Skip to content
2000
image of Emerging Applications of Medical Nanorobots in Health Care: Current Trends and Future Prospects

Abstract

Medical nanorobots and nanobots are at the forefront of therapy and diagnostics, potentially improving human health by enabling previously inaccessible treatments. This review explores critical issues concerning the design, components, signaling, structure, and roles of nanorobots and nanobots while elucidating the distinctions between microrobots and nanorobots or microrobotics and nanorobotics as well. By complementing traditional medical procedures, nanorobotic technology offers a rapid, safe, and potentially beneficial pathway toward early clinical applications. It finds numerous applications in both current and future pharmacological and medical advancements. The current and future applications of various nanorobots, such as DNA origami nanorobots, nucleic acid robots, microbivore nanorobots, respirocyte nanorobots, and orthodontic nanorobots, are briefly discussed. In the future, nanobots will likely be prominently featured in hospitals and pharmacies for individuals or specialized groups with specific needs. Continuous innovation and improvement of these technologies, addressing these technical challenges, will broadly advance research in micro/nanorobotics for medical diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240309670241030171130
2024-11-04
2025-05-23
Loading full text...

Full text loading...

References

  1. Kong X. Gao P. Wang J. Fang Y. Hwang K.C. Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 2023 16 1 74 10.1186/s13045‑023‑01463‑z 37452423
    [Google Scholar]
  2. Requicha A.A.G. Nanorobots, nems, and nanoassembly. Proc. IEEE 2003 9 11 1922 1933 10.1109/JPROC.2003.818333
    [Google Scholar]
  3. Freitas R.A. Current status of nanomedicine and medical nanorobotics. J. Comput. Theor. Nanosci. 2005 2 1 1 25
    [Google Scholar]
  4. Sharma NN Mittal RK Nanorobot movement: Challenges and biologically inspired solutions. Int J Smart Sens Intell Syst. 2008 1 1, march 87 109 10.21307/ijssis‑2017‑280
    [Google Scholar]
  5. Saadeh Y. Vyas D. Nanorobotic applications in medicine: Current proposals and designs. Am. J. Robot. Surg. 2014 1 1 4 11 10.1166/ajrs.2014.1010 26361635
    [Google Scholar]
  6. Nanotechnology introduction: A complete beginner's guide. Available from: https://www.nanowerk.com/nanotechnology/introduction/introduction_to_nanotechnology_1.php 1974
  7. Aguilar Z.P. Nanomaterials for medical applications. Can use nanobots cure cancer? Accessed date: August 14, 2019. Bruno Jacobson. 2013 8 409 451 10.1016/B978‑0‑12‑385089‑8.00009
    [Google Scholar]
  8. Simó C. Casablancas S.M. Hortelao A.C. Carlo D.V. Garrido G.S. García P.S. Rabanal R.M. Cabrer R.P. Yagüe B. Aguado L. Bardia L. Tosi S. Vallejo G.V. Martín A. Patiño T. Julián E. Colombelli J. Llop J. Sánchez S. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 2024 19 4 554 564 10.1038/s41565‑023‑01577‑y 38225356
    [Google Scholar]
  9. Tripathi R. Kumar A. Application of nanorobotics for cancer treatment. Mater. Today Proc. 2018 5 3 9114 9117 10.1016/j.matpr.2017.10.029
    [Google Scholar]
  10. Fletcher M. Biglarbegian M. Neethirajan S. Intelligent system design for bionanorobots in drug delivery. Cancer Nanotechnol. 2013 4 4-5 117 125 10.1007/s12645‑013‑0044‑5 26069507
    [Google Scholar]
  11. Wark A.W. Lee H.J. Qavi A.J. Corn R.M. Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal. Chem. 2007 79 17 6697 6701 10.1021/ac071062b 17676761
    [Google Scholar]
  12. Agrahari V. Agrahari V. Chou M.L. Chew C.H. Noll J. Burnouf T. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials 2020 260 120163 10.1016/j.biomaterials.2020.120163 32882512
    [Google Scholar]
  13. Ali E.S. Sharker S.M. Islam M.T. Khan I.N. Shaw S. Rahman M.A. Uddin S.J. Shill M.C. Rehman S. Das N. Ahmad S. Shilpi J.A. Tripathi S. Mishra S.K. Mubarak M.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin. Cancer Biol. 2021 69 52 68 10.1016/j.semcancer.2020.01.011 32014609
