Skip to content
2000
image of Advances in the Study of the Pathogenesis of Vogt-Koyanagi-Harada Syndrome

Abstract

Vogt-Koyanagi-Harada syndrome (VKHS) is a common type of uveitis characterized by the invasion of melanocyte-rich tissues. In recent years, the incidence of VKHS has been increasing yearly, and its specific pathogenesis has not yet been elucidated. However, its pathogenesis has been a hot topic of research. The clinical course of VKHS is characterized by the early involvement of the posterior segment of the eye, including exudative retinal detachment, optic papillitis, bilateral diffuse chorioretinitis, etc. If treated improperly or with delayed treatment, the inflammation may gradually spread to the anterior segment of the eye, leading to vision loss or even vision. This study examines the pathogenesis of VKHS. It reviews the progress of research on the pathogenesis of VKHS, which will help to improve the understanding of VKHS and provide a reference for subsequent studies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240311578241014050805
2024-10-24
2025-07-05
The full text of this item is not currently available.

References

  1. Missaka R.F.B.G. Souto F.M.S. Albornoz N.C.A. Gaspar Carvalho da Silva F.T.B. Lavezzo M.M. Oyamada M.K. Hirata C.E. Yamamoto J.H. Self-Reported Quality of Life in Patients with Long-Standing Vogt-Koyanagi-Harada Disease. Ocul. Immunol. Inflamm. 2020 28 3 409 420 10.1080/09273948.2019.1595672 31136253
    [Google Scholar]
  2. Cingu A.K. Bez Y. Cinar Y. Turkcu F.M. Yildirim A. Sahin A. Tas C. Sir A. Impact of collagen cross-linking on psychological distress and vision and health-related quality of life in patients with keratoconus. Eye Contact Lens 2015 41 6 349 353 10.1097/ICL.0000000000000129 25794329
    [Google Scholar]
  3. Hsu Y.R. Huang J.C.C. Tao Y. Kaburaki T. Lee C.S. Lin T.C. Hsu C.C. Chiou S.H. Hwang D.K. Noninfectious uveitis in the Asia–Pacific region. Eye (Lond.) 2019 33 1 66 77 10.1038/s41433‑018‑0223‑z 30323327
    [Google Scholar]
  4. Hou S. Li N. Liao X. Kijlstra A. Yang P. Uveitis genetics. Exp. Eye Res. 2020 190 107853 10.1016/j.exer.2019.107853 31669406
    [Google Scholar]
  5. Norose K. Yano A. Wang X.C. Tokushima T. Umihira J. Seki A. Nohara M. Segawa K. Dominance of activated T cells and interleukin-6 in aqueous humor in Vogt-Koyanagi-Harada disease. Invest. Ophthalmol. Vis. Sci. 1994 35 1 33 39 8300361
    [Google Scholar]
  6. Takeuchi M. Mizuki N. Ohno S. Pathogenesis of non-infectious uveitis elucidated by recent genetic findings. Front. Immunol. 2021 12 640473 10.3389/fimmu.2021.640473 33912164
    [Google Scholar]
  7. Chi W. Yang P. Li B. Wu C. Jin H. Zhu X. Chen L. Zhou H. Huang X. Kijlstra A. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt-Koyanagi-Harada disease. J. Allergy Clin. Immunol. 2007 119 5 1218 1224 10.1016/j.jaci.2007.01.010 17335887
    [Google Scholar]
  8. Collison L.W. Workman C.J. Kuo T.T. Boyd K. Wang Y. Vignali K.M. Cross R. Sehy D. Blumberg R.S. Vignali D.A.A. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007 450 7169 566 569 10.1038/nature06306 18033300
    [Google Scholar]
  9. Ye C. Yano H. Workman C.J. Vignali D.A.A. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. J. Interferon Cytokine Res. 2021 41 11 391 406 10.1089/jir.2021.0147 34788131
    [Google Scholar]
  10. Lopalco G. Lucherini O.M. Lopalco A. Venerito V. Fabiani C. Frediani B. Galeazzi M. Lapadula G. Cantarini L. Iannone F. Cytokine Signatures in Mucocutaneous and Ocular Behçet’s Disease. Front. Immunol. 2017 8 200 10.3389/fimmu.2017.00200 28289419
    [Google Scholar]
  11. Guo J. Gu M. Zhang W. Liu Y. Qian C. Deng A. Aberrant IL ‐35 levels in patients with primary Sjogren’s syndrome. Scand. J. Immunol. 2018 88 5 e12718 10.1111/sji.12718 30589451
    [Google Scholar]
  12. Han M. Li Y. Liu S. Jiang S. Yuan L. Xia L. Shen H. Lu J. Elevation of Serum IL-35 in Patients with Primary Sjögren’s Syndrome. J. Interferon Cytokine Res. 2018 38 10 452 456 10.1089/jir.2018.0059 30256702
