Skip to content
2000
image of Cancer-associated Fibroblasts (CAFs) Regulate Lung Cancer Malignant Progression by Transferring SERPINE2 (PN1) via Exosomes

Abstract

Background and Aim

Cancer-associated fibroblasts (CAFs), one of the most abundant stromal cell types in the tumor microenvironment (TME), are potential targets for cancer treatments such as lung cancer. However, the underlying mechanism by which CAFs promote lung cancer progression remains elusive.

Methods

We obtained primary CAFs, normal fibroblasts (NFs), and their exosomes and constructed protease nexin-1 (PN1) stably silenced or over-expressed CAFs cells using lentivirus. Bioinformatics was used to obtain the expression of PN1 in lung cancer and normal tissues, the relationship with overall survival, and the enriched pathways. The MTT and Transwell assays were performed to detect the proliferation, migration, and invasion abilities of lung cancer cells after treatment. Western blotting, qRT-PCR, immunohistochemistry, and xenograft models were used to illustrate the role of CAFs in lung cancer progression exosomes.

Results

CAFs-derived exosomes, in which PN1 was more highly expressed than that in NFs-derived ones, effectively promoted the proliferation, migration, and invasion potentials of lung cancer cells A549 and H1975. Meanwhile, the PN1 expression was higher in lung cancer tissues than that in normal tissues and was negatively associated with the overall survival rate of lung cancer patients. More importantly, over-expressing or silencing of PN1 in A549 and H1975 cells promoted or inhibited cell proliferation, migration, and invasion, correspondingly. Furthermore, treated with PN1 overexpressing CAFs-derived exosomes, the lung cancer cells proliferation, migration, and invasion varied positively and were accompanied by activation of Toll-like and NF-κB signaling pathways. However, this phenomenon can be reversed by AN-3485, an antagonist of the Toll-like pathway. Finally, overexpression of PN1 leads to accelerated tumor growth by increasing the expression of the proliferation biomarker Ki67 and activation of the NF-κB signaling pathway .

Conclusion

CAFs promoted lung cancer progression by transferring PN1 and activating the Toll-like/NF-κB signaling pathway exosomes.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240289093240109062852
2024-10-25
2024-11-26
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  2. Xia C. Dong X. Li H. Cao M. Sun D. He S. Yang F. Yan X. Zhang S. Li N. Chen W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022 135 5 584 590 10.1097/CM9.0000000000002108 35143424
    [Google Scholar]
  3. Hoy H. Lynch T. Beck M. Surgical treatment of lung cancer. Crit. Care Nurs. Clin. North Am. 2019 31 3 303 313 10.1016/j.cnc.2019.05.002 31351552
    [Google Scholar]
  4. Deneka A.Y. Kopp M.C. Nikonova A.S. Gaponova A.V. Kiseleva A.A. Hensley H.H. Flieder D.B. Serebriiskii I.G. Golemis E.A. Nedd9 restrains autophagy to limit growth of early stage non-small cell lung cancer. Cancer Res. 2021 81 13 3717 3726 10.1158/0008‑5472.CAN‑20‑3626 34006524
    [Google Scholar]
  5. Miller K.D. Nogueira L. Devasia T. Mariotto A.B. Yabroff K.R. Jemal A. Kramer J. Siegel R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022 72 5 409 436 10.3322/caac.21731 35736631
