Skip to content
2000
image of Contribution of the Activated mTOR-STAT3 Pathway to the Pathogenesis of Focal Cortical Dysplasia Type IIIa in Pediatric Patients through Astrocyte Proliferation Mediation

Abstract

Objective

The aim of this study was to detect the association between the mTOR-STAT3 pathway and focal cortical dysplasia type IIIa (FCD IIIa) in children.

Methods

A retrospective review was conducted based on 26 pediatric patients diagnosed with FCD IIIa who underwent surgical intervention. These patients were selected from a cohort of 157 individuals presenting with temporal lobe epilepsy. For comparative analysis, a control group consisting of 5 children who underwent intracranial decompression was established. Immunohistochemistry, immunofluorescence, and western blot techniques were used to assess the expression levels of mTOR, P-mTOR, P-70s6k, STAT3, P-STAT3, and GFAP in brain tissue specimens obtained from the two groups.

Results

The mTOR-STAT3 pathway exhibited activation in the FCD IIIa group (all P < 0.01). Additionally, immunofluorescence analysis revealed that cells positive for P-STAT3 were identified as astrocytes. Moreover, within the FCD IIIa group, there was a marked elevation in the expression of the mTOR-STAT3 pathway in the hippocampus compared to the brain cortex tissue.

Conclusion

The mTOR-STAT3 pathway was demonstrated to be substantially associated with FCD IIIa in pediatric patients. The activation of the mTOR-STAT3 signaling pathway may contribute to the pathogenesis of FCD IIIa in pediatric patients by modulating the proliferation of astrocytes.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240301053240919071840
2024-10-04
2024-11-26
Loading full text...

Full text loading...