    [Google Scholar]
  13. Hu J. Qin Y. Yi S. Wang C. Yang J. Yang L. Wang L. Kijlstra A. Yang P. Li H. Decreased interleukin(IL)-35 Expression is Associated with Active Intraocular Inflammation in Vogt-Koyanagi-Harada (VKH) Disease. Ocul. Immunol. Inflamm. 2019 27 4 595 601 10.1080/09273948.2018.1433306 29498905
    [Google Scholar]
  14. Chang R. Yi S. Tan X. Huang Y. Wang Q. Su G. Zhou C. Cao Q. Yuan G. Kijlstra A. Yang P. MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease. Br. J. Ophthalmol. 2018 102 2 282 290 10.1136/bjophthalmol‑2017‑311079 28972028
    [Google Scholar]
  15. EL Andaloussi S. Mäger I. Breakefield X.O. Wood M.J.A. S ELA Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013 12 5 347 357 10.1038/nrd3978 23584393
    [Google Scholar]
  16. Lawson C. Kovacs D. Finding E. Ulfelder E. Luis-Fuentes V. Extracellular Vesicles: Evolutionarily Conserved Mediators of Intercellular Communication. Yale J. Biol. Med. 2017 90 3 481 491 28955186
    [Google Scholar]
  17. Li B. Sun N. Yang F. Guo K. Wu L. Ma M. Shao H. Li X. Zhang X. Plasma-Derived Small Extracellular Vesicles From VKH Patients Suppress T Cell Proliferation Via MicroRNA-410-3p Modulation of CXCL5 Axis. Invest. Ophthalmol. Vis. Sci. 2023 64 12 11 10.1167/iovs.64.12.11 37672286
    [Google Scholar]
  18. Jiang G. Yun J. Kaplan H.J. Zhao Y. Sun D. Shao H. Vaccination with circulating exosomes in autoimmune uveitis prevents recurrent intraocular inflammation. Clin. Exp. Ophthalmol. 2021 49 9 1069 1077 10.1111/ceo.13990 34455666
    [Google Scholar]
  19. Yi S. Chang R. Hu J. Qiu Y. Wang Q. Cao Q. Yuan G. Su G. Zhou C. Wang Y. Kijlstra A. Yang P. Disabled-2 (DAB2) Overexpression Inhibits Monocyte-Derived Dendritic Cells’ Function in Vogt-Koyanagi-Harada Disease. Invest. Ophthalmol. Vis. Sci. 2018 59 11 4662 4669 10.1167/iovs.18‑24630 30267088
    [Google Scholar]
  20. Inomata H. Sakamoto T. Immunohistochemical studies of Vogt-Koyanagi-Harada disease with sunset sky fundus. Curr. Eye Res. 1990 9 sup1 Suppl. 35 40 10.3109/02713689008999417 1974489
    [Google Scholar]
  21. Chan C.C. Palestine A.G. Kuwabara T. Nussenblatt R.B. Immunopathologic study of Vogt-Koyanagi-Harada syndrome. Am. J. Ophthalmol. 1988 105 6 607 611 10.1016/0002‑9394(88)90052‑9 3259837
    [Google Scholar]
  22. Abu El-Asrar A.M. Dheyab A. Khatib D. Struyf S. Van Damme J. Opdenakker G. Efficacy of B Cell Depletion Therapy with Rituximab in Refractory Chronic Recurrent Uveitis Associated with Vogt-Koyanagi-Harada Disease. Ocul. Immunol. Inflamm. 2022 30 3 750 757 10.1080/09273948.2020.1820531 32990482
    [Google Scholar]
  23. El-Asrar A.M.A. Berghmans N. Al-Obeidan S.A. Gikandi P.W. Opdenakker G. Van Damme J. Struyf S. Differential CXC and CX3C Chemokine Expression Profiles in Aqueous Humor of Patients With Specific Endogenous Uveitic Entities. Invest. Ophthalmol. Vis. Sci. 2018 59 6 2222 2228 10.1167/iovs.17‑23225 29715366
    [Google Scholar]
  24. Abu El-Asrar A.M. Berghmans N. Al-Obeidan S.A. Mousa A. Opdenakker G. Van Damme J. Struyf S. The Cytokine Interleukin-6 and the Chemokines CCL20 and CXCL13 Are Novel Biomarkers of Specific Endogenous Uveitic Entities. Invest. Ophthalmol. Vis. Sci. 2016 57 11 4606 4613 10.1167/iovs.16‑19758 27603722
    [Google Scholar]
  25. Legler D.F. Loetscher M. Roos R.S. Clark-Lewis I. Baggiolini M. Moser B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 1998 187 4 655 660 10.1084/jem.187.4.655 9463416
    [Google Scholar]
  26. Haselow K. Bode J.G. Wammers M. Ehlting C. Keitel V. Kleinebrecht L. Schupp A.K. Häussinger D. Graf D. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J. Leukoc. Biol. 2013 94 6 1253 1264 10.1189/jlb.0812396 23990628
    [Google Scholar]