    [Google Scholar]
  6. Altorki N.K. Markowitz G.J. Gao D. Port J.L. Saxena A. Stiles B. McGraw T. Mittal V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer 2019 19 1 9 31 10.1038/s41568‑018‑0081‑9 30532012
    [Google Scholar]
  7. Pitt J.M. Marabelle A. Eggermont A. Soria J.C. Kroemer G. Zitvogel L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann. Oncol. 2016 27 8 1482 1492 10.1093/annonc/mdw168 27069014
    [Google Scholar]
  8. Otsuki Y. Saya H. Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev. Dyn. 2018 247 3 462 472 10.1002/dvdy.24596 28960588
    [Google Scholar]
  9. Kim B.N. Ahn D.H. Kang N. Yeo C.D. Kim Y.K. Lee K.Y. Kim T.J. Lee S.H. Park M.S. Yim H.W. Park J.Y. Park C.K. Kim S.J. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci. Rep. 2020 10 1 10597 10.1038/s41598‑020‑67325‑7 32606331
    [Google Scholar]
  10. Tulchinsky E. Demidov O. Kriajevska M. Barlev N.A. Imyanitov E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim. Biophys. Acta Rev. Cancer 2019 1871 1 29 39 10.1016/j.bbcan.2018.10.003 30419315
    [Google Scholar]
  11. Mahmood M.Q. Ward C. Muller H.K. Sohal S.S. Walters E.H. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): A mutual association with airway disease. Med. Oncol. 2017 34 3 45 10.1007/s12032‑017‑0900‑y 28197929
    [Google Scholar]
  12. Chae Y.K. Chang S. Ko T. Anker J. Agte S. Iams W. Choi W.M. Lee K. Cruz M. Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci. Rep. 2018 8 1 2918 10.1038/s41598‑018‑21061‑1 29440769
    [Google Scholar]
  13. Salazar Y. Zheng X. Brunn D. Raifer H. Picard F. Zhang Y. Winter H. Guenther S. Weigert A. Weigmann B. Dumoutier L. Renauld J.C. Waisman A. Schmall A. Tufman A. Fink L. Brüne B. Bopp T. Grimminger F. Seeger W. Pullamsetti S.S. Huber M. Savai R. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. J. Clin. Invest. 2020 130 7 3560 3575 10.1172/JCI124037 32229721
    [Google Scholar]
  14. Wang L. Li S. Luo H. Lu Q. Yu S. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J. Exp. Clin. Cancer Res. 2022 41 1 303 10.1186/s13046‑022‑02477‑0 36242053
    [Google Scholar]
  15. Bao Z. Zeng W. Zhang D. Wang L. Deng X. Lai J. Li J. Gong J. Xiang G. SNAIL induces EMT and lung metastasis of tumours secreting CXCL2 to promote the invasion of M2-Type immunosuppressed macrophages in colorectal cancer. Int. J. Biol. Sci. 2022 18 7 2867 2881 10.7150/ijbs.66854 35541899
    [Google Scholar]
  16. Ma C. Yang C. Peng A. Sun T. Ji X. Mi J. Wei L. Shen S. Feng Q. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol. Cancer 2023 22 1 170 10.1186/s12943‑023‑01876‑x 37833788
    [Google Scholar]
  17. Wang R. Sun Y. Yu W. Yan Y. Qiao M. Jiang R. Guan W. Wang L. Downregulation of miRNA-214 in cancer-associated fibroblasts contributes to migration and invasion of gastric cancer cells through targeting FGF9 and inducing EMT. J. Exp. Clin. Cancer Res. 2019 38 1 20 10.1186/s13046‑018‑0995‑9 30646925
    [Google Scholar]
  18. Goulet C.R. Champagne A. Bernard G. Vandal D. Chabaud S. Pouliot F. Bolduc S. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer 2019 19 1 137 10.1186/s12885‑019‑5353‑6 30744595
    [Google Scholar]
