Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Most chronic respiratory diseases often lead to the clinical manifestation of pulmonary fibrosis. Inflammation and immune disorders are widely recognized as primary contributors to the onset of pulmonary fibrosis. Given that macrophages are predominantly responsible for inflammation and immune disorders, in this review, we first focused on the role of different subpopulations of macrophages in the lung and discussed the crosstalk between macrophages and other immune cells, such as neutrophils, regulatory T cells, NKT cells, and B lymphocytes during pulmonary fibrogenesis. Subsequently, we analyzed the interaction between macrophages and fibroblasts as a possible new research direction. Finally, we proposed that exosomes, which function as a means of communication between macrophages and target cells to maintain cellular homeostasis, are a strategy for targeting lung drugs in the future. By comprehending the mechanisms underlying the interplay between macrophages and other lung cells, we aim to enhance our understanding of pulmonary fibrosis, leading to improved diagnostics, preventative measures, and the potential development of macrophage-based therapeutics.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240286046240112112310
2025-01-06
2025-05-25
Loading full text...

Full text loading...

References

  1. CaoX. YakalaG.K. van den HilF.E. CochraneA. MummeryC.L. OrlovaV.V. Differentiation and functional comparison of monocytes and macrophages from hiPSCs with peripheral blood derivatives.Stem Cell Reports20191261282129710.1016/j.stemcr.2019.05.003 31189095
    [Google Scholar]
  2. KonttinenH. Cabral-da-SilvaM.C. OhtonenS. PSEN1ΔE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia.Stem Cell Reports201913466968310.1016/j.stemcr.2019.08.004 31522977
    [Google Scholar]
  3. AckermannM. KempfH. HetzelM. Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections.Nat. Commun.201891508810.1038/s41467‑018‑07570‑7 30504915
    [Google Scholar]
  4. BissonnetteE.Y. Lauzon-JosetJ.F. DebleyJ.S. ZieglerS.F. Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis.Front. Immunol.20201158304210.3389/fimmu.2020.583042
    [Google Scholar]
  5. JoshiN. WatanabeS. VermaR. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages.Eur. Respir. J.2020551190064610.1183/13993003.00646‑2019 31601718
    [Google Scholar]
  6. DickS.A. WongA. HamidzadaH. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles.Sci. Immunol.2022767eabf777710.1126/sciimmunol.abf7777 34995099
    [Google Scholar]
  7. GinhouxF. GreterM. LeboeufM. Fate mapping analysis reveals that adult microglia derive from primitive macrophages.Science2010330600584184510.1126/science.1194637 20966214
    [Google Scholar]
  8. HoeffelG. WangY. GreterM. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages.J. Exp. Med.201220961167118110.1084/jem.20120340 22565823
    [Google Scholar]
  9. HoeffelG. ChenJ. LavinY. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.Immunity201542466567810.1016/j.immuni.2015.03.011 25902481
    [Google Scholar]
  10. SamokhvalovI.M. Deconvoluting the ontogeny of hematopoietic stem cells.Cell. Mol. Life Sci.201471695797810.1007/s00018‑013‑1364‑7 23708646
    [Google Scholar]
  11. GordonS. PlüddemannA. Tissue macrophages: Heterogeneity and functions.BMC Biol.20171515310.1186/s12915‑017‑0392‑4 28662662
    [Google Scholar]
  12. MisharinA.V. Morales-NebredaL. ReyfmanP.A. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span.J. Exp. Med.201721482387240410.1084/jem.20162152 28694385
    [Google Scholar]
  13. van de LaarL. SaelensW. De PrijckS. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages.Immunity201644475576810.1016/j.immuni.2016.02.017 26992565
    [Google Scholar]
  14. SahaS. ShalovaI.N. BiswasS.K. Metabolic regulation of macrophage phenotype and function.Immunol. Rev.2017280110211110.1111/imr.12603 29027220
    [Google Scholar]
  15. EpelmanS. LavineK.J. RandolphG.J. Origin and functions of tissue macrophages.Immunity2014411213510.1016/j.immuni.2014.06.013 25035951
    [Google Scholar]