  27. Yoneno K. Hisamatsu T. Shimamura K. Kamada N. Ichikawa R. Kitazume M.T. Mori M. Uo M. Namikawa Y. Matsuoka K. Sato T. Koganei K. Sugita A. Kanai T. Hibi T. TGR 5 signalling inhibits the production of pro‐inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease. Immunology 2013 139 1 19 29 10.1111/imm.12045 23566200
    [Google Scholar]
  28. Yang J. Hu J. Feng L. Yi S. Ye Z. Lin M. Liu X. Pu Y. Kijlstra A. Yang P. Li H. Decreased Expression of TGR5 in Vogt-Koyanagi-Harada (VKH) Disease. Ocul. Immunol. Inflamm. 2020 28 2 200 208 10.1080/09273948.2018.1560477 30794473
    [Google Scholar]
  29. Ohta K. Yoshimura N. Expression of Fas antigen on helper T lymphocytes in Vogt-Koyanagi-Harada disease. Graefes Arch. Clin. Exp. Ophthalmol. 1998 236 6 434 439 10.1007/s004170050102 9646088
    [Google Scholar]
  30. Damico F.M. Bezerra F.T. Silva G.C. Gasparin F. Yamamoto J.H. New insights into Vogt-Koyanagi-Harada disease. Arq. Bras. Oftalmol. 2009 72 3 413 420 10.1590/S0004‑27492009000300028 19668980
    [Google Scholar]
  31. Sugita S. Takase H. Taguchi C. Imai Y. Kamoi K. Kawaguchi T. Sugamoto Y. Futagami Y. Itoh K. Mochizuki M. Ocular infiltrating CD4+ T cells from patients with Vogt-Koyanagi-Harada disease recognize human melanocyte antigens. Invest. Ophthalmol. Vis. Sci. 2006 47 6 2547 2554 10.1167/iovs.05‑1547 16723469
    [Google Scholar]
  32. Yamaki K. Gocho K. Hayakawa K. Kondo I. Sakuragi S. Tyrosinase family proteins are antigens specific to Vogt-Koyanagi-Harada disease. J. Immunol. 2000 165 12 7323 7329 10.4049/jimmunol.165.12.7323 11120868
    [Google Scholar]
  33. Wu X. Liu Y. Jin S. Wang M. Jiao Y. Yang B. Lu X. Ji X. Fei Y. Yang H. Zhao L. Chen H. Zhang Y. Li H. Lipsky P.E. Tsokos G.C. Bai F. Zhang X. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat. Commun. 2021 12 1 4977 10.1038/s41467‑021‑25246‑7 34404786
    [Google Scholar]
  34. Fiorillo M.T. Haroon N. Ciccia F. Breban M. Editorial: Ankylosing Spondylitis and Related Immune-Mediated Disorders. Front. Immunol. 2019 10 1232 10.3389/fimmu.2019.01232 31214188
    [Google Scholar]
  35. Weider T. Richardson S.J. Morgan N.G. Paulsen T.H. Dahl-Jørgensen K. Hammerstad S.S. Upregulation of HLA Class I and Antiviral Tissue Responses in Hashimoto’s Thyroiditis. Thyroid 2020 30 3 432 442 10.1089/thy.2019.0607 31910110
    [Google Scholar]
  36. Andreoli C.M. Stephen Foster C. Vogt-Koyanagi-Harada Disease. Int. Ophthalmol. Clin. 2006 46 2 111 122 10.1097/00004397‑200604620‑00011 16770158
    [Google Scholar]
  37. Kim M.H. Seong M.C. Kwak N.H. Yoo J.S. Huh W. Kim T.G. Han H. Association of HLA with Vogt-Koyanagi-Harada syndrome in Koreans. Am. J. Ophthalmol. 2000 129 2 173 177 10.1016/S0002‑9394(99)00434‑1 10682969
    [Google Scholar]
  38. Sakata V.M. da Silva F.T. Hirata C.E. Marin M.L.C. Rodrigues H. Kalil J. Costa R.A. Yamamoto J.H. High rate of clinical recurrence in patients with Vogt–Koyanagi–Harada disease treated with early high-dose corticosteroids. Graefes Arch. Clin. Exp. Ophthalmol. 2015 253 5 785 790 10.1007/s00417‑014‑2904‑z 25592477
    [Google Scholar]
  39. Shi T. Lv W. Zhang L. Chen J. Chen H. Association of HLA-DR4/HLA-DRB1*04 with Vogt-Koyanagi-Harada disease: a systematic review and meta-analysis. Sci. Rep. 2014 4 1 6887 10.1038/srep06887 25382027
    [Google Scholar]
  40. Damico F.M. Cunha-Neto E. Goldberg A.C. Iwai L.K. Marin M.L. Hammer J. Kalil J. Yamamoto J.H. T-cell recognition and cytokine profile induced by melanocyte epitopes in patients with HLA-DRB1*0405-positive and -negative Vogt-Koyanagi-Harada uveitis. Invest. Ophthalmol. Vis. Sci. 2005 46 7 2465 2471 10.1167/iovs.04‑1273 15980237
    [Google Scholar]
  41. Liu B. Deng T. Zhu L. Zhong J. Association of human leukocyte antigen (HLA)-DQ and HLA-DQA1/DQB1 alleles with Vogt–Koyanagi–Harada disease. Medicine (Baltimore) 2018 97 7 e9914 10.1097/MD.0000000000009914 29443768
    [Google Scholar]
  42. Du L. Yang P. Hou S. Lin X. Zhou H. Huang X. Wang L. Kijlstra A. Association of the CTLA-4 gene with Vogt–Koyanagi–Harada syndrome. Clin. Immunol. 2008 127 1 43 48 10.1016/j.clim.2008.01.004 18282809