References

  1. Tarkowski B. Kuchcinska K. Blazejczyk M. Jaworski J. Pathological mTOR mutations impact cortical development. Hum. Mol. Genet. 2019 28 13 2107 2119 10.1093/hmg/ddz042 30789219
    [Google Scholar]
  2. Kun Y. Zejun D. Jian Z. Xueling Q. Surgical histopathologic findings of 232 Chinese children cases with drug-resistant seizures. Brain Behav. 2020 10 4 e01565 10.1002/brb3.1565
    [Google Scholar]
  3. Taylor D.C. Falconer M.A. Bruton C.J. Corsellis J.A.N. Focal dysplasia of the cerebral cortex in epilepsy. J. Neurol. Neurosurg. Psychiatry 1971 34 4 369 387 10.1136/jnnp.34.4.369 5096551
    [Google Scholar]
  4. Blümcke I. Thom M. Aronica E. Armstrong D.D. Vinters H.V. Palmini A. Jacques T.S. Avanzini G. Barkovich A.J. Battaglia G. Becker A. Cepeda C. Cendes F. Colombo N. Crino P. Cross J.H. Delalande O. Dubeau F. Duncan J. Guerrini R. Kahane P. Mathern G. Najm I. Özkara Ç. Raybaud C. Represa A. Roper S.N. Salamon N. Schulze-Bonhage A. Tassi L. Vezzani A. Spreafico R. The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission1. Epilepsia 2011 52 1 158 174 10.1111/j.1528‑1167.2010.02777.x 21219302
    [Google Scholar]
  5. Giulioni M. Martinoni M. Marucci G. About focal cortical dysplasia (FCD) type IIIa. Epilepsy Res. 2014 108 10 1955 1957 10.1016/j.eplepsyres.2014.08.002 25178673
    [Google Scholar]
  6. Giulioni M. Marucci G. Martinoni M. Volpi L. Riguzzi P. Marliani A.F. Bisulli F. Tinuper P. Tassinari C.A. Michelucci R. Rubboli G. Seizure outcome in surgically treated drug-resistant mesial temporal lobe epilepsy based on the recent histopathological classifications. J. Neurosurg. 2013 119 1 37 47 10.3171/2013.3.JNS122132 23641822
    [Google Scholar]
  7. Fauser S. Essang C. Altenmüller D.M. Staack A. Steinhoff B.J. Strobl K. Bast T. Schubert-Bast S. Doostkam S. Zentner J. Schulze-Bonhage A. Is there evidence for clinical differences related to the new classification of temporal lobe cortical dysplasia? Epilepsia 2013 54 5 909 917 10.1111/epi.12147 23551067
    [Google Scholar]
  8. Tahta A. Turgut M. Focal cortical dysplasia: Etiology, epileptogenesis, classification, clinical presentation, imaging, and management. Childs Nerv. Syst. 2020 36 12 2939 2947 10.1007/s00381‑020‑04851‑9 32766946
    [Google Scholar]
  9. Crino P.B. mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends Mol. Med. 2011 17 12 734 742 10.1016/j.molmed.2011.07.008 21890410
    [Google Scholar]
  10. Wong M. A critical review of mTOR inhibitors and epilepsy: From basic science to clinical trials. Expert Rev. Neurother. 2013 13 6 657 669 10.1586/ern.13.48 23739003
    [Google Scholar]
  11. Alayev A. Holz M.K. mTOR signaling for biological control and cancer. J. Cell. Physiol. 2013 228 8 1658 1664 10.1002/jcp.24351 23460185
    [Google Scholar]
  12. Hay N. Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004 18 16 1926 1945 10.1101/gad.1212704 15314020
    [Google Scholar]
  13. Laplante M. Sabatini D.M. mTOR signaling at a glance. J. Cell Sci. 2009 122 20 3589 3594 10.1242/jcs.051011 19812304
    [Google Scholar]
  14. Switon K. Kotulska K. Janusz-Kaminska A. Zmorzynska J. Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017 341 112 153 10.1016/j.neuroscience.2016.11.017 27889578
    [Google Scholar]
  15. Wong M. Crino P.B. mTOR and epileptogenesis in developmental brain malformations. Jasper's Basic Mechanisms of the Epilepsies National Center for Biotechnology Information (US) Bethesda (MD) Noebels J.L. Avoli M.L. Rogawski M.A. 4th ed 2012 22787661
    [Google Scholar]
  16. Barkovich A.J. Dobyns W.B. Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb. Perspect. Med. 2015 5 5 a022392 10.1101/cshperspect.a022392 25934463
    [Google Scholar]
  17. Crino P.B. mTOR signaling in epilepsy: Insights from malformations of cortical development. Cold Spring Harb. Perspect. Med. 2015 5 4 a022442 10.1101/cshperspect.a022442 25833943
    [Google Scholar]
  18. Rossini L. Villani F. Granata T. Tassi L. Tringali G. Cardinale F. Aronica E. Spreafico R. Garbelli R. FCD Type II and mTOR pathway: Evidence for different mechanisms involved in the pathogenesis of dysmorphic neurons. Epilepsy Res. 2017 129 146 156 10.1016/j.eplepsyres.2016.12.002 28056425
    [Google Scholar]
  19. Lim J.S. Kim W. Kang H.C. Kim S.H. Park A.H. Park E.K. Cho Y.W. Kim S. Kim H.M. Kim J.A. Kim J. Rhee H. Kang S.G. Kim H.D. Kim D. Kim D.S. Lee J.H. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 2015 21 4 395 400 10.1038/nm.3824 25799227
    [Google Scholar]
  20. Yokogami K. Wakisaka S. Avruch J. Reeves S.A. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol. 2000 10 1 47 50 10.1016/S0960‑9822(99)00268‑7 10660304
    [Google Scholar]
  21. D’Amico S. Shi J. Martin B.L. Crawford H.C. Petrenko O. Reich N.C. STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis. Genes Dev. 2018 32 17-18 1175 1187 10.1101/gad.311852.118 30135074
    [Google Scholar]
  22. Thaper D. Vahid S. Kaur R. Kumar S. Nouruzi S. Bishop J.L. Johansson M. Zoubeidi A. Galiellalactone inhibits the STAT3/AR signaling axis and suppresses enzalutamide-resistant Prostate Cancer. Sci. Rep. 2018 8 1 17307 10.1038/s41598‑018‑35612‑z 30470788
