Skip to content
2000
image of CircRNA in Digestive Diseases: Recent Advances in Fundamental Mechanism and Clinical Potential

Abstract

Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their closed-loop structure, are widely present in the body and exhibit greater stability compared to conventional linear RNAs. With the development of molecular biology, circRNAs are gradually considered as a prognostic indicator and therapeutic target for various diseases. Research on the mechanism of circRNA in various diseases has become an important direction. In addition, digestive diseases are becoming more common as people's eating habits change, and the incidence and mortality of severe digestive system tumors are increasing year by year. The study of circRNA in digestive diseases provides us with a new way to improve the diagnosis and treatment of digestive diseases. This article provides a comprehensive review of the research literature on circRNAs in digestive system diseases over the past five years (2019-2023) and covers aspects such as circRNA functions and underlying mechanisms. CircRNA has been implicated in a variety of digestive diseases. In these diseases, circRNA primarily acts as a microRNA (miRNA) sponge, interacting with miRNA to regulate the expression levels of genes associated with signaling pathways, and there is abundant research on the effects of circRNAs on drug resistance, cell proliferation, invasion, apoptosis, and poor prognosis. This article aima to discuss the current status of research on circular RNA and its key areas in digestive system diseases. The review aims to provide valuable insights for further research on the role of circular RNA in digestive system diseases and a reference for subsequent research.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240315558241009094311
2024-10-17
2024-11-26
Loading full text...

Full text loading...

References

  1. Sanger H.L. Klotz G. Riesner D. Gross H.J. Kleinschmidt A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976 73 11 3852 3856 10.1073/pnas.73.11.3852 1069269
    [Google Scholar]
  2. Salzman J. Gawad C. Wang P.L. Lacayo N. Brown P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012 7 2 e30733 10.1371/journal.pone.0030733 22319583
    [Google Scholar]
  3. Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013 19 2 141 157 10.1261/rna.035667.112 23249747
    [Google Scholar]
  4. Hansen T.B. Kjems J. Damgaard C.K. Circular RNA and miR-7 in Cancer. Cancer Res. 2013 73 18 5609 5612 10.1158/0008‑5472.CAN‑13‑1568 24014594
    [Google Scholar]
  5. Memczak S. Jens M. Elefsinioti A. Torti F. Krueger J. Rybak A. Maier L. Mackowiak S.D. Gregersen L.H. Munschauer M. Loewer A. Ziebold U. Landthaler M. Kocks C. le Noble F. Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013 495 7441 333 338 10.1038/nature11928 23446348
    [Google Scholar]
  6. Zhu K. Hu X. Chen H. Li F. Yin N. Liu A.L. Shan K. Qin Y.W. Huang X. Chang Q. Xu G.Z. Wang Z. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine 2019 49 341 353 10.1016/j.ebiom.2019.10.004 31636010
    [Google Scholar]
  7. Chen Y. Li Z. Zhang M. Wang B. Ye J. Zhang Y. Tang D. Ma D. Jin W. Li X. Wang S. Circ-ASH2L promotes tumor progression by sponging miR-34a to regulate Notch1 in pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res. 2019 38 1 466 10.1186/s13046‑019‑1436‑0 31718694
    [Google Scholar]
  8. Naeli P. Pourhanifeh M.H. Karimzadeh M.R. Shabaninejad Z. Movahedpour A. Tarrahimofrad H. Mirzaei H.R. Bafrani H.H. Savardashtaki A. Mirzaei H. Hamblin M.R. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit. Rev. Oncol. Hematol. 2020 145 102854 10.1016/j.critrevonc.2019.102854 31877535
    [Google Scholar]
  9. Zuo L. Zhang L. Zu J. Wang Z. Han B. Chen B. Cheng M. Ju M. Li M. Shu G. Yuan M. Jiang W. Chen X. Yan F. Zhang Z. Yao H. Circulating Circular RNAs as Biomarkers for the Diagnosis and Prediction of Outcomes in Acute Ischemic Stroke. Stroke 2020 51 1 319 323 10.1161/STROKEAHA.119.027348 31690252
    [Google Scholar]
  10. Han B. Chao J. Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol. Ther. 2018 187 31 44 10.1016/j.pharmthera.2018.01.010 29406246
    [Google Scholar]
  11. Li J. Xu Q. Huang Z. Mao N. Lin Z. Cheng L. Sun B. Wang G. CircRNAs: A new target for the diagnosis and treatment of digestive system neoplasms. Cell Death Dis. 2021 12 2 205 10.1038/s41419‑021‑03495‑0 33627631
    [Google Scholar]