    [Google Scholar]
  43. Zhu Y. Yu H. Qiu Y. Ye Z. Su W. Deng J. Cao Q. Yuan G. Kijlstra A. Yang P. Promoter Hypermethylation of GATA3, IL-4, and TGF-β Confers Susceptibility to Vogt-Koyanagi-Harada Disease in Han Chinese. Invest. Ophthalmol. Vis. Sci. 2017 58 3 1529 1536 10.1167/iovs.16‑21188 28278322
    [Google Scholar]
  44. Qiu Y. Yu H. Zhu Y. Ye Z. Deng J. Su W. Cao Q. Yuan G. Kijlstra A. Yang P. Hypermethylation of Interferon Regulatory Factor 8 (IRF8) Confers Risk to Vogt-Koyanagi-Harada Disease. Sci. Rep. 2017 7 1 1007 10.1038/s41598‑017‑01249‑7 28432342
    [Google Scholar]
  45. Hou S. Ye Z. Liao D. Bai L. Liu Y. Zhang J. Kijlstra A. Yang P. miR-23a, miR-146a and miR-301a confer predisposition to Vogt-Koyanagi-Harada syndrome but not to Behcet’s disease. Sci. Rep. 2016 6 1 20057 10.1038/srep20057 26818976
    [Google Scholar]
  46. Zhang L. Huang Y. Cui X. Tan X. Zhu Y. Zhou W. Wang C. Yuan G. Cao Q. Su G. Kijlstra A. Yang P. Increased Expression of Indoleamine 2,3-Dioxygenase (IDO) in Vogt-Koyanagi-Harada (VKH) Disease May Lead to a Shift of T Cell Responses Toward a Treg Population. Inflammation 2020 43 5 1780 1788 10.1007/s10753‑020‑01252‑7 32435912
    [Google Scholar]
  47. Pertovaara M. Hasan T. Raitala A. Oja S.S. Yli-Kerttula U. Korpela M. Hurme M. Indoleamine 2,3-dioxygenase activity is increased in patients with systemic lupus erythematosus and predicts disease activation in the sunny season. Clin. Exp. Immunol. 2007 150 2 274 278 10.1111/j.1365‑2249.2007.03480.x 17711489
    [Google Scholar]
  48. Zhu L. Ji F. Wang Y. Zhang Y. Liu Q. Zhang J.Z. Matsushima K. Cao Q. Zhang Y. Synovial autoreactive T cells in rheumatoid arthritis resist IDO-mediated inhibition. J. Immunol. 2006 177 11 8226 8233 10.4049/jimmunol.177.11.8226 17114500
    [Google Scholar]
  49. Wolf A.M. Wolf D. Rumpold H. Moschen A.R. Kaser A. Obrist P. Fuchs D. Brandacher G. Winkler C. Geboes K. Rutgeerts P. Tilg H. Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin. Immunol. 2004 113 1 47 55 10.1016/j.clim.2004.05.004 15380529
    [Google Scholar]
  50. Orabona C. Grohmann U. Indoleamine 2,3-dioxygenase and regulatory function: tryptophan starvation and beyond. Methods Mol. Biol. 2010 677 269 280 10.1007/978‑1‑60761‑869‑0_19 20941617
    [Google Scholar]
  51. Cui X. Su G. Zhang L. Yi S. Cao Q. Zhou C. Kijlstra A. Yang P. Integrated omics analysis of sweat reveals an aberrant amino acid metabolism pathway in Vogt–Koyanagi–Harada disease. Clin. Exp. Immunol. 2020 200 3 250 259 10.1111/cei.13435 32222072
    [Google Scholar]
  52. Pacold M.E. Brimacombe K.R. Chan S.H. Rohde J.M. Lewis C.A. Swier L.J.Y.M. Possemato R. Chen W.W. Sullivan L.B. Fiske B.P. Cho S. Freinkman E. Birsoy K. Abu-Remaileh M. Shaul Y.D. Liu C.M. Zhou M. Koh M.J. Chung H. Davidson S.M. Luengo A. Wang A.Q. Xu X. Yasgar A. Liu L. Rai G. Westover K.D. Vander Heiden M.G. Shen M. Gray N.S. Boxer M.B. Sabatini D.M. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 2016 12 6 452 458 10.1038/nchembio.2070 27110680
    [Google Scholar]
  53. Pan D. Hirose T. Vogt-Koyanagi-Harada syndrome: review of clinical features. Semin. Ophthalmol. 2011 26 4-5 312 315 10.3109/08820538.2011.588654 21958180
    [Google Scholar]
  54. Schallreuter K.U. Salem M.A.E.L. Gibbons N.C.J. Martinez A. Slominski R. Lüdemann J. Rokos H. Blunted epidermal L‐tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: epidermal H 2 O 2 /ONOO – ‐mediated stress abrogates tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels. FASEB J. 2012 26 6 2457 2470 10.1096/fj.11‑197137 22415302
    [Google Scholar]
  55. Zhao H.F. Jiang W.D. Liu Y. Jiang J. Wu P. Kuang S.Y. Tang L. Tang W.N. Zhang Y.A. Zhou X.Q. Feng L. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016 52 139 150 10.1016/j.fsi.2016.03.029 26988287
    [Google Scholar]