  19. Romeo E. Caserta C.A. Rumio C. Marcucci F. The vicious cross-talk between tumor cells with an EMT phenotype and cells of the immune system. Cells 2019 8 5 460 10.3390/cells8050460 31096701
    [Google Scholar]
  20. Moradpoor R. Salimi M. Crosstalk between tumor cells and immune system leads to epithelial-mesenchymal transition induction and breast cancer progression. Iran. Biomed. J. 2021 25 1 1 7 10.29252/ibj.25.1.1 33129234
    [Google Scholar]
  21. Sadeghi Rad H Monkman J Understanding the tumor microenvironment for effective immunotherapy. Med Res Rev 2021 41 3 1474 98 10.1002/med.21765
    [Google Scholar]
  22. Nallasamy P. Nimmakayala R.K. Parte S. Are A.C. Batra S.K. Ponnusamy M.P. Tumor microenvironment enriches the stemness features: The architectural event of therapy resistance and metastasis. Mol. Cancer 2022 21 1 225 10.1186/s12943‑022‑01682‑x 36550571
    [Google Scholar]
  23. Mao X. Xu J. Wang W. Liang C. Hua J. Liu J. Zhang B. Meng Q. Yu X. Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021 20 1 131 10.1186/s12943‑021‑01428‑1 34635121
    [Google Scholar]
  24. Kabir A.U. Subramanian M. Lee D.H. Wang X. Krchma K. Wu J. Naismith T. Halabi C.M. Kim J.Y. Pulous F.E. Petrich B.G. Kim S. Park H.C. Hanson P.I. Pan H. Wickline S.A. Fremont D.H. Park C. Choi K. Dual role of endothelial Myct1 in tumor angiogenesis and tumor immunity. Sci. Transl. Med. 2021 13 583 eabb6731 10.1126/scitranslmed.abb6731 33658356
    [Google Scholar]
  25. Cheng Y. Mo F. Li Q. Han X. Shi H. Chen S. Wei Y. Wei X. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol. Cancer 2021 20 1 62 10.1186/s12943‑021‑01355‑1 33814009
    [Google Scholar]
  26. Zalpoor H. Aziziyan F. Liaghat M. Bakhtiyari M. Akbari A. Nabi-Afjadi M. Forghaniesfidvajani R. Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun. Signal. 2022 20 1 186 10.1186/s12964‑022‑00951‑y 36419156
    [Google Scholar]
  27. Fantozzi A. Gruber D.C. Pisarsky L. Heck C. Kunita A. Yilmaz M. Meyer-Schaller N. Cornille K. Hopfer U. Bentires-Alj M. Christofori G. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res. 2014 74 5 1566 1575 10.1158/0008‑5472.CAN‑13‑1641 24413534
    [Google Scholar]
  28. Yang S. Liu Y. Li M.Y. Ng C.S.H. Yang S. Wang S. Zou C. Dong Y. Du J. Long X. Liu L.Z. Wan I.Y.P. Mok T. Underwood M.J. Chen G.G. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer 2017 16 1 124 10.1186/s12943‑017‑0700‑1 28716029
    [Google Scholar]
  29. Sun W. Tang L. MDM2 increases drug resistance in cancer cells by inducing EMT independent of p53. Curr. Med. Chem. 2016 23 40 4529 4539 10.2174/0929867323666160926150820 27686656
    [Google Scholar]
  30. Liao Y. Huang J. Liu P. Zhang C. Liu J. Xia M. Shang C. Ooi S. Chen Y. Qin S. Du Q. Liu T. Xu M. Zou Q. Zhou Y. Huang H. Pan Y. Wang W. Yao S. Downregulation of LNMAS orchestrates partial EMT and immune escape from macrophage phagocytosis to promote lymph node metastasis of cervical cancer. Oncogene 2022 41 13 1931 1943 10.1038/s41388‑022‑02202‑3 35152264
    [Google Scholar]
  31. Liu T Zhou L Li D Andl T Zhang Y Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 2019 7 60 10.3389/fcell.2019.00060
    [Google Scholar]
  32. Hu H Piotrowska Z Hare PJ Chen H Mulvey HE Mayfield A Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 2021 39 11 1531 47 10.1016/j.ccell.2021.09.003
    [Google Scholar]
