Skip to content
2000
image of ESM-1 Promotes the Process of Diabetic Nephropathy by Promoting the Expression of CXCL3

Abstract

Background

The analysis of diabetic nephropathy (DN)-related gene dataset demonstrated that C-X-C motif chemokine ligand 3 () is highly expressed in DN. Exploring the impact of in the course of DN is the core goal of this study.

Method

The cell model used in this study was CIHP-1 cells induced by high glucose (HG). qRT-PCR and western blot analysis were carried out to determine the expression difference of CXCL3. After down-regulating the level, we analyzed HG-induced CIHP-1 cell viability by MTT assay, proliferation by EdU staining, apoptosis by flow cytometry, and changes in related protein expression by western blot. In order to analyze the possible regulatory relationship between endothelial cell-specific molecule 1 () and in DN, we constructed an over-expressed plasmid and carried out a rescue experiment.

Result

and were highly expressed in HG-induced podocytes (<0.05). Silenced (si) increased the viability and proliferation of CIHP-1 cells induced by HG, reduced the proportion of apoptosis, and produced corresponding protein changes (<0.01). After the overexpression of , the effects of si were partially offset (<0.05).

Conclusion

In this study, increased HG-induced podocyte damage by promoting expression.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240304670250108055944
2025-03-05
2025-05-12
Loading full text...

Full text loading...