  56. Veskovic M. Mladenovic D. Milenkovic M. Tosic J. Borozan S. Gopcevic K. Labudovic-Borovic M. Dragutinovic V. Vucevic D. Jorgacevic B. Isakovic A. Trajkovic V. Radosavljevic T. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur. J. Pharmacol. 2019 848 39 48 10.1016/j.ejphar.2019.01.043 30689995
    [Google Scholar]
  57. Koch M.W. Ilnytskyy Y. Golubov A. Metz L.M. Yong V.W. Kovalchuk O. Global transcriptome profiling of mild relapsing‐remitting versus primary progressive multiple sclerosis. Eur. J. Neurol. 2018 25 4 651 658 10.1111/ene.13565 29316044
    [Google Scholar]
  58. Santos A.L.M. Vitório J.G. de Paiva M.J.N. Porto B.L.S. Guimarães H.C. Canuto G.A.B. Carvalho M.G. de Souza L.C. de Toledo J.S. Caramelli P. Duarte-Andrade F.F. Gomes K.B. Frontotemporal dementia: Plasma metabolomic signature using gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2020 189 113424 10.1016/j.jpba.2020.113424 32619729
    [Google Scholar]
  59. Zhang Q. Yin X. Wang H. Wu X. Li X. Li Y. Zhang X. Fu C. Li H. Qiu Y. Fecal Metabolomics and Potential Biomarkers for Systemic Lupus Erythematosus. Front. Immunol. 2019 10 976 10.3389/fimmu.2019.00976 31130958
    [Google Scholar]
  60. Xu J. Su G. Huang X. Chang R. Chen Z. Ye Z. Cao Q. Kijlstra A. Yang P. Metabolomic Analysis of Aqueous Humor Identifies Aberrant Amino Acid and Fatty Acid Metabolism in Vogt-Koyanagi-Harada and Behcet’s Disease. Front. Immunol. 2021 12 587393 10.3389/fimmu.2021.587393 33732231
    [Google Scholar]
  61. Yi X. Yang P. Sun M. Yang Y. Li F. Decreased 1,25-Dihydroxyvitamin D3 level is involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease. Mol. Vis. 2011 17 673 679 21403851
    [Google Scholar]
  62. Johnston J. Basatvat S. Ilyas Z. Francis S. Kiss-Toth E. Tribbles in inflammation. Biochem. Soc. Trans. 2015 43 5 1069 1074 10.1042/BST20150095 26517925
    [Google Scholar]
  63. Li Y. Su G. Huang F. Zhu Y. Luo X. Kijlstra A. Yang P. Identification of differently expressed mRNAs by peripheral blood mononuclear cells in Vogt-Koyanagi-Harada disease. Genes Dis. 2022 9 5 1378 1388 10.1016/j.gendis.2021.06.002 35873021
    [Google Scholar]
  64. Sood A.B. O’Keefe G. Bui D. Jain N. Vogt-Koyanagi-Harada Disease Associated with Hepatitis B Vaccination. Ocul. Immunol. Inflamm. 2019 27 4 524 527 10.1080/09273948.2018.1483520 29953303
    [Google Scholar]
  65. Kasahara A. Hiraide A. Tomita N. Iwahashi H. Imagawa A. Ohguro N. Yamamoto S. Mita E. Hayashi N. Vogt-Koyanagi-Harada disease occurring during interferon alpha therapy for chronic hepatitis C. J. Gastroenterol. 2004 39 11 1106 1109 10.1007/s00535‑004‑1452‑4 15580406
    [Google Scholar]
  66. Sugita S. Takase H. Kawaguchi T. Taguchi C. Mochizuki M. Cross-reaction between tyrosinase peptides and cytomegalovirus antigen by T cells from patients with Vogt-Koyanagi-Harada disease. Int. Ophthalmol. 2007 27 2-3 87 95 10.1007/s10792‑006‑9020‑y 17253112
    [Google Scholar]
  67. Yu N. Zhang S. Sun T. Kang K. Guan M. Xiang L. Double‐stranded RNA induces melanocyte death via activation of Toll‐like receptor 3. Exp. Dermatol. 2011 20 2 134 139 10.1111/j.1600‑0625.2010.01208.x 21255093
    [Google Scholar]
  68. Vega-Tapia F. Bustamante M. Valenzuela R.A. Urzua C.A. Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt–Koyanagi–Harada Disease. Front. Cell Dev. Biol. 2021 9 658514 10.3389/fcell.2021.658514 34041239
    [Google Scholar]
  69. Cantarel B.L. Waubant E. Chehoud C. Kuczynski J. DeSantis T.Z. Warrington J. Venkatesan A. Fraser C.M. Mowry E.M. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J. Investig. Med. 2015 63 5 729 734 10.1097/JIM.0000000000000192 25775034
    [Google Scholar]
  70. Tremlett H. Fadrosh D.W. Faruqi A.A. Zhu F. Hart J. Roalstad S. Graves J. Lynch S. Waubant E. US Network of Pediatric MS Centers Gut microbiota in early pediatric multiple sclerosis: a case−control study. Eur. J. Neurol. 2016 23 8 1308 1321 10.1111/ene.13026 27176462
    [Google Scholar]
