausanne) 2022 12 833544 10.3389/fendo.2021.833544 35145486
    [Google Scholar]
  16. Zhang Y. Gao X. Gao S. Liu Y. Wang W. Feng Y. Pei L. Sun Z. Liu L. Wang C. Effect of gut flora mediated‐bile acid metabolism on intestinal immune microenvironment. Immunology 2023 170 3 301 318 10.1111/imm.13672 37317655
    [Google Scholar]
  17. Barbosa P. Pinho A. Lázaro A. Rosendo-Silva D. Paula D. Campos J. Tralhão J.G. Pereira M.J. Paiva A. Laranjeira P. Carvalho E. CD8+ Treg cells play a role in the obesity-associated insulin resistance. Life Sci. 2024 336 122306 10.1016/j.lfs.2023.122306 38030055
    [Google Scholar]
  18. Kattner N. Immune cell infiltration in the pancreas of type 1, type 2 and type 3c diabetes. Ther. Adv. Endocrinol. Metab. 2023 14 20420188231185958 10.1177/20420188231185958 37529508
    [Google Scholar]
  19. Yoon Kim D. Kwon Lee J. Type 1 and 2 diabetes are associated with reduced natural killer cell cytotoxicity. Cell. Immunol. 2022 379 104578 10.1016/j.cellimm.2022.104578 35908302
    [Google Scholar]
  20. Burgess S. Davey Smith G. Davies N.M. Dudbridge F. Gill D. Glymour M.M. Hartwig F.P. Kutalik Z. Holmes M.V. Minelli C. Morrison J.V. Pan W. Relton C.L. Theodoratou E. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res. 2019 4 186 10.12688/wellcomeopenres.15555.3 32760811
    [Google Scholar]
  21. Carter A.R. Sanderson E. Hammerton G. Richmond R.C. Davey Smith G. Heron J. Taylor A.E. Davies N.M. Howe L.D. Mendelian randomisation for mediation analysis: Current methods and challenges for implementation. Eur. J. Epidemiol. 2021 36 5 465 478 10.1007/s10654‑021‑00757‑1 33961203
    [Google Scholar]
  22. Chen J. Yu X. Wu X. Chai K. Wang S. Causal relationships between gut microbiota, immune cell, and Non-small cell lung cancer: A two-step, two-sample Mendelian randomization study. J. Cancer 2024 15 7 1890 1897 10.7150/jca.92699 38434967
    [Google Scholar]
  23. Caesar R. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Can. J. Diabetes 2019 43 3 224 231 10.1016/j.jcjd.2019.01.007 30929665
    [Google Scholar]
  24. Gurung M. Li Z. You H. Rodrigues R. Jump D.B. Morgun A. Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020 51 102590 10.1016/j.ebiom.2019.11.051 31901868
    [Google Scholar]
  25. Zhang L. Chu J. Hao W. Zhang J. Li H. Yang C. Yang J. Chen X. Wang H. Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications. Mediators Inflamm. 2021 2021 1 12 10.1155/2021/5110276 34447287
    [Google Scholar]
  26. Du J. Yang M. Zhang Z. Cao B. Wang Z. Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front. Pharmacol. 2022 13 1032208 10.3389/fphar.2022.1032208 36452235
    [Google Scholar]
  27. Jiang Z. Sun T. He Y. Gou W. Zuo L. Fu Y. Miao Z. Shuai M. Xu F. Xiao C. Liang Y. Wang J. Xu Y. Jing L. Ling W. Zhou H. Chen Y. Zheng J.S. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: Results from two large human cohort studies. BMC Med. 2020 18 1 371 10.1186/s12916‑020‑01842‑0 33267887
    [Google Scholar]
  28. Tett A. Pasolli E. Masetti G. Ercolini D. Segata N. Prevotella diversity, niches and interactions with the human host. Nat. Rev. Microbiol. 2021 19 9 585 599 10.1038/s41579‑021‑00559‑y 34050328
    [Google Scholar]
  29. Tsai C.Y. Lu H.C. Chou Y.H. Liu P.Y. Chen H.Y. Huang M.C. Lin C.H. Tsai C.N. Gut microbial signatures for glycemic responses of GLP-1 receptor agonists in type 2 diabetic patients: A pilot study. Front. Endocrinol. (Lausanne) 2022 12 814770 10.3389/fendo.2021.814770 35095773
    [Google Scholar]
  30. Zhao L. Lou H. Peng Y. Chen S. Zhang Y. Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine 2019 66 3 526 537 10.1007/s12020‑019‑02103‑8 31591683
    [Google Scholar]
  31. Liu C. Shao W. Gao M. Liu J. Guo Q. Jin J. Meng F. Changes in intestinal flora in patients with type 2 diabetes on a low‑fat diet during 6 months of follow‑up. Exp. Ther. Med. 2020 20 5 1 10.3892/etm.2020.9167 32952631
    [Google Scholar]
  32. Wortelboer K. Koopen A.M. Herrema H. de Vos W.M. Nieuwdorp M. Kemper E.M. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front. Med. (Lausanne) 2022 9 1077275 10.3389/fmed.2022.1077275 36544495
    [Google Scholar]
  33. Miao Z. Lin J. Mao Y. Chen G. Zeng F. Dong H. Jiang Z. Wang J. Xiao C. Shuai M. Gou W. Fu Y. Imamura F. Chen Y. Zheng J.S. Erythrocyte n-6 polyunsaturated fatty acids, gut microbiota, and incident type 2 diabetes: A prospective cohort study. Diabetes Care 2020 43 10 2435 2443 10.2337/dc20‑0631 32723842