    [Google Scholar]
  23. Xu Z. Xue T. Zhang Z. Wang X. Xu P. Zhang J. Lei X. Li Y. Xie Y. Wang L. Fang M. Chen Y. Role of signal transducer and activator of transcription-3 in up-regulation of GFAP after epilepsy. Neurochem. Res. 2011 36 12 2208 2215 10.1007/s11064‑011‑0576‑1 21833841
    [Google Scholar]
  24. Luwor R.B. Stylli S.S. Kaye A.H. The role of Stat3 in glioblastoma multiforme. J. Clin. Neurosci. 2013 20 7 907 911 10.1016/j.jocn.2013.03.006 23688441
    [Google Scholar]
  25. Tian D.S. Peng J. Murugan M. Feng L.J. Liu J.L. Eyo U.B. Zhou L.J. Mogilevsky R. Wang W. Wu L.J. Chemokine CCL2–CCR2 signaling induces neuronal cell death via STAT3 activation and IL-1β production after status epilepticus. J. Neurosci. 2017 37 33 7878 7892 10.1523/JNEUROSCI.0315‑17.2017 28716963
    [Google Scholar]
  26. Grabenstatter H.L. Del Angel Y.C. Carlsen J. Wempe M.F. White A.M. Cogswell M. Russek S.J. Brooks-Kayal A.R. The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol. Dis. 2014 62 73 85 10.1016/j.nbd.2013.09.003 24051278
    [Google Scholar]
  27. Kwan P. Arzimanoglou A. Berg A.T. Brodie M.J. Allen Hauser W. Mathern G. Moshé S.L. Perucca E. Wiebe S. French J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010 51 6 1069 1077 10.1111/j.1528‑1167.2009.02397.x 19889013
    [Google Scholar]
  28. Blümcke I. Thom M. Aronica E. Armstrong D.D. Bartolomei F. Bernasconi A. Bernasconi N. Bien C.G. Cendes F. Coras R. Cross J.H. Jacques T.S. Kahane P. Mathern G.W. Miyata H. Moshé S.L. Oz B. Özkara Ç. Perucca E. Sisodiya S. Wiebe S. Spreafico R. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013 54 7 1315 1329 10.1111/epi.12220 23692496
    [Google Scholar]
  29. Meng X.F. Yu J.T. Song J.H. Chi S. Tan L. Role of the mTOR signaling pathway in epilepsy J. Neurol. Sci. 2013 332 1-2 4 15 10.1016/j.jns.2013.05.029
    [Google Scholar]
  30. Saxton R.A. Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017 169 2 361 371 10.1016/j.cell.2017.03.035 28388417
    [Google Scholar]
  31. Blümcke I. Sarnat H.B. Somatic mutations rather than viral infection classify focal cortical dysplasia type II as mTORopathy. Curr. Opin. Neurol. 2016 29 3 388 395 10.1097/WCO.0000000000000303 26840044
    [Google Scholar]
  32. Ren Y. Liu Y. Wang S. Lei Z. Yan Y. Guan X. Hou J. Zhu S. Shan H. Tian X. Wang Q. Cao C. Zhang Y. Ma Y. Zhike pingchuan granules improve bronchial asthma by regulating the IL‑6/JAK2/STAT3 pathway. Exp. Ther. Med. 2021 22 2 899 10.3892/etm.2021.10331 34257712
    [Google Scholar]
  33. Wang D.Q. Ding X.P. Yin S. Mao Y.D. Role of the IL-11/STAT3 signaling pathway in human chronic atrophic gastritis and gastric cancer. Genet. Mol. Res. 2016 15 2 10.4238/gmr.15027358 27173233
    [Google Scholar]
  34. Li S.W. Wang C.Y. Jou Y.J. Yang T.C. Huang S.H. Wan L. Lin Y.J. Lin C.W. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway. Sci. Rep. 2016 6 1 25754 10.1038/srep25754 27173006
    [Google Scholar]
  35. Lui G.Y. Kovacevic Z. V Menezes S. Kalinowski D.S. Merlot A.M. Sahni S. Richardson D.R. Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: Inhibition of constitutive and interleukin 6-induced activation by iron depletion. Mol. Pharmacol. 2015 87 3 543 560 10.1124/mol.114.096529 25561562
    [Google Scholar]
  36. Lieblein J.C. Ball S. Hutzen B. Sasser A.K. Lin H.J. Huang T.H.M. Hall B.M. Lin J. STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC Cancer 2008 8 1 302 10.1186/1471‑2407‑8‑302 18939993
    [Google Scholar]
  37. Zhang Z.H. Li M.Y. Wang Z. Zuo H.X. Wang J.Y. Xing Y. Jin C. Xu G. Piao L. Piao H. Ma J. Jin X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine 2020 68 153172 10.1016/j.phymed.2020.153172 32004989
    [Google Scholar]
  38. Song L. Zhang H. Qu X.P. Jin J. Wang C. Jiang X. Gao L. Li G. Wang D. Shen L. Liu B. Increased expression of Rho-associated protein kinase 2 confers astroglial Stat3 pathway activation during epileptogenesis. Neurosci. Res. 2022 177 25 37 10.1016/j.neures.2021.10.013 34740726
    [Google Scholar]
  39. Tipton A.E. Cruz Del Angel Y. Hixson K. Carlsen J. Strode D. Busquet N. Mesches M.H. Gonzalez M.I. Napoli E. Russek S.J. Brooks-Kayal A.R. Selective neuronal knockout of STAT3 function inhibits epilepsy progression, improves cognition, and restores dysregulated gene networks in a temporal lobe epilepsy model. Ann. Neurol. 2023 94 1 106 122 10.1002/ana.26644 36935347
    [Google Scholar]
  40. Wang J.Y. Li W.L. Wu J. Expression of signal transduction and transcriptional activator 3 in children with focal temporal cortical dysplasia Ⅲa. J. Clin. Pediatr. 2014 32 09 859 862
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240301053240919071840
Loading
/content/journals/cmm/10.2174/0115665240301053240919071840
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: focal cortical dysplasia IIIa ; mTOR-STAT3 pathway ; hippocampus ; children ; GFAP ; Astrocyte
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test