  71. Ye Z. Zhang N. Wu C. Zhang X. Wang Q. Huang X. Du L. Cao Q. Tang J. Zhou C. Hou S. He Y. Xu Q. Xiong X. Kijlstra A. Qin N. Yang P. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome 2018 6 1 135 10.1186/s40168‑018‑0520‑6 30077182
    [Google Scholar]
  72. López P. Sánchez B. Margolles A. Suárez A. Intestinal dysbiosis in systemic lupus erythematosus: cause or consequence? Curr. Opin. Rheumatol. 2016 28 5 515 522 10.1097/BOR.0000000000000309 27466725
    [Google Scholar]
  73. Ye Z. Wu C. Zhang N. Du L. Cao Q. Huang X. Tang J. Wang Q. Li F. Zhou C. Xu Q. Xiong X. Kijlstra A. Qin N. Yang P. Altered gut microbiome composition in patients with Vogt-Koyanagi-Harada disease. Gut Microbes 2020 11 3 539 555 10.1080/19490976.2019.1700754 31928124
    [Google Scholar]
  74. Manni P. Saturno M.C. Accorinti M. Vogt-Koyanagi-Harada Disease and COVID. J. Clin. Med. 2023 12 19 6242 10.3390/jcm12196242 37834885
    [Google Scholar]
  75. Joo C.W. Kim Y.K. Park S.P. Vogt-Koyanagi-Harada Disease following mRNA-1273 (Moderna) COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2022 30 5 1250 1254 10.1080/09273948.2022.2053547 35404752
    [Google Scholar]
  76. Chen X. Wang B. Li X. Acute-onset Vogt-Koyanagi-Harada like uveitis following Covid-19 inactivated virus vaccination. Am. J. Ophthalmol. Case Rep. 2022 26 101404 10.1016/j.ajoc.2022.101404 35165663
    [Google Scholar]
  77. Kim M. Vogt-Koyanagi-Harada Syndrome following influenza vaccination. Indian J. Ophthalmol. 2016 64 1 98 10.4103/0301‑4738.178141 26953036
    [Google Scholar]
  78. Dogan B. Erol M.K. Cengiz A. Vogt–Koyanagi–Harada disease following BCG vaccination and tuberculosis. Springerplus 2016 5 1 603 10.1186/s40064‑016‑2223‑4 27247899
    [Google Scholar]
  79. Moorthy R.S. Inomata H. Rao N.A. Vogt-Koyanagi-Harada syndrome. Surv. Ophthalmol. 1995 39 4 265 292 10.1016/S0039‑6257(05)80105‑5 7725227
    [Google Scholar]
  80. Damico F.M. Marin M.L. Goldberg A.C. Hirata C.E. Takiuti P.H. Olivalves E. Yamamoto J.H. Yamamoto J.H. Revised diagnostic criteria for vogt-koyanagi-harada disease: considerations on the different disease categories. Am. J. Ophthalmol. 2009 147 2 339 345.e5 10.1016/j.ajo.2008.08.034 18992868
    [Google Scholar]
  81. Read R.W. Holland G.N. Rao N.A. Tabbara K.F. Ohno S. Arellanes-Garcia L. Pivetti-Pezzi P. Tessler H.H. Usui M. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature11The authors constitute the International Committee on Vogt-Koyanagi-Harada Disease Nomenclature, representing the participants of the First International Workshop on Vogt-Koyanagi-Harada Disease. A full list of participants appears at the end of the article. Am. J. Ophthalmol. 2001 131 5 647 652 10.1016/S0002‑9394(01)00925‑4 11336942
    [Google Scholar]
  82. Al Dousary S. Auditory and vestibular manifestations of Vogt–Koyanagi–Harada disease. J. Laryngol. Otol. 2011 125 2 138 141 10.1017/S0022215110001817 20880417
    [Google Scholar]
  83. Yang P. Ren Y. Li B. Fang W. Meng Q. Kijlstra A. Clinical characteristics of Vogt-Koyanagi-Harada syndrome in Chinese patients. Ophthalmology 2007 114 3 606 614.e3 10.1016/j.ophtha.2006.07.040 17123618
    [Google Scholar]
  84. Sakata V.M. da Silva F.T. Hirata C.E. de Carvalho J.F. Yamamoto J.H. Diagnosis and classification of Vogt–Koyanagi–Harada disease. Autoimmun. Rev. 2014 13 4-5 550 555 10.1016/j.autrev.2014.01.023 24440284
    [Google Scholar]
  85. Urzua C.A. Velasquez V. Sabat P. Berger O. Ramirez S. Goecke A. Vásquez D.H. Gatica H. Guerrero J. Earlier immunomodulatory treatment is associated with better visual outcomes in a subset of patients with V ogt‐ K oyanagi‐ H arada disease. Acta Ophthalmol. 2015 93 6 e475 e480 10.1111/aos.12648 25565265
    [Google Scholar]
  86. Papasavvas I. Tugal-Tutkun I. Herbort C.P. Jr Vogt-Koyanagi-Harada is a curable autoimmune disease: Early diagnosis and immediate dual steroidal and non-steroidal immunosuppression are crucial prerequisites. J. Curr. Ophthalmol. 2020 32 4 310 314 10.4103/JOCO.JOCO_190_20 33553831