  12. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  13. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  14. Venter J.C. Adams M.D. Myers E.W. Li P.W. Mural R.J. Sutton G.G. Smith H.O. Yandell M. Evans C.A. Holt R.A. Gocayne J.D. Amanatides P. Ballew R.M. Huson D.H. Wortman J.R. Zhang Q. Kodira C.D. Zheng X.H. Chen L. Skupski M. Subramanian G. Thomas P.D. Zhang J. Gabor Miklos G.L. Nelson C. Broder S. Clark A.G. Nadeau J. McKusick V.A. Zinder N. Levine A.J. Roberts R.J. Simon M. Slayman C. Hunkapiller M. Bolanos R. Delcher A. Dew I. Fasulo D. Flanigan M. Florea L. Halpern A. Hannenhalli S. Kravitz S. Levy S. Mobarry C. Reinert K. Remington K. Abu-Threideh J. Beasley E. Biddick K. Bonazzi V. Brandon R. Cargill M. Chandramouliswaran I. Charlab R. Chaturvedi K. Deng Z. Francesco V.D. Dunn P. Eilbeck K. Evangelista C. Gabrielian A.E. Gan W. Ge W. Gong F. Gu Z. Guan P. Heiman T.J. Higgins M.E. Ji R.R. Ke Z. Ketchum K.A. Lai Z. Lei Y. Li Z. Li J. Liang Y. Lin X. Lu F. Merkulov G.V. Milshina N. Moore H.M. Naik A.K. Narayan V.A. Neelam B. Nusskern D. Rusch D.B. Salzberg S. Shao W. Shue B. Sun J. Wang Z.Y. Wang A. Wang X. Wang J. Wei M.H. Wides R. Xiao C. Yan C. Yao A. Ye J. Zhan M. Zhang W. Zhang H. Zhao Q. Zheng L. Zhong F. Zhong W. Zhu S.C. Zhao S. Gilbert D. Baumhueter S. Spier G. Carter C. Cravchik A. Woodage T. Ali F. An H. Awe A. Baldwin D. Baden H. Barnstead M. Barrow I. Beeson K. Busam D. Carver A. Center A. Cheng M.L. Curry L. Danaher S. Davenport L. Desilets R. Dietz S. Dodson K. Doup L. Ferriera S. Garg N. Gluecksmann A. Hart B. Haynes J. Haynes C. Heiner C. Hladun S. Hostin D. Houck J. Howland T. Ibegwam C. Johnson J. Kalush F. Kline L. Koduru S. Love A. Mann F. May D. McCawley S. McIntosh T. McMullen I. Moy M. Moy L. Murphy B. Nelson K. Pfannkoch C. Pratts E. Puri V. Qureshi H. Reardon M. Rodriguez R. Rogers Y.H. Romblad D. Ruhfel B. Scott R. Sitter C. Smallwood M. Stewart E. Strong R. Suh E. Thomas R. Tint N.N. Tse S. Vech C. Wang G. Wetter J. Williams S. Williams M. Windsor S. Winn-Deen E. Wolfe K. Zaveri J. Zaveri K. Abril J.F. Guigó R. Campbell M.J. Sjolander K.V. Karlak B. Kejariwal A. Mi H. Lazareva B. Hatton T. Narechania A. Diemer K. Muruganujan A. Guo N. Sato S. Bafna V. Istrail S. Lippert R. Schwartz R. Walenz B. Yooseph S. Allen D. Basu A. Baxendale J. Blick L. Caminha M. Carnes-Stine J. Caulk P. Chiang Y.H. Coyne M. Dahlke C. Mays A.D. Dombroski M. Donnelly M. Ely D. Esparham S. Fosler C. Gire H. Glanowski S. Glasser K. Glodek A. Gorokhov M. Graham K. Gropman B. Harris M. Heil J. Henderson S. Hoover J. Jennings D. Jordan C. Jordan J. Kasha J. Kagan L. Kraft C. Levitsky A. Lewis M. Liu X. Lopez J. Ma D. Majoros W. McDaniel J. Murphy S. Newman M. Nguyen T. Nguyen N. Nodell M. Pan S. Peck J. Peterson M. Rowe W. Sanders R. Scott J. Simpson M. Smith T. Sprague A. Stockwell T. Turner R. Venter E. Wang M. Wen M. Wu D. Wu M. Xia A. Zandieh A. Zhu X. The sequence of the human genome. Science 2001 291 5507 1304 1351 10.1126/science.1058040 11181995
    [Google Scholar]
  15. Salzman J. Circular RNA Expression: Its Potential Regulation and Function. Trends Genet. 2016 32 5 309 316 10.1016/j.tig.2016.03.002 27050930
    [Google Scholar]
  16. Barrett S.P. Salzman J. Circular RNAs: Analysis, expression and potential functions. Development 2016 143 11 1838 1847 10.1242/dev.128074 27246710
    [Google Scholar]
  17. Chen L. Shan G. CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 2021 505 49 57 10.1016/j.canlet.2021.02.004 33609610
    [Google Scholar]
  18. Lei M. Zheng G. Ning Q. Zheng J. Dong D. Translation and functional roles of circular RNAs in human cancer. Mol. Cancer 2020 19 1 30 10.1186/s12943‑020‑1135‑7 32059672
    [Google Scholar]
  19. Levine M.S. Rubesin S.E. Diseases of the esophagus: A pattern approach. Abdom. Radiol. (N.Y.) 2017 42 9 2199 2218 10.1007/s00261‑017‑1218‑0 28647772
    [Google Scholar]
  20. Yang Y.M. Hong P. Xu W.W. He Q.Y. Li B. Advances in targeted therapy for esophageal cancer. Signal Transduct. Target. Ther. 2020 5 1 229 10.1038/s41392‑020‑00323‑3 33028804
    [Google Scholar]
  21. Zhou Q. Lei C. Cui F. Chen H. Cao X. Circ-ATIC regulates esophageal squamous cell carcinoma growth and metastasis through miR-1294/PBX3 pathway. Heliyon 2023 9 1 e12916 10.1016/j.heliyon.2023.e12916 36699282
    [Google Scholar]
  22. Tang R. Zhou Q. Xu Q. Lu L. Zhou Y. Circular RNA circ_0006948 Promotes Esophageal Squamous Cell Carcinoma Progression by Regulating microRNA-3612/LASP1 Axis. Dig. Dis. Sci. 2022 67 6 2158 2172 10.1007/s10620‑021‑07057‑4 34024023
    [Google Scholar]
  23. Luo C. Zhao X. Wang Y. Li Y. Wang T. Li S. A novel circ_0000654/miR-375/E2F3 ceRNA network in esophageal squamous cell carcinoma. Thorac. Cancer 2022 13 15 2223 2234 10.1111/1759‑7714.14550 35790503
    [Google Scholar]
  24. Qian C. Tong Y. Wang Y. Teng X. Yao J. Circ_0001093 promotes glutamine metabolism and cancer progression of esophageal squamous cell carcinoma by targeting miR-579-3p/glutaminase axis. J. Bioenerg. Biomembr. 2022 54 2 119 134 10.1007/s10863‑022‑09935‑6 35322289
    [Google Scholar]
  25. Liang Z. Zhao B. Hou J. Zheng J. Xin G. CircRNA circ-OGDH (hsa_circ_0003340) Acts as a ceRNA to Regulate Glutamine Metabolism and Esophageal Squamous Cell Carcinoma Progression by the miR-615-5p/PDX1 Axis. Cancer Manag. Res. 2021 13 3041 3053 10.2147/CMAR.S290088 33854374
    [Google Scholar]
  26. Zeng B. Liu Z. Zhu H. Zhang X. Yang W. Li X. Cheng C. CircRNA_2646 functions as a ceRNA to promote progression of esophageal squamous cell carcinoma via inhibiting miR-124/PLP2 signaling pathway. Cell Death Discov. 2021 7 1 99 10.1038/s41420‑021‑00461‑9 33976115