    [Google Scholar]
  14. Cavalcanti A. Freitas R.A. Kretly L.C. Nanorobotics control design: A practical approach tutorial. ASME Design Engineering Technical Conferences 28th Biennial Mechanisms and Robotics Conference Salt Lake City, Utah, USA September 28 to October 2 2004 1 10 10.1115/DETC2004‑57031
    [Google Scholar]
  15. Bajpai A.K. Shukla S.K. Bhanu S. Kankane S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008 33 11 1088 1118 10.1016/j.progpolymsci.2008.07.005
    [Google Scholar]
  16. Sachin S.S. Neela M.B. Sachin S.M. Nanorobots: Novel emerging technology in the development of pharmaceuticals for drug delivery applications. World J. Pharm. Pharm. Sci. 2013 2 6 4728 4744
    [Google Scholar]
  17. Mishra J Dash AK Kumar R Nanotechnology challenges Nanomedicine: Nanorabots. 2012 52102259
    [Google Scholar]
  18. Saha M. Nanomedicine: Promising tiny machine for the healthcare in future-A review. Oman Med. J. 2009 24 4 242 247 10.5001/omj.2009.50 22216376
    [Google Scholar]
  19. Rohit K. Omprakash B. Sanat K. Applications of nanorobotics. Int J Sci Res Eng Tech 2014 3 8 1131 1136
    [Google Scholar]
  20. Freitas R.A. Jr Nanodentistry. J. Am. Dent. Assoc. 2000 131 11 1559 1565 10.14219/jada.archive.2000.0084 11103574
    [Google Scholar]
  21. Shetty N.J. Swati P. David K. Nanorobots: Future in dentistry. Saudi Dent. J. 2013 25 2 49 52 10.1016/j.sdentj.2012.12.002 23960556
    [Google Scholar]
  22. Electrical and computer engineering. Available from: https://ece.msu.edu/researchfeature/nanorobotics-systems 2024
  23. Nanobots will be flowing through your body by 2030. Available from: https://interestingengineering.com/nanobots-will-flowing-body-2030 2023
  24. Nanorobotics in conservative dentistry and endodontics. Available from: https://www.longdom.org/proceedings/nanorobotics-in-conservative-dentistry-and-endodontics-37138.html 2017
  25. Drexler K.E. Engines of creation: The coming era of nanotechnology, anchor press. New York Doubleday Publishing 1986 298
    [Google Scholar]
  26. Redlich M. Gorodnev A. Feldman Y. Ashiri K.I. Tenne R. Fleischer N. Genut M. Feuerstein N. Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS 2 coating for improved stainless steel orthodontic wires. J. Mater. Res. 2008 23 11 2909 2915 10.1557/JMR.2008.0350
    [Google Scholar]
  27. Cao B. Wang Y. Li N. Liu B. Zhang Y. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance. Dent. Mater. J. 2013 32 2 311 316 10.4012/dmj.2012‑155 23538768
    [Google Scholar]
  28. Thubagere AJ Li W Johnson RF Chen Z Doroudi S Lee YL Izatt G Wittman S Srinivas N Woods D Winfree E Qian L A cargo-sorting DNA robot. Science 2017 357 6356 eaan6558 10.1126/science.aan6558
    [Google Scholar]
  29. Namita S Kellen R. Modular reconfiguration of DNA origami assemblies using tile displacement. Sci Robot. 2023 8 eadf1511 10.1126/scirobotics.adf1511
    [Google Scholar]
  30. Zhou F. Ni H. Zhu G. Bershadsky L. Sha R. Seeman N.C. Chaikin P.M. Toward three-dimensional DNA industrial nanorobots. Sci. Robot. 2023 8 85 eadf1274 10.1126/scirobotics.adf1274 38055806
    [Google Scholar]
  31. Javaran V.J. Moffett P. Lemoyne P. Xu D. Purushothama A.C.R. Fall M.L. Grapevine virology in the third-generation sequencing era: From virus detection to viral epitranscriptomics. Plants 2021 10 11 2355 10.3390/plants10112355 34834718
    [Google Scholar]
  32. Fan C. Li Q. Advances in DNA nanotechnology. Small 2019 15 26 1902586 10.1002/smll.201902586 31355531
    [Google Scholar]
  33. Lenaghan S.C. Yongzhong W. Ning X. Fukuda T. Tarn T. Hamel W.R. Zhang M. Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Trans. Biomed. Eng. 2013 60 3 667 673 10.1109/TBME.2013.2244599 23380844
    [Google Scholar]
  34. Venkatesan M. Jolad B. Nanorobots in cancer treatment. Chennai INTERACT 2010 258 264
    [Google Scholar]