    [Google Scholar]
  87. Abu El-Asrar A.M. Al Mudhaiyan T. Al Najashi A.A. Hemachandran S. Hariz R. Mousa A. Al-Muammar A. Chronic Recurrent Vogt–Koyanagi–Harada Disease and Development of ‘Sunset Glow Fundus’ Predict Worse Retinal Sensitivity. Ocul. Immunol. Inflamm. 2017 25 4 475 485 10.3109/09273948.2016.1139730 27003480
    [Google Scholar]
  88. Abu El-Asrar A.M. Al Tamimi M. Hemachandran S. Al-Mezaine H.S. Al-Muammar A. Kangave D. Prognostic factors for clinical outcomes in patients with Vogt-Koyanagi-Harada disease treated with high-dose corticosteroids. Acta Ophthalmol. 2013 91 6 e486 e493 10.1111/aos.12127 23575246
    [Google Scholar]
  89. AlBloushi A.F. Alfawaz A.M. AlZaid A. Alsalamah A.K. Gikandi P.W. Abu El-Asrar A.M. Incidence, Risk Factors and Surgical Outcomes of Cataract among Patients with Vogt-Koyanagi-Harada Disease. Ocul. Immunol. Inflamm. 2021 29 1 128 136 10.1080/09273948.2019.1668430 31638886
    [Google Scholar]
  90. Cunningham E.T. Jr Rathinam S.R. Tugal-Tutkun I. Muccioli C. Zierhut M. Vogt-Koyanagi-Harada Disease. Ocul. Immunol. Inflamm. 2014 22 4 249 252 10.3109/09273948.2014.939530 25014114
    [Google Scholar]
  91. Kawaguchi T. Horie S. Bouchenaki N. Ohno-Matsui K. Mochizuki M. Herbort C.P. Suboptimal therapy controls clinically apparent disease but not subclinical progression of Vogt-Koyanagi-Harada disease. Int. Ophthalmol. 2010 30 1 41 50 10.1007/s10792‑008‑9288‑1 19151926
    [Google Scholar]
  92. Hashizume K. Imamura Y. Fujiwara T. Machida S. Ishida M. Kurosaka D. Choroidal thickness in eyes with posterior recurrence of Vogt–Koyanagi–Harada disease after high‐dose steroid therapy. Acta Ophthalmol. 2014 92 6 e490 e491 10.1111/aos.12384 24588838
    [Google Scholar]
  93. Chee S.P. Chan S.W.N. Jap A. Comparison of Enhanced Depth Imaging and Swept Source Optical Coherence Tomography in Assessment of Choroidal Thickness in Vogt–Koyanagi–Harada Disease. Ocul. Immunol. Inflamm. 2017 25 4 528 532 10.3109/09273948.2016.1151896 27070488
    [Google Scholar]
  94. Jaisankar D. Raman R. Sharma H.R. Khandelwal N. Bhende M. Agrawal R. Sridharan S. Biswas J. Choroidal and Retinal Anatomical Responses Following Systemic Corticosteroid Therapy in Vogt–Koyanagi–Harada Disease Using Swept-Source Optical Coherence Tomography. Ocul. Immunol. Inflamm. 2019 27 2 235 243 10.1080/09273948.2017.1332231 28700251
    [Google Scholar]
  95. Herbort C.P. Mantovani A. Papadia M. Use of indocyanine green angiography in uveitis. Int. Ophthalmol. Clin. 2012 52 4 13 31 10.1097/IIO.0b013e318265d48b 22954926
    [Google Scholar]
  96. Fardeau C. Tran T.H.C. Gharbi B. Cassoux N. Bodaghi B. LeHoang P. Retinal fluorescein and indocyanine green angiography and optical coherence tomography in successive stages of Vogt-Koyanagi-Harada disease. Int. Ophthalmol. 2007 27 2-3 163 172 10.1007/s10792‑006‑9024‑7 17273903
    [Google Scholar]
  97. Balci O. Gasc A. Jeannin B. Herbort C.P. Jr Enhanced depth imaging is less suited than indocyanine green angiography for close monitoring of primary stromal choroiditis: a pilot report. Int. Ophthalmol. 2017 37 3 737 748 10.1007/s10792‑016‑0303‑7 27486023
    [Google Scholar]
  98. Elahi S. Gillmann K. Gasc A. Jeannin B. Herbort C.P. Jr Sensitivity of indocyanine green angiography compared to fluorescein angiography and enhanced depth imaging optical coherence tomography during tapering and fine-tuning of therapy in primary stromal choroiditis: A case series. J. Curr. Ophthalmol. 2019 31 2 180 187 10.1016/j.joco.2018.12.006 31317097
    [Google Scholar]
  99. Herbort C.P. Jr Mantovani A. Tugal-Tutkun I. Papasavvas I. Classification of Non-Infectious and/or Immune Mediated Choroiditis: A Brief Overview of the Essentials. Diagnostics (Basel) 2021 11 6 939 10.3390/diagnostics11060939 34073914
    [Google Scholar]