    [Google Scholar]
  27. Wang J. Yao W. Li J. Zhang Q. Wei L. Identification of a novel circ_0001946/miR-1290/SOX6 ceRNA network in esophageal squamous cell cancer. Thorac. Cancer 2022 13 9 1299 1310 10.1111/1759‑7714.14381 35411716
    [Google Scholar]
  28. Liu Z. Lu X. Wen L. You C. Jin X. Liu J. Hsa_circ_0014879 regulates the radiosensitivity of esophageal squamous cell carcinoma through miR-519-3p/CDC25A axis. Anticancer Drugs 2022 33 1 e349 e361 10.1097/CAD.0000000000001213 34407051
    [Google Scholar]
  29. Wang Y.M. Zhao Q.W. Sun Z.Y. Lin H.P. Xu X. Cao M. Fu Y.J. Zhao X.J. Ma X.M. Ye Q. Circular RNA hsa_circ_0003823 promotes the Tumor Progression, Metastasis and Apatinib Resistance of Esophageal Squamous Cell Carcinoma by miR-607/CRISP3 Axis. Int. J. Biol. Sci. 2022 18 15 5787 5808 10.7150/ijbs.76096 36263172
    [Google Scholar]
  30. Zhu H. Du F. Cao C. Restoration of circPSMC3 sensitizes gefitinib‐resistant esophageal squamous cell carcinoma cells to gefitinib by regulating miR‐10a‐5p/PTEN axis. Cell Biol. Int. 2021 45 1 107 116 10.1002/cbin.11473 32997362
    [Google Scholar]
  31. Yang G. Zhang Y. Lin H. Liu J. Huang S. Zhong W. Peng C. Du L. CircRNA circ_0023984 promotes the progression of esophageal squamous cell carcinoma via regulating miR-134-5p/cystatin-s axis. Bioengineered 2022 13 4 10578 10593 10.1080/21655979.2022.2063562 35440286
    [Google Scholar]
  32. Luo J. Tian Z. Zhou Y. Xiao Z. Park S.Y. Sun H. Zhuang T. Wang Y. Li P. Zhao X. CircABCA13 acts as a miR-4429 sponge to facilitate esophageal squamous cell carcinoma development by stabilizing SRXN1. Cancer Sci. 2023 114 7 2835 2847 10.1111/cas.15807 37017121
    [Google Scholar]
  33. Wang C. Zhou M. Zhu P. Ju C. Sheng J. Du D. Wan J. Yin H. Xing Y. Li H. He J. He F. IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J. Exp. Clin. Cancer Res. 2022 41 1 347 10.1186/s13046‑022‑02550‑8 36522683
    [Google Scholar]
  34. Liu Z. Yang S. Li W. Dong S. Zhou S. Xu S. circRNA_141539 can serve as an oncogenic factor in esophageal squamous cell carcinoma by sponging miR-4469 and activating CDK3 gene. Aging (Albany NY) 2021 13 8 12179 12193 10.18632/aging.103071 33504681
    [Google Scholar]
  35. Meng L. Zheng Y. Liu S. Ju Y. Ren S. Sang Y. Zhu Y. Gu L. Liu F. Zhao Y. Zhang X. Sang M. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett. 2021 519 117 129 10.1016/j.canlet.2021.06.026 34216686
    [Google Scholar]
  36. Kim T.H. Shivdasani R.A. Stomach development, stem cells and disease. Development 2016 143 4 554 565 10.1242/dev.124891 26884394
    [Google Scholar]
  37. Joshi S.S. Badgwell B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021 71 3 264 279 10.3322/caac.21657 33592120
    [Google Scholar]
  38. Xu Q. Liao B. Hu S. Zhou Y. Xia W. Circular RNA 0081146 facilitates the progression of gastric cancer by sponging miR-144 and up-regulating HMGB1. Biotechnol. Lett. 2021 43 4 767 779 10.1007/s10529‑020‑03058‑x 33496921
    [Google Scholar]
  39. Bu X. Chen Z. Zhang A. Zhou X. Zhang X. Yuan H. Zhang Y. Yin C. Yan Y. Circular RNA circAFF2 accelerates gastric cancer development by activating miR-6894-5p and regulating ANTXR 1 expression. Clin. Res. Hepatol. Gastroenterol. 2021 45 3 101671 10.1016/j.clinre.2021.101671 33722777
    [Google Scholar]
  40. Liang M. Yao W. Shi B. Zhu X. Cai R. Yu Z. Guo W. Wang H. Dong Z. Lin M. Zhou X. Zheng Y. Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p. Cell Death Dis. 2021 12 7 639 10.1038/s41419‑021‑03903‑5 34162830
    [Google Scholar]
  41. Zhou Y. Zhang Q. Liao B. Qiu X. Hu S. Xu Q. circ_0006089 promotes gastric cancer growth, metastasis, glycolysis, and angiogenesis by regulating miR‐361‐3p/TGFB1. Cancer Sci. 2022 113 6 2044 2055 10.1111/cas.15351 35347818
    [Google Scholar]
  42. Chen D.L. Sheng H. Zhang D.S. Jin Y. Zhao B.T. Chen N. Song K. Xu R.H. The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol. Cancer 2021 20 1 166 10.1186/s12943‑021‑01475‑8 34911533
    [Google Scholar]
  43. AmeliMojarad M. AmeliMojarad M. Pourmahdian A. Circular RNA circ_0051620 sponges miR-338–3p and regulates ADAM17 to promote the gastric cancer progression. Pathol. Res. Pract. 2022 233 153887 10.1016/j.prp.2022.153887 35413598
    [Google Scholar]
  44. Kong S. Tian S. Wang Z. Shi Y. Zhang J. Zhuo H. Circular RNA circPFKP suppresses the proliferation and metastasis of gastric cancer cell via sponging miR-644 and regulating ADAMTSL5 expression. Bioengineered 2022 13 5 12326 12337 10.1080/21655979.2022.2073001 35587154
    [Google Scholar]
  45. Zang X. Jiang J. Gu J. Chen Y. Wang M. Zhang Y. Fu M. Shi H. Cai H. Qian H. Xu W. Zhang X. Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol. Cancer 2022 21 1 141 10.1186/s12943‑022‑01606‑9 35780119
    [Google Scholar]
  46. Deng P. Sun M. Zhao W.Y. Hou B. Li K. Zhang T. Gu F. Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis. World J. Gastroenterol. 2021 27 6 487 500 10.3748/wjg.v27.i6.487 33642823