  35. Nanotech robots deliver gene therapy through blood. Available from: https://www.reuters.com/article/us-cancer-rnai/nanotech-robots-deliver-gene-therapy-through-blood-idUSTRE62K1BK20100321 2010
  36. Cavalcanti A. Freitas R.A. Jr Autonomous multi-robot sensor-based cooperation for nanomedicine. Int. J. Nonlinear Sci. Numer. Simul. 2002 3 3-4 743 746 10.1515/IJNSNS.2002.3.3‑4.743
    [Google Scholar]
  37. Martel S. Beyond imaging: Macro- and microscale medical robots actuated by clinical MRI scanners. Sci. Robot. 2017 2 3 eaam8119 10.1126/scirobotics.aam8119 33157863
    [Google Scholar]
  38. Rahmer J. Stehning C. Gleich B. Spatially selective remote magnetic actuation of identical helical micromachines. Sci. Robot. 2017 2 3 eaal2845 10.1126/scirobotics.aal2845 33157862
    [Google Scholar]
  39. Casal A. Hogg T. Cavalcanti A. Nanorobots as cellular assistants in inflammatory responses. Proceedings of the 2003 Stanford biomedical computation symposium (BCATS2003) Shapiro J. Stanford, CA 2003 62 Available from: http://bcats.stanford.edu
    [Google Scholar]
  40. Murphy D Challacombe B Nedas T Elhage O Althoefer K Seneviratne L Dasgupta P Equipment and technology in robotics. Arch Esp Urol. 2007 60 4 349 55 10.4321/S0004‑06142007000400004
    [Google Scholar]
  41. Cavalcanti A. Shirinzadeh B. Kretly L.C. Medical nanorobotics for diabetes control. Nanomedicine 2008 4 2 127 138 10.1016/j.nano.2008.03.001 18455965
    [Google Scholar]
  42. Soto F. Chrostowski R. Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses. Front. Bioeng. Biotechnol. 2018 6 170 10.3389/fbioe.2018.00170 30488033
    [Google Scholar]
  43. Welcome to our blog, your go-to source for the latest trends, insights, and innovations in the industry. Available from: https://nanobotmedical.com/atherosclerosis-plaque-extraction-scientific-animation/ 2024
  44. Magnetic nanobots could treat retinal disease. Available from: https://physicsworld.com/a/magnetic-nanobots-could-treat-retinal-disease/ 2018
  45. Top 5 reasons the novel eye-drilling nanobots could cure complex eye diseases. Available from: https://www.mirrorreview.com/top-5-reasons-the-novel-eye-drilling-nanobots-could-cure-complex-eye-diseases/ 2018
  46. Nanorobotics is a new emerging technology which can gear the world. Nanorobotics Can Revolutionize Med Ind Near Future i.e., reversal of freezing injury by introduction of cryoprotectants and other chemicals into the vascular system rapidly, using nanorobots. 2014
    [Google Scholar]
  47. An essay on nano-robotics-the future of medical sciences by Prakhar Dixit. July 7th. Available from: http://indiafuturesociety.org/an-essay-on-nanorobotics-the-future-of-medical-sciences/ 2013
  48. Leppla S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. 1982 79 10 3162 3166 10.1073/pnas.79.10.3162 6285339
    [Google Scholar]
  49. Cavalcanti A. Shirinzadeh B. Freitas R. Jr Kretly L. Medical nanorobot architecture based on nanobioelectronics. Recent Pat. Nanotechnol. 2007 1 1 1 10 10.2174/187221007779814745 19076015
    [Google Scholar]
  50. Albalawi F. Hussein M.Z. Fakurazi S. Masarudin M.J. Engineered nanomaterials: The challenges and opportunities for nanomedicines. Int. J. Nanomedicine 2021 16 161 184 10.2147/IJN.S288236 33447033
    [Google Scholar]
  51. Frcitas R.A. Exploratory design in medical nanotechnology: A mechanical artificial red cell. Artif. Cells Blood Substit. Immobil. Biotechnol. 1998 26 4 411 430 10.3109/10731199809117682 9663339
    [Google Scholar]
  52. Tasciotti E. Cabrera F.J. Evangelopoulos M. Martinez J.O. Thekkedath U.R. Kloc M. Ghobrial R.M. Li X.C. Grattoni A. Ferrari M. The emerging role of nanotechnology in cell and organ transplantation. Transplantation 2016 100 8 1629 1638 10.1097/TP.0000000000001100 27257995
    [Google Scholar]
  53. Freitas R.A. Jr Phoenix C.J. Vasculoid: A personal nanomedical appliance to replace human blood. J. Evol. Technol. 2002 1 11
    [Google Scholar]
  54. Treating disease with nanobots. Available from: https://www.dummies.com/education/science/nanotechnology/nanorobots-being-developed-to-repair-cells/ 2016