  33. Chen Y. McAndrews K.M. Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 2021 18 12 792 804 10.1038/s41571‑021‑00546‑5 34489603
    [Google Scholar]
  34. Chen X. Song E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 2019 18 2 99 115 10.1038/s41573‑018‑0004‑1 30470818
    [Google Scholar]
  35. Wu F. Yang J. Liu J. Wang Y. Mu J. Zeng Q. Deng S. Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021 6 1 218 10.1038/s41392‑021‑00641‑0 34108441
    [Google Scholar]
  36. Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016 16 9 582 598 10.1038/nrc.2016.73 27550820
    [Google Scholar]
  37. Ma Z Li X Mao Y Wei C Huang Z Li G Interferon-dependent SLC14A1(+) cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022 40 12 1550 65
    [Google Scholar]
  38. Eckert M.A. Coscia F. Chryplewicz A. Chang J.W. Hernandez K.M. Pan S. Tienda S.M. Nahotko D.A. Li G. Blaženović I. Lastra R.R. Curtis M. Yamada S.D. Perets R. McGregor S.M. Andrade J. Fiehn O. Moellering R.E. Mann M. Lengyel E. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 2019 569 7758 723 728 10.1038/s41586‑019‑1173‑8 31043742
    [Google Scholar]
  39. Picard F.S.R. Lutz V. Brichkina A. Neuhaus F. Ruckenbrod T. Hupfer A. Raifer H. Klein M. Bopp T. Pfefferle P.I. Savai R. Prinz I. Waisman A. Moos S. Chang H.D. Heinrich S. Bartsch D.K. Buchholz M. Singh S. Tu M. Klein L. Bauer C. Liefke R. Burchert A. Chung H.R. Mayer P. Gress T.M. Lauth M. Gaida M. Huber M. IL-17A-producing CD8 + T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut 2023 72 8 1510 1522 10.1136/gutjnl‑2022‑327855 36759154
    [Google Scholar]
  40. Kong J. Tian H. Zhang F. Zhang Z. Li J. Liu X. Li X. Liu J. Li X. Jin D. Yang X. Sun B. Guo T. Luo Y. Lu Y. Lin B. Liu T. Extracellular vesicles of carcinoma-associated fibroblasts creates a pre-metastatic niche in the lung through activating fibroblasts. Mol. Cancer 2019 18 1 175 10.1186/s12943‑019‑1101‑4 31796058
    [Google Scholar]
  41. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  42. Jiang C. Zhang N. Hu X. Wang H. Tumor-associated exosomes promote lung cancer metastasis through multiple mechanisms. Mol. Cancer 2021 20 1 117 10.1186/s12943‑021‑01411‑w 34511114
    [Google Scholar]
  43. Guenther J. Nick H. Monard D. A glia-derived neurite-promoting factor with protease inhibitory activity. EMBO J. 1985 4 8 1963 1966 10.1002/j.1460‑2075.1985.tb03878.x 4065100
    [Google Scholar]
  44. Bergeron S Lemieux E Durand V Cagnol S Carrier JC Lussier JG The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis. Mol Cancer 2010 9 271 10.1186/1476‑4598‑9‑271
    [Google Scholar]
  45. Wang K. Wang B. Xing A.Y. Xu K.S. Li G.X. Yu Z.H. Prognostic significance of SERPINE2 in gastric cancer and its biological function in SGC7901 cells. J. Cancer Res. Clin. Oncol. 2015 141 5 805 812 10.1007/s00432‑014‑1858‑1 25359682
    [Google Scholar]
  46. Tang T. Zhu Q. Li X. Zhu G. Deng S. Wang Y. Ni L. Chen X. Zhang Y. Xia T. Zen K. Pan Y. Jin L. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Dis. 2019 10 9 649 10.1038/s41419‑019‑1882‑9 31501409
    [Google Scholar]
  47. Buchholz M. Biebl A. Neesse A. Wagner M. Iwamura T. Leder G. Adler G. Gress T.M. SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res. 2003 63 16 4945 4951 12941819
    [Google Scholar]