    [Google Scholar]
  47. Li H. Shan C. Wang J. Hu C. CircRNA Hsa_circ_0001017 Inhibited Gastric Cancer Progression via Acting as a Sponge of miR-197. Dig. Dis. Sci. 2021 66 7 2261 2271 10.1007/s10620‑020‑06516‑8 32740683
    [Google Scholar]
  48. Xu P. Zhang X. Cao J. Yang J. Chen Z. Wang W. Wang S. Zhang L. Xie L. Fang L. Xia Y. Xuan Z. Lv J. Xu H. Xu Z. The novel role of circular RNA ST3GAL6 on blocking gastric cancer malignant behaviours through autophagy regulated by the FOXP2/MET/mTOR axis. Clin. Transl. Med. 2022 12 1 e707 10.1002/ctm2.707 35061934
    [Google Scholar]
  49. Xia Y. Lv J. Jiang T. Li B. Li Y. He Z. Xuan Z. Sun G. Wang S. Li Z. Wang W. Wang L. Xu Z. CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization. J. Exp. Clin. Cancer Res. 2021 40 1 103 10.1186/s13046‑021‑01896‑9 33731207
    [Google Scholar]
  50. Wang H. Sun G. Xu P. Lv J. Zhang X. Zhang L. Wang S. Cao J. Xia Y. Xuan Z. Li B. Huang X. Jiang T. Fang L. Xu Z. Circular RNA TMEM87A promotes cell proliferation and metastasis of gastric cancer by elevating ULK1 via sponging miR-142-5p. J. Gastroenterol. 2021 56 2 125 138 10.1007/s00535‑020‑01744‑1 33155080
    [Google Scholar]
  51. Fan D. Wang C. Wang D. Zhang N. Yi T. Circular RNA circ_0000039 enhances gastric cancer progression through miR-1292-5p/DEK axis. Cancer Biomark. 2021 30 2 167 177 10.3233/CBM‑201754 33104023
    [Google Scholar]
  52. Lv L. Du J. Wang D. Yan Z. Circular RNA hsa_circ_0026344 suppresses gastric cancer cell proliferation, migration and invasion via the miR-590-5p/PDCD4 axis. J. Pharm. Pharmacol. 2022 74 8 1193 1204 10.1093/jpp/rgac032 35640631
    [Google Scholar]
  53. Wang F.S. Fan J.G. Zhang Z. Gao B. Wang H.Y. The global burden of liver disease: The major impact of China. Hepatology 2014 60 6 2099 2108 10.1002/hep.27406 25164003
    [Google Scholar]
  54. Axley P.D. Richardson C.T. Singal A.K. Epidemiology of Alcohol Consumption and Societal Burden of Alcoholism and Alcoholic Liver Disease. Clin. Liver Dis. 2019 23 1 39 50 10.1016/j.cld.2018.09.011 30454831
    [Google Scholar]
  55. Lu X. Liu Y. Xuan W. Ye J. Yao H. Huang C. Li J. Circ_1639 induces cells inflammation responses by sponging miR-122 and regulating TNFRSF13C expression in alcoholic liver disease. Toxicol. Lett. 2019 314 89 97 10.1016/j.toxlet.2019.07.021 31325635
    [Google Scholar]
  56. Gofton C. Upendran Y. Zheng M.H. George J. MAFLD: How is it different from NAFLD? Clin. Mol. Hepatol. 2023 29 S17 S31 10.3350/cmh.2022.0367 36443926
    [Google Scholar]
  57. Li Y. Cen C.Q. Liu B. Zhou L. Huang X.M. Liu G.Y. Overexpression of circ PTK2 suppresses the progression of nonalcoholic fatty liver disease via the miR-200c/SIK2/PI3K/Akt axis. Kaohsiung J. Med. Sci. 2022 38 9 869 878 10.1002/kjm2.12568 35791807
    [Google Scholar]
  58. Chen X. Tan Q.Q. Tan X.R. Li S.J. Zhang X.X. Circ_0057558 promotes nonalcoholic fatty liver disease by regulating ROCK1/AMPK signaling through targeting miR-206. Cell Death Dis. 2021 12 9 809 10.1038/s41419‑021‑04090‑z 34446693
    [Google Scholar]
  59. Castaneda D. Gonzalez A.J. Alomari M. Tandon K. Zervos X.B. From hepatitis A to E: A critical review of viral hepatitis. World J. Gastroenterol. 2021 27 16 1691 1715 10.3748/wjg.v27.i16.1691 33967551
    [Google Scholar]
  60. Zhang L. Wang Z. Circular RNA hsa_circ_0004812 impairs IFN-induced immune response by sponging miR-1287-5p to regulate FSTL1 in chronic hepatitis B. Virol. J. 2020 17 1 40 10.1186/s12985‑020‑01314‑0 32188476
    [Google Scholar]
  61. Ginès P. Krag A. Abraldes J.G. Solà E. Fabrellas N. Kamath P.S. Liver cirrhosis. Lancet 2021 398 10308 1359 1376 10.1016/S0140‑6736(21)01374‑X 34543610
    [Google Scholar]
  62. Roehlen N. Crouchet E. Baumert T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020 9 4 875 10.3390/cells9040875 32260126
    [Google Scholar]
  63. Ji D. Chen G.F. Wang J.C. Ji S.H. Wu X.W. Lu X.J. Chen J.L. Li J.T. Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3. Aging (Albany NY) 2020 12 2 1643 1655 10.18632/aging.102705 32003753
    [Google Scholar]
  64. Jin H. Li C. Dong P. Huang J. Yu J. Zheng J. Circular RNA cMTO1 Promotes PTEN Expression Through Sponging miR-181b-5p in Liver Fibrosis. Front. Cell Dev. Biol. 2020 8 714 10.3389/fcell.2020.00714 32850833
    [Google Scholar]
  65. Shen H. Liu B. Xu J. Zhang B. Wang Y. Shi L. Cai X. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer. J. Hematol. Oncol. 2021 14 1 134 10.1186/s13045‑021‑01145‑8 34461958
    [Google Scholar]
  66. Liu W. zheng L. Zhang R. Hou P. Wang J. Wu L. Li J. Circ-ZEB1 promotes PIK3CA expression by silencing miR-199a-3p and affects the proliferation and apoptosis of hepatocellular carcinoma. Mol. Cancer 2022 21 1 72 10.1186/s12943‑022‑01529‑5 35277182
    [Google Scholar]
  67. Wang Z. Zhao Y. Wang Y. Jin C. Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis. Biomed. Pharmacother. 2019 116 108932 10.1016/j.biopha.2019.108932 31108351
    [Google Scholar]