  55. Readi E.MZ Althubiti MA Cancer nanomedicine: A new era of successful targeted therapy. J Nanomater. 2019 2019 1 13 10.1155/2019/4927312
    [Google Scholar]
  56. Swain S. Ghose D. Patra C.N. Jena B.R. Rao M.E.B. Advancement and applications of platelet-inspired nanoparticles: A paradigm for cancer targeting. Curr. Pharm. Biotechnol. 2023 24 2 213 237 10.2174/1389201023666220329111920 35352648
    [Google Scholar]
  57. Slavkin H.C. Entering the era of molecular dentistry. J. Am. Dent. Assoc. 1999 130 3 413 417 10.14219/jada.archive.1999.0212 10085665
    [Google Scholar]
  58. Different types of nanorobots and applications – advanced materials 2019. Available from: https://advancedmaterials2018.wordpress.com/2018/10/08/different-types-of-nanorobots-and-applications-advanced-materials-2019/ 2018
  59. These tiny robots could be disease-fighting machines inside the body. Available from: https://www.nbcnews.com/mach/science/these-tiny-robots-could-be-disease-fighting-machines-inside-body-ncna861451 2018
  60. Ma W. Zhan Y. Zhang Y. Shao X. Xie X. Mao C. Cui W. Li Q. Shi J. Li J. Fan C. Lin Y. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 2019 19 7 4505 4517 10.1021/acs.nanolett.9b01320 31185573
    [Google Scholar]
  61. Mirzaiebadizi A. Ravan H. Dabiri S. Mohammadi P. Shahba A. Ziasistani M. Khatami M. An intelligent DNA nanorobot for detection of MiRNAs cancer biomarkers using molecular programming to fabricate a logic-responsive hybrid nanostructure. Bioprocess Biosyst. Eng. 2022 45 11 1781 1797 10.1007/s00449‑022‑02785‑x 36125526
    [Google Scholar]
  62. We're unable to locate the page you are looking for. Available from: https://www.news-medical.net/health/NanoroboticDevices.aspx#:~:text=These%20remote%2Dcontrolled%2C%20high%2D,%2C%20and%20sperm%2Dlike%20nanorobots 2024
  63. Immunobiology, the immune system in health and disease. Janeway C. 5th ed Garland Science New York 2001
    [Google Scholar]
  64. Thompson R. Mukhopadhyay T.P. Microbial nanoids: Electronic arts in the face of mexicos megadiversity crisis. Leonardo 2018 51 3 294 295 10.1162/leon_a_01537
    [Google Scholar]
  65. Sandhiya S. Dkhar S.A. Surendiran A. Emerging trends of nanomedicine-An overview. Fundam Clin Pharmacol. 2009 23 3 263 9 10.1111/j.1472‑8206.2009.00692.x
    [Google Scholar]
  66. Freitas R.A. Jr Microbivores: Artificial mechanical phagocytes using digest and discharge protocol. J. Evol. Technol. 2005 14 55 106
    [Google Scholar]
  67. Vijayalakshmi R. Kumar S.R. Nanotechnology in dentistry. Indian J. Dent. Res. 2006 17 2 62 65 10.4103/0970‑9290.29890 17051869
    [Google Scholar]
  68. Sivasankar M. Durairaj R.B. Brief review on nano robots in bio medical applications. Adv. Rob. Auto. 2012 1 1 101 10.4172/2168‑9695.1000101
    [Google Scholar]
  69. Philipkoski K. Nanorockets for precision bombing human disease. Available from: https://gizmodo.com/nanorockets-for-precision-bombing-human-disease-5846174 2011
  70. Seegert C. Nano Rockets Could Magnetically Release Therapeutics. Available from: https://www.meddeviceonline.com/doc/nano-rockets-could-magnetically-release-therapeutics-0001 2014
  71. News analysis. Available from: https://www.drishtiias.com/daily-news-analysis/nano-robots 2021
  72. Manjunath A. Kishore V. The promising future in medicine: Nanorobots. Biomed. Sci. Eng. 2014 2 2 42 47 10.12691/bse‑2‑2‑3
    [Google Scholar]
  73. Barbosa G. Silva P.A.F. Luz G.V.S. Brasil L.M. Nanotechnology applied in drug delivery. World Congress on Medical Physics and Biomedical Engineering 51st ed. Springer International Publishing Switzerland Toronto. Canada 2015 911 14
    [Google Scholar]
  74. Meena K. Monika N. Sheela M. Nanorobots: A future medical device in diagnosis and treatment. Res. J. Pharm. Biol. Chem. Sci. 2013 4 2 1229 1307
    [Google Scholar]
  75. GleciaVirgolino D.S. Kleber V.G.B. Vladimir F.C.D.A. Nanorobotics in drug delivery systems for treatment of cancer: A review. J. Mater. Sci. Eng. A. 2016 6 5-6 167 80