References

  1. Xiong Y. Zhou L. The signaling of cellular senescence in diabetic nephropathy. Oxid Med Cell Longev. 2019 2019 7495629
    [Google Scholar]
  2. Qi C. Mao X. Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res 2017 2017 8637138
    [Google Scholar]
  3. Pérez-Morales R.E. del Pino M.D. Valdivielso J.M. Ortiz A. Mora-Fernández C. Navarro-González J.F. Inflammation in diabetic kidney disease. Nephron J. 2019 143 1 12 16 10.1159/000493278 30273931
    [Google Scholar]
  4. Shaban A.M. Raslan M. Qahl S.H. Elsayed K. Abdelhameed M.S. Oyouni A.A.A. Al-Amer O.M. Hammouda O. El-Magd M.A. Ameliorative effects of camel milk and its exosomes on diabetic nephropathy in rats. Membranes 2022 12 11 1060 10.3390/membranes12111060 36363614
    [Google Scholar]
  5. Cellesi F. Li M. Rastaldi M.P. Podocyte injury and repair mechanisms. Curr. Opin. Nephrol. Hypertens. 2015 24 3 239 244 10.1097/MNH.0000000000000124 26066473
    [Google Scholar]
  6. Bose M. Almas S. Prabhakar S. Wnt signaling and podocyte dysfunction in diabetic nephropathy. J. Investig. Med. 2017 65 8 1093 1101 10.1136/jim‑2017‑000456 28935636
    [Google Scholar]
  7. Podgórski P. Konieczny A. Lis Ł. Witkiewicz W. Hruby Z. Glomerular podocytes in diabetic renal disease. Adv. Clin. Exp. Med. 2019 28 12 1711 1715 10.17219/acem/104534 31851794
    [Google Scholar]
  8. Li F. Dai B. Ni X. Long non-coding RNA cancer susceptibility candidate 2 (CASC2) alleviates the high glucose-induced injury of CIHP-1 cells via regulating miR-9-5p/PPARγ axis in diabetes nephropathy. Diabetol. Metab. Syndr. 2020 12 1 68 10.1186/s13098‑020‑00574‑8 32774472
    [Google Scholar]
  9. Srivastava S.P. Hedayat A.F. Kanasaki K. Goodwin J.E. microRNA crosstalk influences epithelial-to-mesenchymal, endothelial-to-mesenchymal, and macrophage-to-mesenchymal transitions in the kidney. Front. Pharmacol. 2019 10 904 10.3389/fphar.2019.00904 31474862
    [Google Scholar]
  10. Kawanami D. Matoba K. Utsunomiya K. Signaling pathways in diabetic nephropathy. Histol. Histopathol. 2016 31 10 1059 1067 27094540
    [Google Scholar]
  11. Amedei A. Prisco D. D’ Elios M.M. The use of cytokines and chemokines in the cancer immunotherapy. Recent Patents Anticancer Drug Discov. 2013 8 2 126 142 10.2174/1574892811308020002 22894642
    [Google Scholar]
  12. Qi YL Li Y Man XX Sui HY Zhao XL Zhang PX CXCL3 overexpression promotes the tumorigenic potential of uterine cervical cancer cells via the MAPK/ERK pathway. J Cell Physiol. 2020 235 5 4756 4765
    [Google Scholar]
  13. Wu Y.J. Yang Q.S. Chen H. Wang J.T. Wang W.B. Zhou L. Long non‑coding RNA CASC19 promotes glioma progression by modulating the miR‑454‑3p/RAB5A axis and is associated with unfavorable MRI features. Oncol. Rep. 2020 45 2 728 737 10.3892/or.2020.7876 33416169
    [Google Scholar]
  14. Reyes N. Figueroa S. Tiwari R. Geliebter J. CXCL3 signaling in the tumor microenvironment. Adv. Exp. Med. Biol. 2021 1302 15 24 10.1007/978‑3‑030‑62658‑7_2 34286438
    [Google Scholar]
  15. Rebollo J. Geliebter J. Reyes N. ESM-1 siRNA knockdown decreased migration and expression of CXCL3 in prostate cancer cells. Int. J. Biomed. Sci. 2017 13 1 35 42 10.59566/IJBS.2017.13035 28533735
    [Google Scholar]
  16. Zheng X Soroush F Long J Hall ET Adishesha PK Bhattacharya S Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy. PLoS One. 2017 12 9 e0185250 10.1371/journal.pone.0185250
    [Google Scholar]
  17. Xue W. Mao J. Chen Q. Ling W. Sun Y. Mogroside IIIE alleviates high glucose-induced inflammation, oxidative stress and apoptosis of podocytes by the activation of AMPK/SIRT1 signaling pathway. Diabetes Metab. Syndr. Obes. 2020 13 3821 3830 10.2147/DMSO.S276184 33116729
    [Google Scholar]
  18. Matsumoto H. Haniu H. Komori N. Determination of protein molecular weights on SDS-PAGE. Methods Mol. Biol. 2019 1855 101 105 10.1007/978‑1‑4939‑8793‑1_10 30426411
    [Google Scholar]
  19. Gulati K Gangele K Agarwal N Jamsandekar M Kumar D Poluri KM Molecular cloning and biophysical characterization of CXCL3 chemokine. Int J Biol Macromol. 2018 107 Pt A 575 584 10.1016/j.ijbiomac.2017.09.032
    [Google Scholar]
  20. Xin H Cao Y Shao ML Zhang W Zhang CB Wang JT Chemokine CXCL3 mediates prostate cancer cells proliferation, migration and gene expression changes in an autocrine/paracrine fashion. Int Urol Nephrol. 2018 50 5 861 868
    [Google Scholar]
  21. Korbecki J Kojder K Kapczuk P Kupnicka P. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors-A review of literature. Int J Mol Sci. 2021 22 2 843 10.3390/ijms22020843
    [Google Scholar]
  22. Béchard D. Gentina T. Delehedde M. Scherpereel A. Lyon M. Aumercier M. Vazeux R. Richet C. Degand P. Jude B. Janin A. Fernig D.G. Tonnel A.B. Lassalle P. Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity. J. Biol. Chem. 2001 276 51 48341 48349 10.1074/jbc.M108395200 11590178
    [Google Scholar]
  23. Kose M. Emet S. Akpinar T.S. Kocaaga M. Cakmak R. Akarsu M. Yuruyen G. Arman Y. Tukek T. Serum endocan level and the severity of coronary artery disease. Angiology 2015 66 8 727 731 10.1177/0003319714548870 25168956
    [Google Scholar]
  24. Qiu C.R. Fu Q. Sui J. Zhang Q. Wei P. Wu Y. Zhu K. Lu Y. Wan P. Analysis of serum endothelial cell-specific molecule 1 (endocan) level in type 2 diabetes mellitus with acute ST-segment elevation myocardial infarction and its correlation. Angiology 2017 68 1 74 78 10.1177/0003319716634581 26927690
    [Google Scholar]
  25. Zhang H. Shen Y.W. Zhang L.J. Chen J.J. Bian H.T. Gu W.J. Zhang H. Chen H.Z. Zhang W.D. Luan X. Targeting endothelial cell-specific molecule 1 protein in cancer: A promising therapeutic approach. Front. Oncol. 2021 11 687120 10.3389/fonc.2021.687120 34109132
    [Google Scholar]
  26. Tayman MA Önder C Endocan (ESM-1) levels in gingival crevicular fluid correlate with ICAM-1 and LFA-1 in periodontitis. Braz Oral Res. 2020 35 e005
    [Google Scholar]
  27. Bouglé A. Allain P.A. Favard S. Ait Hamou N. Carillion A. Leprince P. Granger B. Amour J. Postoperative serum levels of Endocan are associated with the duration of norepinephrine support after coronary artery bypass surgery. Anaesth. Crit. Care Pain Med. 2018 37 6 565 570 10.1016/j.accpm.2018.02.013 29476941
    [Google Scholar]
  28. Balta S. Mikhailidis D.P. Demirkol S. Ozturk C. Celik T. Iyisoy A. Endocan: A novel inflammatory indicator in cardiovascular disease? Atherosclerosis 2015 243 1 339 343 10.1016/j.atherosclerosis.2015.09.030 26448266
    [Google Scholar]
  29. Tung C.W. Hsu Y.C. Shih Y.H. Chang P.J. Lin C.L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 2018 23 S4 32 37 10.1111/nep.13451 30298646
    [Google Scholar]
  30. Farmer L.K. Rollason R. Whitcomb D.J. Ni L. Goodliff A. Lay A.C. Birnbaumer L. Heesom K.J. Xu S.Z. Saleem M.A. Welsh G.I. TRPC6 binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility. J. Am. Soc. Nephrol. 2019 30 10 1910 1924 10.1681/ASN.2018070729 31416818
    [Google Scholar]
  31. Sun Y. Liu W.Z. Liu T. Feng X. Yang N. Zhou H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 2015 35 6 600 604 10.3109/10799893.2015.1030412 26096166
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240304670250108055944
Loading
/content/journals/cmm/10.2174/0115665240304670250108055944
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test