  68. Liu L. Gu M. Ma J. Wang Y. Li M. Wang H. Yin X. Li X. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol. Cancer 2022 21 1 149 10.1186/s12943‑022‑01619‑4 35858900
    [Google Scholar]
  69. Luo Y. Fu Y. Huang R. Gao M. Liu F. Gui R. Nie X. CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression. Cell Death Discov. 2019 5 1 121 10.1038/s41420‑019‑0202‑6 31372241
    [Google Scholar]
  70. Xu J. Wan Z. Tang M. Lin Z. Jiang S. Ji L. Gorshkov K. Mao Q. Xia S. Cen D. Zheng J. Liang X. Cai X. N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol. Cancer 2020 19 1 163 10.1186/s12943‑020‑01281‑8 33222692
    [Google Scholar]
  71. Li J.X. Wang J.J. Deng Z.F. Zheng H. Yang C.M. Yuan Y. Yang C. Gu F.F. Wu W.Q. Qiao G.L. Ma L.J. Circular RNA circ_0008934 promotes hepatocellular carcinoma growth and metastasis through modulating miR-1305/TMTC3 axis. Hum. Cell 2022 35 2 498 510 10.1007/s13577‑021‑00657‑2 35015267
    [Google Scholar]
  72. Zhou W. Yang F. Circular RNA circRNA-0039459 promotes the migration, invasion, and proliferation of liver cancer cells through the adsorption of miR-432. Bioengineered 2022 13 5 11810 11821 10.1080/21655979.2022.2073129 35543347
    [Google Scholar]
  73. Zhai Z. Fu Q. Liu C. Zhang X. Jia P. Xia P. Liu P. Liao S. Qin T. Zhang H. Emerging roles Of hsa-circ-0046600 targeting the miR-640/HIF-1α signalling pathway in the progression of HCC. OncoTargets Ther. 2019 12 9291 9302 10.2147/OTT.S229514 31807009
    [Google Scholar]
  74. Gu Y. Wu F. Wang H. Chang J. Wang Y. Li X. Circular RNA circARPP21 Acts as a Sponge of miR-543 to Suppress Hepatocellular Carcinoma by Regulating LIFR. OncoTargets Ther. 2021 14 879 890 10.2147/OTT.S283026 33584097
    [Google Scholar]
  75. Chen Q. Wang H. Li Z. Li F. Liang L. Zou Y. Shen H. Li J. Xia Y. Cheng Z. Yang T. Wang K. Shen F. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J. Hepatol. 2022 76 1 135 147 10.1016/j.jhep.2021.08.027 34509526
    [Google Scholar]
  76. Du J. Lan T. Liao H. Feng X. Chen X. Liao W. Hou G. Xu L. Feng Q. Xie K. Liao M. Chen X. Huang J. Yuan K. Zeng Y. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma. Mol. Cancer 2022 21 1 18 10.1186/s12943‑021‑01482‑9 35039066
    [Google Scholar]
  77. Henry B.M. Skinningsrud B. Saganiak K. Pękala P.A. Walocha J.A. Tomaszewski K.A. Development of the human pancreas and its vasculature — An integrated review covering anatomical, embryological, histological, and molecular aspects. Ann. Anat. 2019 221 115 124 10.1016/j.aanat.2018.09.008 30300687
    [Google Scholar]
  78. Szatmary P. Grammatikopoulos T. Cai W. Huang W. Mukherjee R. Halloran C. Beyer G. Sutton R. Acute Pancreatitis: Diagnosis and Treatment. Drugs 2022 82 12 1251 1276 10.1007/s40265‑022‑01766‑4 36074322
    [Google Scholar]
  79. Sun Q. Liang R. Li M. Zhou H. Circ_UTRN ameliorates caerulein-induced acute pancreatitis in vitro via reducing inflammation and promoting apoptosis through miR-320-3p/PTK2 axis. J. Pharm. Pharmacol. 2022 74 6 861 868 10.1093/jpp/rgab161 34850057
    [Google Scholar]
  80. Wang J. Fu J. Xu C. Jia R. Zhang X. Zhao S. Circ_ZFP644 attenuates caerulein-induced inflammatory injury in rat pancreatic acinar cells by modulating miR-106b/Pias3 axis. Exp. Mol. Pathol. 2021 121 104644 10.1016/j.yexmp.2021.104644 33945806
    [Google Scholar]
  81. Wang J. Li X. Liu Y. Peng C. Zhu H. Tu G. Yu X. Li Z. CircHIPK3 Promotes Pyroptosis in Acinar Cells Through Regulation of the miR-193a-5p/GSDMD Axis. Front. Med. (Lausanne) 2020 7 88 10.3389/fmed.2020.00088 32318575
    [Google Scholar]
  82. Ren S. Pan L. Yang L. Niu Z. Wang L. Gao Y. Liu J. Liu Z. Pei H. Interfering hsa_circ_0073748 alleviates caerulein-induced ductal cell injury in acute pancreatitis by inhibiting miR-132-3p/TRAF3/NF-κB pathway. Cell Cycle 2022 21 2 172 186 10.1080/15384101.2021.2014653 34882521
    [Google Scholar]
  83. Wood L.D. Canto M.I. Jaffee E.M. Simeone D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022 163 2 386 402.e1 10.1053/j.gastro.2022.03.056 35398344
    [Google Scholar]
  84. Guo W. Zhao L. Wei G. Liu P. Zhang Y. Fu L. Blocking circ_0013912 Suppressed Cell Growth, Migration and Invasion of Pancreatic Ductal Adenocarcinoma Cells in vitro and in vivo Partially Through Sponging miR-7-5p. Cancer Manag. Res. 2020 12 7291 7303 10.2147/CMAR.S255808 32884344
    [Google Scholar]
  85. Hua S. Gao J. Li T. Wang M. You L. Chen G. Han X. Liao Q. The promoting effects of hsa_circ_0050102 in pancreatic cancer and the molecular mechanism by targeting miR-1182/NPSR1. Carcinogenesis 2021 42 3 471 480 10.1093/carcin/bgaa130 33289016
    [Google Scholar]
  86. Yao J. Zhang C. Chen Y. Gao S. Downregulation of circular RNA circ-LDLRAD3 suppresses pancreatic cancer progression through miR-137-3p/PTN axis. Life Sci. 2019 239 116871 10.1016/j.lfs.2019.116871 31521692
    [Google Scholar]
  87. Guo X. Zhou Q. Su D. Luo Y. Fu Z. Huang L. Li Z. Jiang D. Kong Y. Li Z. Chen R. Chen C. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol. Cancer 2020 19 1 83 10.1186/s12943‑020‑01196‑4 32375768