    [Google Scholar]
  34. Thomès L. Lescure A. Mosaic evolution of the phosphopantothenate biosynthesis pathway in bacteria and archaea. Genome Biol. Evol. 2021 13 2 evaa262 10.1093/gbe/evaa262 33320181
    [Google Scholar]
  35. Zhang F. Zuo T. Wan Y. Xu Z. Cheung C. Li A.Y. Zhu W. Tang W. Chan P.K.S. Chan F.K.L. Ng S.C. Multi-omic analyses identify mucosa bacteria and fecal metabolites associated with weight loss after fecal microbiota transplantation. Innovation (Camb.) 2022 3 5 100304 10.1016/j.xinn.2022.100304 36091491
    [Google Scholar]
  36. Oba R. Isomura M. Igarashi A. Nagata K. Circulating CD3 + HLA-DR + extracellular vesicles as a marker for Th1/Tc1-Type immune responses. J. Immunol. Res. 2019 2019 1 13 10.1155/2019/6720819 31205958
    [Google Scholar]
  37. Mahmoud M. Juntunen M. Adnan A. Kummola L. Junttila I.S. Kelloniemi M. Tyrväinen T. Huhtala H. Abd El Fattah A.I. Amr K. El erian A.M. Patrikoski M. Miettinen S. Immunomodulatory functions of adipose mesenchymal stromal/stem cell derived from donors with type 2 diabetes and obesity on CD4 T cells. Stem Cells 2023 41 5 505 519 10.1093/stmcls/sxad021 36945068
    [Google Scholar]
  38. Martinez P.J. Mathews C. Actor J.K. Hwang S.A. Brown E.L. De Santiago H.K. Fisher Hoch S.P. McCormick J.B. Mirza S. Impaired CD4+ and T-helper 17 cell memory response to Streptococcus pneumoniae is associated with elevated glucose and percent glycated hemoglobin A1c in Mexican Americans with type 2 diabetes mellitus. Transl. Res. 2014 163 1 53 63 10.1016/j.trsl.2013.07.005 23927943
    [Google Scholar]
  39. Carlos D. Pérez M.M. Leite J.A. Rocha F.A. Martins L.M.S. Pereira C.A. Fraga-Silva T.F.C. Pucci T.A. Ramos S.G. Câmara N.O.S. Bonato V.L.D. Tostes R.C. Silva J.S. NOD2 deficiency promotes intestinal CD4+ T lymphocyte imbalance, metainflammation, and aggravates type 2 diabetes in murine model. Front. Immunol. 2020 11 1265 10.3389/fimmu.2020.01265 32774333
    [Google Scholar]
  40. Zhu Y. Luo J. Yang Z. Miao Y. High-throughput sequencing analysis of differences in intestinal microflora between ulcerative colitis patients with different glucocorticoid response types. Genes Genomics 2020 42 10 1197 1206 10.1007/s13258‑020‑00986‑w 32844358
    [Google Scholar]
  41. Liu R. Pugh G.H. Tevonian E. Thompson K. Lauffenburger D.A. Kern P.A. Nikolajczyk B.S. Regulatory T cells control effector T cell inflammation in human prediabetes. Diabetes 2022 71 2 264 274 10.2337/db21‑0659 34737186
    [Google Scholar]
  42. Descalzi-Montoya D.B. Yang Z. Fanning S. Hu W. LoMauro K. Zhao Y. Korngold R. Cord blood-derived multipotent stem cells ameliorate in vitro/in vivo alloreactive responses, and this effect is associated with exosomal microvesicles in vitro Transplant. Cell. Ther. 2024 30 4 396.e1 396.e14 10.1016/j.jtct.2024.01.078 38307173
    [Google Scholar]
  43. Lobmann R. Ittenson A. Schiweck S. Motzkau M. Schraven B. Winckler S. Lehnert H. Expression of cell surface antigens in diabetic patients and healthy controls after injury. Diabetes Nutr. Metab. 2004 17 4 244 246 15575346
    [Google Scholar]
  44. Zou F. Lai X. Li J. Lei S. Hu L. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes. Am. J. Transl. Res. 2017 9 11 5127 5137 29218110
    [Google Scholar]
  45. Earle K. Tang Q. Zhou X. Liu W. Zhu S. Bonyhadi M. Bluestone J. In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clin. Immunol. 2005 115 1 3 9 10.1016/j.clim.2005.02.017 15870014
    [Google Scholar]
  46. Pitmon E. Meehan E.V. Ahmadi E. Adler A.J. Wang K. High glucose promotes regulatory T cell differentiation. PLoS One 2023 18 2 e0280916 10.1371/journal.pone.0280916 36730267
    [Google Scholar]
  47. Anwaar I. Gottsäter A. Eriksson K.F. Jacobsson L. Lindgärde F. Mattiasson I. Increased plasma endothelin-1 and intraplatelet cyclic guanosine monophosphate in men with disturbed glucose metabolism. Diabetes Res. Clin. Pract. 2000 50 2 127 136 10.1016/S0168‑8227(00)00190‑X 10960723
    [Google Scholar]
  48. Zappacosta B. De Sole P. Di Salvo S. De Michele T. Pennacchietti L. Giardina B. Resting and stimulated human polymorphonuclear leucocytes from type‐2 diabetic patients: Change in purine nucleotide pattern Eur. J. Clin. Invest. 1997 27 3 196 201 10.1046/j.1365‑2362.1997.860638.x 9088854
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240322713241114051433
Loading
/content/journals/cmm/10.2174/0115665240322713241114051433
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test