  100. Bacsal K. Wen D.S.H. Chee S.P. Concomitant choroidal inflammation during anterior segment recurrence in Vogt-Koyanagi-Harada disease. Am. J. Ophthalmol. 2008 145 3 480 486.e2 10.1016/j.ajo.2007.10.012 18191100
    [Google Scholar]
  101. Hirooka K. Saito W. Namba K. Mizuuchi K. Iwata D. Hashimoto Y. Ishida S. Significant role of the choroidal outer layer during recovery from choroidal thickening in Vogt-Koyanagi-Harada disease patients treated with systemic corticosteroids. BMC Ophthalmol. 2015 15 1 181 10.1186/s12886‑015‑0171‑3 26677974
    [Google Scholar]
  102. Nakayama M. Keino H. Okada A.A. Watanabe T. Taki W. Inoue M. Hirakata A. Enhanced depth imaging optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease. Retina 2012 32 10 2061 2069 10.1097/IAE.0b013e318256205a 23095726
    [Google Scholar]
  103. Chee S.P. Jap A. Bacsal K. Spectrum of Vogt-Koyanagi-Harada disease in Singapore. Int. Ophthalmol. 2007 27 2-3 137 142 10.1007/s10792‑006‑9009‑6 17103022
    [Google Scholar]
  104. Fang W. Zhou H. Yang P. Huang X. Wang L. Kijlstra A. Longitudinal quantification of aqueous flare and cells in Vogt-Koyanagi-Harada disease. Br. J. Ophthalmol. 2008 92 2 182 185 10.1136/bjo.2007.128967 17965105
    [Google Scholar]
  105. Opdenakker G. Abu El-Asrar A. Van Damme J. Remnant Epitopes Generating Autoimmunity: From Model to Useful Paradigm. Trends Immunol. 2020 41 5 367 378 10.1016/j.it.2020.03.004 32299652
    [Google Scholar]
  106. Abu El-Asrar A.M. Dosari M. Hemachandran S. Gikandi P.W. Al-Muammar A. Mycophenolate mofetil combined with systemic corticosteroids prevents progression to chronic recurrent inflammation and development of ‘sunset glow fundus’ in initial‐onset acute uveitis associated with Vogt–Koyanagi–Harada disease. Acta Ophthalmol. 2017 95 1 85 90 10.1111/aos.13189 27535102
    [Google Scholar]
  107. Abu El-Asrar A.M. Hemachandran S. Al-Mezaine H.S. Kangave D. Al-Muammar A.M. The outcomes of mycophenolate mofetil therapy combined with systemic corticosteroids in acute uveitis associated with Vogt–Koyanagi–Harada disease. Acta Ophthalmol. 2012 90 8 e603 e608 10.1111/j.1755‑3768.2012.02498.x 22971163
    [Google Scholar]
  108. Herbort C.P. Jr Abu El Asrar A.M. Takeuchi M. Pavésio C.E. Couto C. Hedayatfar A. Maruyama K. Rao X. Silpa-archa S. Somkijrungroj T. Catching the therapeutic window of opportunity in early initial-onset Vogt–Koyanagi–Harada uveitis can cure the disease. Int. Ophthalmol. 2019 39 6 1419 1425 10.1007/s10792‑018‑0949‑4 29948499
    [Google Scholar]
  109. Zhong Z. Dai L. Wu Q. Gao Y. Pu Y. Su G. Lu X. Zhang F. Tang C. Wang Y. Zhou C. Yang P. A randomized non-inferiority trial of therapeutic strategy with immunosuppressants versus biologics for Vogt-Koyanagi-Harada disease. Nat. Commun. 2023 14 1 3768 10.1038/s41467‑023‑39483‑5 37355662
    [Google Scholar]
  110. Niccoli L. Nannini C. Cassarà E. Gini G. Lenzetti I. Cantini F. Efficacy of infliximab therapy in two patients with refractory Vogt-Koyanagi-Harada disease. Br. J. Ophthalmol. 2009 93 11 1553 1554 10.1136/bjo.2008.153981 19854741
    [Google Scholar]
  111. Umran R.M.R. Shukur Z.Y.H. Rituximab for sight-threatening refractory pediatric Vogt–Koyanagi–Harada disease. Mod. Rheumatol. 2018 28 1 197 199 10.3109/14397595.2015.1071234 26154298
    [Google Scholar]
  112. Bolletta E. Gozzi F. Mastrofilippo V. Pipitone N. De Simone L. Croci S. Invernizzi A. Adani C. Iannetta D. Coassin M. Fontana L. Salvarani C. Cimino L. Efficacy of rituximab treatment in vogt-koyanagi-harada disease poorly controlled by traditional immunosuppressive treatment. Ocul. Immunol. Inflamm. 2022 30 6 1303 1308 10.1080/09273948.2021.1880604 33793383
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240311578241014050805
Loading
/content/journals/cmm/10.2174/0115665240311578241014050805
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pathogenesis ; Autoimmune disease ; Vogt-Koyanagi-Harada Syndrome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test