    [Google Scholar]
  88. Shen P. Yang T. Chen Q. Yuan H. Wu P. Cai B. Meng L. Huang X. Liu J. Zhang Y. Hu W. Miao Y. Lu Z. Jiang K. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol. Cancer 2021 20 1 51 10.1186/s12943‑021‑01333‑7 33750389
    [Google Scholar]
  89. Wang K.Q. Ye M.L. Qiao X. Yu Z.W. Wu C.X. Zheng J.F. Circular RNA Fibroblast Growth Factor Receptor 1 Promotes Pancreatic Cancer Progression by Targeting MicroRNA-532-3p/PIK3CB Axis. Pancreas 2022 51 8 930 942 10.1097/MPA.0000000000002119 36607937
    [Google Scholar]
  90. Hou J.P. Men X.B. Yang L.Y. Han E.K. Han C.Q. Liu L.B. CircCCT3 Acts as a Sponge of miR-613 to Promote Tumor Growth of Pancreatic Cancer Through Regulating VEGFA/VEGFR2 Signaling. Balkan Med. J. 2021 38 4 229 238 10.5152/balkanmedj.2021.21145 34274912
    [Google Scholar]
  91. Yu S. Wang M. Zhang H. Guo X. Qin R. Circ_0092367 Inhibits EMT and Gemcitabine Resistance in Pancreatic Cancer via Regulating the miR-1206/ESRP1 Axis. Genes (Basel) 2021 12 11 1701 10.3390/genes12111701 34828307
    [Google Scholar]
  92. Yang T. Shen P. Chen Q. Wu P. Yuan H. Ge W. Meng L. Huang X. Fu Y. Zhang Y. Hu W. Miao Y. Lu Z. Jiang K. FUS-induced circRHOBTB3 facilitates cell proliferation via miR-600/NACC1 mediated autophagy response in pancreatic ductal adenocarcinoma. J. Exp. Clin. Cancer Res. 2021 40 1 261 10.1186/s13046‑021‑02063‑w 34416910
    [Google Scholar]
  93. Meng L. Zhang Y. Wu P. Li D. Lu Y. Shen P. Yang T. Shi G. Chen Q. Yuan H. Ge W. Miao Y. Tu M. Jiang K. CircSTX6 promotes pancreatic ductal adenocarcinoma progression by sponging miR-449b-5p and interacting with CUL2. Mol. Cancer 2022 21 1 121 10.1186/s12943‑022‑01599‑5 35650603
    [Google Scholar]
  94. Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019 2019 1 16 10.1155/2019/7247238 31886308
    [Google Scholar]
  95. Wang T. Chen N. Ren W. Liu F. Gao F. Ye L. Han Y. Zhang Y. Liu Y. Integrated analysis of circRNAs and mRNAs expression profile revealed the involvement of hsa_circ_0007919 in the pathogenesis of ulcerative colitis. J. Gastroenterol. 2019 54 9 804 818 10.1007/s00535‑019‑01585‑7 31037450
    [Google Scholar]
  96. Li B. Li Y. Li L. Yu Y. Gu X. Liu C. Long X. Yu Y. Zuo X. Hsa_circ_0001021 regulates intestinal epithelial barrier function via sponging miR-224-5p in ulcerative colitis. Epigenomics 2021 13 17 1385 1401 10.2217/epi‑2021‑0230 34528447
    [Google Scholar]
  97. Zhao J. Sun Y. Yang H. Qian J. Zhou Y. Gong Y. Dai Y. Jiao Y. Zhu W. Wang H. Lin Z. Tang L. PLGA-microspheres-carried circGMCL1 protects against Crohn’s colitis through alleviating NLRP3 inflammasome-induced pyroptosis by promoting autophagy. Cell Death Dis. 2022 13 9 782 10.1038/s41419‑022‑05226‑5 36088391
    [Google Scholar]
  98. Yin J. Ye Y.L. Hu T. Xu L.J. Zhang L.P. Ji R.N. Li P. Chen Q. Zhu J.Y. Pang Z. Hsa_circRNA_102610 upregulation in Crohn’s disease promotes transforming growth factor-β1-induced epithelial-mesenchymal transition via sponging of hsa-miR-130a-3p. World J. Gastroenterol. 2020 26 22 3034 3055 10.3748/wjg.v26.i22.3034 32587447
    [Google Scholar]
  99. Zygulska A.L. Pierzchalski P. Novel Diagnostic Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2022 23 2 852 10.3390/ijms23020852 35055034
    [Google Scholar]
  100. Li N. CircTBL1XR1/miR-424 axis regulates Smad7 to promote the proliferation and metastasis of colorectal cancer. J. Gastrointest. Oncol. 2020 11 5 918 931 10.21037/jgo‑20‑395 33209488
    [Google Scholar]
  101. Wang J. Zhou L. Chen B. Yu Z. Zhang J. Zhang Z. Hu C. Bai Y. Ruan X. Wang S. Ouyang J. Wu A. Zhao X. Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1. J. Transl. Med. 2022 20 1 58 10.1186/s12967‑022‑03240‑x 35101080
    [Google Scholar]
  102. Chen P. Yao Y. Yang N. Gong L. Kong Y. Wu A. Circular RNA circCTNNA1 promotes colorectal cancer progression by sponging miR-149-5p and regulating FOXM1 expression. Cell Death Dis. 2020 11 7 557 10.1038/s41419‑020‑02757‑7 32699205
    [Google Scholar]
  103. Zou Y. Liu L. Meng J. Dai M. Circular RNA circ_0068464 combined with microRNA-383 regulates Wnt/β-catenin pathway to promote the progression of colorectal cancer. Bioengineered 2022 13 3 5113 5125 10.1080/21655979.2022.2036905 35168468
    [Google Scholar]
  104. Chen B. Hong Y. Gui R. Zheng H. Tian S. Zhai X. Xie X. Chen Q. Qian Q. Ren X. Fan L. Jiang C. N6-methyladenosine modification of circ_0003215 suppresses the pentose phosphate pathway and malignancy of colorectal cancer through the miR-663b/DLG4/G6PD axis. Cell Death Dis. 2022 13 9 804 10.1038/s41419‑022‑05245‑2 36127319
    [Google Scholar]
  105. Wang J. Luo J. Liu G. Li X. Circular RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation and migration via the miR-382-5p/PTEN axis. Biochem. Biophys. Res. Commun. 2020 527 2 503 510 10.1016/j.bbrc.2020.03.165 32423803
    [Google Scholar]