  16. GuilliamsM. GinhouxF. JakubzickC. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny.Nat. Rev. Immunol.201414857157810.1038/nri3712 25033907
    [Google Scholar]
  17. YonaS. KimK.W. WolfY. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis.Immunity2013381799110.1016/j.immuni.2012.12.001 23273845
    [Google Scholar]
  18. LiF. PiattiniF. PohlmeierL. FengQ. RehrauerH. KopfM. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection.Sci. Immunol.2022773eabj576110.1126/sciimmunol.abj5761 35776802
    [Google Scholar]
  19. ShiT. DenneyL. AnH. HoL.P. ZhengY. Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis.J. Leukoc. Biol.2021110110711410.1002/JLB.3RU0720‑418R 33155728
    [Google Scholar]
  20. EvrenE. RingqvistE. WillingerT. Origin and ontogeny of lung macrophages: From mice to humans.Immunology2020160212613810.1111/imm.13154 31715003
    [Google Scholar]
  21. YuY.R.A. HottenD.F. MalakhauY. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues.Am. J. Respir. Cell Mol. Biol.2016541132410.1165/rcmb.2015‑0146OC 26267148
    [Google Scholar]
  22. AdamsT.S. SchuppJ.C. PoliS. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis.Sci. Adv.1983628
    [Google Scholar]
  23. LeachS.M. GibbingsS.L. TewariA.D. Human and mouse transcriptome profiling identifies cross-species homology in pulmonary and lymph node mononuclear phagocytes.Cell Rep.202033510833710.1016/j.celrep.2020.108337 33147458
    [Google Scholar]
  24. VarinA. MukhopadhyayS. HerbeinG. GordonS. Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion.Blood2010115235336210.1182/blood‑2009‑08‑236711 19880493
    [Google Scholar]
  25. LocatiM. CurtaleG. MantovaniA. Diversity, mechanisms, and significance of macrophage plasticity.Annu. Rev. Pathol.202015112314710.1146/annurev‑pathmechdis‑012418‑012718 31530089
    [Google Scholar]
  26. MillsC.D. Anatomy of a discovery: M1 and m2 macrophages.Front. Immunol.2015621210.3389/fimmu.2015.00212 25999950
    [Google Scholar]
  27. MurrayP.J. Macrophage polarization.Annu. Rev. Physiol.201779154156610.1146/annurev‑physiol‑022516‑034339 27813830
    [Google Scholar]
  28. SpillerK.L. AnfangR.R. SpillerK.J. The role of macrophage phenotype in vascularization of tissue engineering scaffolds.Biomaterials201435154477448810.1016/j.biomaterials.2014.02.012 24589361
    [Google Scholar]
  29. MantovaniA. SicaA. SozzaniS. AllavenaP. VecchiA. LocatiM. The chemokine system in diverse forms of macrophage activation and polarization.Trends Immunol.2004251267768610.1016/j.it.2004.09.015 15530839
    [Google Scholar]
  30. FerranteC.J. Pinhal-EnfieldG. ElsonG. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling.Inflammation201336492193110.1007/s10753‑013‑9621‑3 23504259
    [Google Scholar]
  31. WangL. ZhangS. WuH. RongX. GuoJ. M2b macrophage polarization and its roles in diseases.J. Leukoc. Biol.2019106234535810.1002/JLB.3RU1018‑378RR 30576000
    [Google Scholar]
  32. HuangX. LiY. FuM. XinH.B. Polarizing macrophages in vitro.Methods Mol. Biol.2018178411912610.1007/978‑1‑4939‑7837‑3_12 29761394
    [Google Scholar]
  33. MalyshevI. MalyshevY. Current concept and update of the macrophage plasticity concept: Intracellular mechanisms of reprogramming and m3 macrophage “switch” phenotype.BioMed Res. Int.2015201512210.1155/2015/341308 26366410
    [Google Scholar]
  34. LyaminaS. MalyshevI. Imbalance of immune response functional phenotype and alveolar macrophages phenotype in COPD.Proceedings of the International Congress of European Respiratory SocietyMunich, Germany20141483
    [Google Scholar]
  35. MalyshevI. LyaminaS. Imbalance of M1/M2 alveolar macrophages phenotype in bronchial asthma (LB506).FASEB J.201428S1LB50610.1096/fasebj.28.1_supplement.lb506
    [Google Scholar]
  36. GuoX. LiT. XuY. Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice.J. Biol. Chem.201729234140031401510.1074/jbc.M117.802066 28687632
    [Google Scholar]
  37. WangJ. XuL. XiangZ. Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206+ M2-like macrophage polarization.Cell Death Dis.202011213610.1038/s41419‑020‑2329‑z 32075954
    [Google Scholar]