    [Google Scholar]
  76. Prajapati P.M. Solanki A.S. Sen D.J. Importance nanorobotics in health care. Int. Res. J. Pharm. 2012 3 3 122 124
    [Google Scholar]
  77. Maryam M. Future of dentistry, nanodentistry, ozone therapy and tissue engineering. J. Dev. Biol. Tissue Eng. 2013 5 1 1 6
    [Google Scholar]
  78. Li M. Xi N. Wang Y. Liu L. Progress in nanorobotics for advancing biomedicine. IEEE Trans. Biomed. Eng. 2021 68 1 130 147 10.1109/TBME.2020.2990380 32340931
    [Google Scholar]
  79. Freitas R.A. Jr Pharmacytes: An ideal vehicle for targeted drug delivery. J. Nanosci. Nanotechnol. 2006 6 9 2769 2775 10.1166/jnn.2006.413 17048481
    [Google Scholar]
  80. Li J Avila E.F.D.B Gao W Zhang L Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot. 2017 2 4 eaam6431
    [Google Scholar]
  81. Martel S. Hunter I. Nanofactories based on a fleet of scientific instruments configured as miniature autonomous robots. J Micromechatronics. 2004 2 3-4 201 214
    [Google Scholar]
  82. Martel S. Fundamental principles and issues of high-speed piezo-actuated three-legged motion for miniature robots designed for nanometer-scale operations. Int. J. Robot. Res. 2005 24 7 575 588 10.1177/0278364905055594
    [Google Scholar]
  83. Goicoechea J. Zamarreno C. Matias I. Arregui F. Minimizing the photobleaching of self-assembled multilayers for sensor applications. Sens. Actuators B Chem. 2007 126 1 41 47 10.1016/j.snb.2006.10.037
    [Google Scholar]
  84. Cavalcanti A Nanorobot hardware architecture for medical defense. Sensors. 2008 8 5 29322958 10.3390/s8052932
    [Google Scholar]
  85. Huang P.S. Boyken S.E. Baker D. The coming of age of de novo protein design. Nature 2016 537 7620 320 327 10.1038/nature19946 27629638
    [Google Scholar]
  86. Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem 2020 6 2 364 405 10.1016/j.chempr.2020.01.012
    [Google Scholar]
  87. Danielsen M.B. Mao H. Lou C. Peptide-DNA conjugates as building blocks for de novo design of hybrid nanostructures. Cell Rep. Phys. Sci. 2023 4 10 101620 10.1016/j.xcrp.2023.101620
    [Google Scholar]
  88. Systems and methods for the detection and analysis of in vivo circulating cells, entities, and nanobots. US,2008,0241065,A1 2008
  89. Patent application publication Bachelet et al. US,2013,0224859,A1 2013
  90. Patent application publication Labhasetwar. US,2011,0130325,A1 2011
  91. International application published under the patent cooperation treaty (PCT). WO,2008,063473,A3 2008
  92. Patent application publication Solomon. US,2008,0241264,A1 2008
  93. Patent application publication Solomon. US,2010,0068798,A1 2010
  94. Patent application publication Fritsch et al. US,2007,0225776,A1 2007
  95. Patent application publication Solomon. US,2008,0269948,A1 2008
  96. Patent application publication Yoo et al. US,2018,0263494,A1 2018
  97. Patent application publication Toscano et al. US,2018,0036053,A1 2018
  98. Patent application publication Zhang et al. US,2018,0074083,A1 2018
  99. Patent application publication Yan et al. US,2019,0240248,A1 2019
  100. Patent application publication Wang et al. US,2019,0343758,A1 2019
  101. Programmable, self-assembling patched nanoparticles, and associated devices, systems and methods. WO,2017,015444 2017
  102. Microfluidics system for single sperm isolation. WO,2019,211596,A1 2019
  103. Paxton W.F. Kistler K.C. Olmeda C.C. Sen A. Angelo S.S.K. Cao Y. Mallouk T.E. Lammert P.E. Crespi V.H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004 126 41 13424 13431 10.1021/ja047697z 15479099
    [Google Scholar]
  104. Erkoc P. Yasa I.C. Ceylan H. Yasa O. Alapan Y. Sitti M. Mobile microrobots for active therapeutic delivery. Adv. Ther. 2019 2 1 1800064 10.1002/adtp.201800064
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240309670241030171130
Loading
/content/journals/cmm/10.2174/0115665240309670241030171130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test