  106. Zhou P. Xie W. Huang H.L. Huang R.Q. Tian C. Zhu H.B. Dai Y.H. Li Z.Y. circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway. Aging (Albany NY) 2020 12 13 13338 13353 10.18632/aging.103438 32644049
    [Google Scholar]
  107. Chen F. Guo L. Di J. Li M. Dong D. Pei D. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling. J. Genet. Genomics 2021 48 12 1091 1103 10.1016/j.jgg.2021.07.017 34416339
    [Google Scholar]
  108. Wu M. Kong C. Cai M. Huang W. Chen Y. Wang B. Liu X. Hsa_circRNA_002144 promotes growth and metastasis of colorectal cancer through regulating miR-615-5p/LARP1/mTOR pathway. Carcinogenesis 2021 42 4 601 610 10.1093/carcin/bgaa140 33347535
    [Google Scholar]
  109. Luo Y. Yao Q. Circ_0085315 promotes cell proliferation, invasion, and migration in colon cancer through miR-1200/MAP3K1 signaling pathway. Cell Cycle 2022 21 11 1194 1211 10.1080/15384101.2022.2044137 35230926
    [Google Scholar]
  110. Matsuo K. Akiba J. Kusukawa J. Yano H. Squamous cell carcinoma of the tongue: Subtypes and morphological features affecting prognosis. Am. J. Physiol. Cell Physiol. 2022 323 6 C1611 C1623 10.1152/ajpcell.00098.2022 36252129
    [Google Scholar]
  111. Zhou Y. Zhang S. Min Z. Yu Z. Zhang H. Jiao J. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells. BMC Cancer 2021 21 1 1085 10.1186/s12885‑021‑08779‑4 34620126
    [Google Scholar]
  112. Liu J. Jiang X. Zou A. Mai Z. Huang Z. Sun L. Zhao J. circIGHG-Induced Epithelial-to-Mesenchymal Transition Promotes Oral Squamous Cell Carcinoma Progression via miR-142-5p/IGF2BP3 Signaling. Cancer Res. 2021 81 2 344 355 10.1158/0008‑5472.CAN‑20‑0554 33203701
    [Google Scholar]
  113. Qiu F. Qiao B. Zhang N. Fang Z. Feng L. Zhang S. Qiu W. Blocking circ-SCMH1 (hsa_circ_0011946) suppresses acquired DDP resistance of oral squamous cell carcinoma (OSCC) cells both in vitro and in vivo by sponging miR-338-3p and regulating LIN28B. Cancer Cell Int. 2021 21 1 412 10.1186/s12935‑021‑02110‑8 34353342
    [Google Scholar]
  114. Yu H. Yu Z. Wang X. Wang D. Circular RNA circCLK3 promotes the progression of tongue squamous cell carcinoma via miR‐455‐5p/PARVA axis. Biotechnol. Appl. Biochem. 2022 69 2 431 441 10.1002/bab.2120 33655541
    [Google Scholar]
  115. Chen X. Kong D. Deng J. Mo F. Liang J. Overexpression of circFNDC3B promotes the progression of oral tongue squamous cell carcinoma through the miR-1322/MED1 axis. Head Neck 2022 44 11 2417 2427 10.1002/hed.27152 35916453
    [Google Scholar]
  116. Qian C. Yang Y. Lan T. Wang Y. Yao J. Hsa_circ_0043265 Restrains Cell Proliferation, Migration and Invasion of Tongue Squamous Cell Carcinoma via Targeting the miR-1243/SALL1 Axis. Pathol. Oncol. Res. 2021 27 587130 10.3389/pore.2021.587130 34257535
    [Google Scholar]
  117. Ju R. Huang Y. Guo Z. Han L. Ji S. Zhao L. Long J. The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells. Mol. Cell. Biochem. 2021 476 2 1269 1282 10.1007/s11010‑020‑03989‑z 33237453
    [Google Scholar]
  118. Wei H. Li J. Xie C. Dong H. Circular RNA hsa_circ_0011946 promotes the malignant process of salivary adenoid cystic carcinoma by downregulating miR‑1205 expression. Exp. Ther. Med. 2022 23 4 295 10.3892/etm.2022.11224 35317442
    [Google Scholar]
  119. Wu S. Huang X. Tie X. Cheng Y. Xue X. Fan M. Role and mechanism of action of circular RNA and laryngeal cancer. Pathol. Res. Pract. 2021 223 153460 10.1016/j.prp.2021.153460 33971544
    [Google Scholar]
  120. Gong H. Wu W. Fang C. He D. CircBFAR correlates with poor prognosis and promotes laryngeal squamous cell cancer progression through miR-31-5p/COL5A1 axis. Laryngoscope Investig. Otolaryngol. 2022 7 6 1951 1962 10.1002/lio2.966 36544920
    [Google Scholar]
  121. Li S. Zhang Y. He Z. Xu Q. Li C. Xu B. Knockdown of circMYOF inhibits cell growth, metastasis, and glycolysis through miR-145-5p/OTX1 regulatory axis in laryngeal squamous cell carcinoma. Funct. Integr. Genomics 2022 22 4 1 13 10.1007/s10142‑022‑00862‑8 35474406
    [Google Scholar]
  122. Chen F. Zhang H. Wang J. Circular RNA CircSHKBP1 accelerates the proliferation, invasion, angiogenesis, and stem cell-like properties via modulation of microR-766-5p/high mobility group AT-hook 2 axis in laryngeal squamous cell carcinoma. Bioengineered 2022 13 5 11551 11563 10.1080/21655979.2022.2068922 35502885
    [Google Scholar]
  123. Hickman L. Contreras C. Gallbladder Cancer. Surg. Clin. North Am. 2019 99 2 337 355 10.1016/j.suc.2018.12.008 30846038
    [Google Scholar]
  124. Wang S. Zhang Y. Cai Q. Ma M. Jin L.Y. Weng M. Zhou D. Tang Z. Wang J.D. Quan Z. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol. Cancer 2019 18 1 145 10.1186/s12943‑019‑1078‑z 31623628
    [Google Scholar]
  125. Wang S. Su T. Tong H. Zhou D. Ma F. Ding J. Hao Y. Shi W. Quan Z. Circβ-catenin promotes tumor growth and Warburg effect of gallbladder cancer by regulating STMN1 expression. Cell Death Discov. 2021 7 1 233 10.1038/s41420‑021‑00626‑6 34489401
    [Google Scholar]