  48. Dokuni R. Nagano T. Jimbo N. Sato H. Kiriu T. Yasuda Y. Yamamoto M. Tachihara M. Kobayashi K. Maniwa Y. Nishimura Y. High expression level of serpin peptidase inhibitor clade E member 2 is associated with poor prognosis in lung adenocarcinoma. Respir. Res. 2020 21 1 331 10.1186/s12931‑020‑01597‑5 33317533
    [Google Scholar]
  49. Mitra A.K. Zillhardt M. Hua Y. Tiwari P. Murmann A.E. Peter M.E. Lengyel E. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2012 2 12 1100 1108 10.1158/2159‑8290.CD‑12‑0206 23171795
    [Google Scholar]
  50. Tang Y.T. Huang Y.Y. Zheng L. Qin S.H. Xu X.P. An T.X. Xu Y. Wu Y.S. Hu X.M. Ping B.H. Wang Q. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int. J. Mol. Med. 2017 40 3 834 844 10.3892/ijmm.2017.3080 28737826
    [Google Scholar]
  51. Hinshaw D.C. Shevde L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019 79 18 4557 4566 10.1158/0008‑5472.CAN‑18‑3962 31350295
    [Google Scholar]
  52. Belli C Trapani D via le G D'Amico P Duso BA Della Vigna P Targeting the microenvironment in solid tumors. Cancer Treat Rev 2018 65 22 32 10.1016/j.ctrv.2018.02.004
    [Google Scholar]
  53. Petroni G. Buqué A. Coussens L.M. Galluzzi L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug Discov. 2022 21 6 440 462 10.1038/s41573‑022‑00415‑5 35292771
    [Google Scholar]
  54. Valkenburg K.C. de Groot A.E. Pienta K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018 15 6 366 381 10.1038/s41571‑018‑0007‑1 29651130
    [Google Scholar]
  55. Xu H. Ye D. Ren M. Zhang H. Bi F. Ferroptosis in the tumor microenvironment: Perspectives for immunotherapy. Trends Mol. Med. 2021 27 9 856 867 10.1016/j.molmed.2021.06.014 34312075
    [Google Scholar]
  56. Bader J.E. Voss K. Rathmell J.C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 2020 78 6 1019 1033 10.1016/j.molcel.2020.05.034 32559423
    [Google Scholar]
  57. de Visser K.E. Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023 41 3 374 403 10.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  58. Saw P.E. Chen J. Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022 8 7 527 555 10.1016/j.trecan.2022.03.001 35331673
    [Google Scholar]
  59. Su S. Chen J. Yao H. Liu J. Yu S. Lao L. Wang M. Luo M. Xing Y. Chen F. Huang D. Zhao J. Yang L. Liao D. Su F. Li M. Liu Q. Song E. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 2018 172 4 841 856.e16 10.1016/j.cell.2018.01.009 29395328
    [Google Scholar]
  60. Liu T. Han C. Fang P. Ma Z. Wang X. Chen H. Wang S. Meng F. Wang C. Zhang E. Dong G. Zhu H. Yin W. Wang J. Zuo X. Qiu M. Wang J. Qian X. Shen H. Xu L. Hu Z. Yin R. Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J. Hematol. Oncol. 2022 15 1 141 10.1186/s13045‑022‑01359‑4 36209111
    [Google Scholar]
  61. Kim H.J. Yang K. Kim K. Lee Y.J. Lee S. Ahn S.Y. Ahn Y.H. Kang J.L. Reprogramming of cancer-associated fibroblasts by apoptotic cancer cells inhibits lung metastasis via Notch1-WISP-1 signaling. Cell. Mol. Immunol. 2022 19 12 1373 1391 10.1038/s41423‑022‑00930‑w 36241874
    [Google Scholar]
  62. Cruz-Bermúdez A Laza-Briviesca R Vicente-Blanco RJ García-Grande A Coronado MJ Laine-Menéndez S Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling. Free Radic Biol Med 2019 130 163 73
    [Google Scholar]