  126. Zhang N. Li J. Sun H. Tian A. Chen Y. Circ_0008234 regulates the biological process of gallbladder carcinoma by targeting the miR-204-5p/FGFR2 axis. Histol. Histopathol. 2023 38 8 893 905 36278816
    [Google Scholar]
  127. Brindley P.J. Bachini M. Ilyas S.I. Khan S.A. Loukas A. Sirica A.E. Teh B.T. Wongkham S. Gores G.J. Cholangiocarcinoma. Nat. Rev. Dis. Primers 2021 7 1 65 10.1038/s41572‑021‑00300‑2 34504109
    [Google Scholar]
  128. Tu J. Chen W. Zheng L. Fang S. Zhang D. Kong C. Yang Y. Qiu R. Zhao Z. Lu C. Lu X. Ji J. Circular RNA Circ0021205 Promotes Cholangiocarcinoma Progression Through MiR-204-5p/RAB22A Axis. Front. Cell Dev. Biol. 2021 9 653207 10.3389/fcell.2021.653207 34012964
    [Google Scholar]
  129. Guan C. Liu L. Zhao Y. Zhang X. Liu G. Wang H. Gao X. Zhong X. Jiang X. YY1 and eIF4A3 are mediators of the cell proliferation, migration and invasion in cholangiocarcinoma promoted by circ-ZNF609 by targeting miR-432-5p to regulate LRRC1. Aging (Albany NY) 2021 13 23 25195 25212 10.18632/aging.203735 34898474
    [Google Scholar]
  130. Su Y. Yu T. Wang Y. Huang X. Wei X. Circular RNA circDNM3OS Functions as a miR-145-5p Sponge to Accelerate Cholangiocarcinoma Growth and Glutamine Metabolism by Upregulating MORC2. OncoTargets Ther. 2021 14 1117 1129 10.2147/OTT.S289241 33628035
    [Google Scholar]
  131. Salmena L. Poliseno L. Tay Y. Kats L. Pandolfi P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011 146 3 353 358 10.1016/j.cell.2011.07.014 21802130
    [Google Scholar]
  132. Lan W. Li C. Chen Q. LGCDA: Predicting CircRNA-Disease Association Based on Fusion of Local and Global Features. IEEE/ACM Trans Comput Biol Bioinform 2024 10.1109/TCBB.2024.3387913.
    [Google Scholar]
  133. Tian Y. Zou Q. Wang C. Jia C. MAMLCDA: A Meta-Learning Model for Predicting circRNA-Disease Association Based on MAML Combined With CNN. IEEE J. Biomed. Health Inform. 2024 28 7 4325 4335 10.1109/JBHI.2024.3385352 38578862
    [Google Scholar]
  134. Wang Y. Liu X. Shen Y. Song X. Wang T. Shang X. Peng J. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information. Brief. Bioinform. 2023 24 2 bbad069 10.1093/bib/bbad069 36847701
    [Google Scholar]
  135. Wu J. Lu P. Zhang W. Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution. Anal. Biochem. 2024 692 115554 10.1016/j.ab.2024.115554 38710353
    [Google Scholar]
  136. Liu R. Li Y. Wu A. Kong M. Ding W. Hu Z. Chen L. Cai W. Wang F. Identification of Plasma hsa_circ_0005397 and Combined With Serum AFP, AFP-L3 as Potential Biomarkers for Hepatocellular Carcinoma. Front. Pharmacol. 2021 12 639963 10.3389/fphar.2021.639963 33679420
    [Google Scholar]
  137. Zhang W. Liu Y. Min Z. Liang G. Mo J. Ju Z. Zeng B. Guan W. Zhang Y. Chen J. Zhang Q. Li H. Zeng C. Wei Y. Chan G.C.F. circMine: A comprehensive database to integrate, analyze and visualize human disease–related circRNA transcriptome. Nucleic Acids Res. 2022 50 D1 D83 D92 10.1093/nar/gkab809 34530446
    [Google Scholar]
  138. Hu J. Hu B. Deng L. Cheng L. Fan Q. Lu C. Arsenic sulfide inhibits the progression of gastric cancer through regulating the circRNA_ASAP2/Wnt/β-catenin pathway. Anticancer Drugs 2022 33 1 e711 e719 10.1097/CAD.0000000000001246 34486534
    [Google Scholar]
  139. Wang L. Li B. Yi X. Xiao X. Zheng Q. Ma L. Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β‐catenin pathway. Cell Prolif. 2021 54 3 e12981 10.1111/cpr.12981 33458917
    [Google Scholar]
  140. Liu W.G. Xu Q. Upregulation of circHIPK3 promotes the progression of gastric cancer via Wnt/β-catenin pathway and indicates a poor prognosis. Eur. Rev. Med. Pharmacol. Sci. 2019 23 18 7905 7912 31599413
    [Google Scholar]
  141. Huang X. Li Z. Zhang Q. Wang W. Li B. Wang L. Xu Z. Zeng A. Zhang X. Zhang X. He Z. Li Q. Sun G. Wang S. Li Q. Wang L. Zhang L. Xu H. Xu Z. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol. Cancer 2019 18 1 71 10.1186/s12943‑019‑0969‑3 30927924
    [Google Scholar]
  142. Zhou N. Wang W. Xu C. Yu W. Circular RNA PLEC acts as a sponge of microRNA-198 to promote gastric carcinoma cell resistance to paclitaxel and tumorigenesis. Pathol. Res. Pract. 2021 224 153487 10.1016/j.prp.2021.153487 34225215
    [Google Scholar]
  143. Roy S. Kanda M. Nomura S. Zhu Z. Toiyama Y. Taketomi A. Goldenring J. Baba H. Kodera Y. Goel A. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol. Cancer 2022 21 1 42 10.1186/s12943‑022‑01527‑7 35139874
    [Google Scholar]
  144. Xu C. Jun E. Okugawa Y. Toiyama Y. Borazanci E. Bolton J. Taketomi A. Kim S.C. Shang D. Von Hoff D. Zhang G. Goel A. A Circulating Panel of circRNA Biomarkers for the Noninvasive and Early Detection of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024 166 1 178 190.e16 10.1053/j.gastro.2023.09.050 37839499
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240315558241009094311
Loading
/content/journals/cmm/10.2174/0115665240315558241009094311
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: function ; action mechanism ; research progress ; Digestive diseases ; circRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test