  63. Chen WJ Ho CC Chang YL Chen HY Lin CA Ling TY Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 2014 5 3472 10.1038/ncomms4472
    [Google Scholar]
  64. Yoshida T. Ishii G. Goto K. Neri S. Hashimoto H. Yoh K. Niho S. Umemura S. Matsumoto S. Ohmatsu H. Iida S. Niimi A. Nagai K. Ohe Y. Ochiai A. Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clin. Cancer Res. 2015 21 3 642 651 10.1158/1078‑0432.CCR‑14‑0846 25388165
    [Google Scholar]
  65. Fang T. Lv H. Lv G. Li T. Wang C. Han Q. Yu L. Su B. Guo L. Huang S. Cao D. Tang L. Tang S. Wu M. Yang W. Wang H. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 2018 9 1 191 10.1038/s41467‑017‑02583‑0 29335551
    [Google Scholar]
  66. Shi L. Zhu W. Huang Y. Zhuo L. Wang S. Chen S. Zhang B. Ke B. Cancer‐associated fibroblast‐derived exosomal microRNA‐20a suppresses the PTEN/PI3K‐AKT pathway to promote the progression and chemoresistance of non‐small cell lung cancer. Clin. Transl. Med. 2022 12 7 e989 10.1002/ctm2.989 35857905
    [Google Scholar]
  67. Jiang Y Wang K Lu X Wang Y Chen J Cancer-associated fibroblasts-derived exosomes promote lung cancer progression by OIP5-AS1/miR-142-5p/PD-L1 axis. Mol Immunol 2021 140 47 58
    [Google Scholar]
  68. You J. Li M. Cao L.M. Gu Q.H. Deng P.B. Tan Y. Hu C.P. Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes. QJM 2019 112 8 581 590 10.1093/qjmed/hcz093 31106370
    [Google Scholar]
  69. McKee C.M. Xu D. Muschel R.J. Protease nexin 1: A novel regulator of prostate cancer cell growth and neo-angiogenesis. Oncotarget 2013 4 1 1 2 10.18632/oncotarget.824 23385179
    [Google Scholar]
  70. Fayard B. Bianchi F. Dey J. Moreno E. Djaffer S. Hynes N.E. Monard D. The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression. Cancer Res. 2009 69 14 5690 5698 10.1158/0008‑5472.CAN‑08‑4573 19584287
    [Google Scholar]
  71. Gao S. Krogdahl A. Sørensen J.A. Kousted T.M. Dabelsteen E. Andreasen P.A. Overexpression of protease nexin-1 mRNA and protein in oral squamous cell carcinomas. Oral Oncol. 2008 44 3 309 313 10.1016/j.oraloncology.2007.02.009 17468036
    [Google Scholar]
  72. Pagliara V. Adornetto A. Mammì M. Masullo M. Sarnataro D. Pietropaolo C. Arcone R. Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase Plasminogen Activator and Matrix Metalloproteinase-9/2. Biochim. Biophys. Acta Mol. Cell Res. 2014 1843 11 2631 2644 10.1016/j.bbamcr.2014.07.008 25072751
    [Google Scholar]
  73. Xin X. Ding Y. Yang Y. Fu X. Zhou J. McKee C.M. Muschel R.J. Gale R.P. Apperley J.F. Xu D. Protease nexin-1 prevents growth of human B cell lymphoma via inhibition of sonic hedgehog signaling. Blood Cancer J. 2018 8 2 24 10.1038/s41408‑018‑0063‑x 29483508
    [Google Scholar]
  74. Xu D. McKee C.M. Cao Y. Ding Y. Kessler B.M. Muschel R.J. Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1. Cancer Res. 2010 70 17 6988 6998 10.1158/0008‑5472.CAN‑10‑0242 20736374
    [Google Scholar]
  75. Zhang J Wu Q Zhu L Xie S Tu L Yang Y SERPINE2/PN-1 regulates the DNA damage response and radioresistance by activating ATM in lung cancer. Cancer Lett 2022 524 268 83
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240289093240109062852
Loading
/content/journals/cmm/10.2174/0115665240289093240109062852
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test