  38. ChungE.J. KwonS. ReedyJ.L. IGF-1 receptor signaling regulates type ii pneumocyte senescence and resulting macrophage polarization in lung fibrosis.Int. J. Radiat. Oncol. Biol. Phys.2021110252653810.1016/j.ijrobp.2020.12.035 33385497
    [Google Scholar]
  39. ZhaoP. CaiZ. TianY. Effective-compound combination inhibits the M2-like polarization of macrophages and attenuates the development of pulmonary fibrosis by increasing autophagy through mTOR signaling.Int. Immunopharmacol.2021101108360
    [Google Scholar]
  40. XiaoT. ZouZ. XueJ. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure.Environ. Pollut.1987268115810
    [Google Scholar]
  41. ErbelC. WolfA. LasitschkaF. Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability.Int. J. Cardiol.201518621922510.1016/j.ijcard.2015.03.151 25828120
    [Google Scholar]
  42. de SousaJ.R. Lucena NetoF.D. SottoM.N. QuaresmaJ.A.S. Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions.BMC Infect. Dis.201818157610.1186/s12879‑018‑3478‑x 30442123
    [Google Scholar]
  43. SyedM.A. BhandariV. Hyperoxia exacerbates postnatal inflammation-induced lung injury in neonatal BRP-39 null mutant mice promoting the M1 macrophage phenotype.Mediators Inflamm.2013201311210.1155/2013/457189 24347826
    [Google Scholar]
  44. LiuL. QinY. CaiZ. Effective-components combination improves airway remodeling in COPD rats by suppressing M2 macrophage polarization via the inhibition of mTORC2 activity.Phytomedicine20219215375910.1016/j.phymed.2021.153759 34600177
    [Google Scholar]
  45. ZhouY. DoD.C. IshmaelF.T. Mannose receptor modulates macrophage polarization and allergic inflammation through miR-511-3p.J. Allergy Clin. Immunol.20181411350364.e810.1016/j.jaci.2017.04.049 28629744
    [Google Scholar]
  46. MaevI.V. LyaminaS.V. MalyshevaE.V. YurenevG.L. MalyshevI.Y. An immune response and an alveolar macrophage phenotype in asthma, gastroesophageal reflux disease and their concurrence.Ter. Arkh.2015873344110.17116/terarkh201587334‑41 26027238
    [Google Scholar]
  47. BaoX. LiuX. LiuN. Inhibition of EZH2 prevents acute respiratory distress syndrome (ARDS)-associated pulmonary fibrosis by regulating the macrophage polarization phenotype.Respir. Res.202122119410.1186/s12931‑021‑01785‑x 34217280
    [Google Scholar]
  48. JiaoY. ZhangT. ZhangC. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury.Crit. Care202125135610.1186/s13054‑021‑03775‑3 34641966
    [Google Scholar]
  49. DengH. WuL. LiuM. Bone marrow mesenchymal stem cell-derived exosomes attenuate lps-induced ards by modulating macrophage polarization through inhibiting glycolysis in macrophages.Shock202054682884310.1097/SHK.0000000000001549 32433208
    [Google Scholar]
  50. PortaC. RimoldiM. RaesG. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by Proceedings of the National Academy of Sciences of the United States of America2009106351497814983
    [Google Scholar]
  51. PrasseA. PechkovskyD.V. ToewsG.B. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18.Am. J. Respir. Crit. Care Med.2006173778179210.1164/rccm.200509‑1518OC 16415274
    [Google Scholar]
  52. DancerR.C.A. WoodA.M. ThickettD.R. Metalloproteinases in idiopathic pulmonary fibrosis.Eur. Respir. J.20113861461146710.1183/09031936.00024711 21700608
    [Google Scholar]
  53. CraigV.J. ZhangL. HagoodJ.S. OwenC.A. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.Am. J. Respir. Cell Mol. Biol.201553558560010.1165/rcmb.2015‑0020TR 26121236
    [Google Scholar]
  54. ZhangW. OhnoS. SteerB. S100a4 is secreted by alternatively activated alveolar macrophages and promotes activation of lung fibroblasts in pulmonary fibrosis.Front. Immunol.20189121610.3389/fimmu.2018.01216 29910813
    [Google Scholar]
  55. KawanoH. KayamaH. NakamaT. HashimotoT. UmemotoE. TakedaK. IL-10-producing lung interstitial macrophages prevent neutrophilic asthma.Int. Immunol.2016281048950110.1093/intimm/dxw012 26976823
    [Google Scholar]
  56. ChakarovS. LimH.Y. TanL. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches.Science20193636432eaau096410.1126/science.aau0964 30872492
    [Google Scholar]
  57. MezianiL. MondiniM. PetitB. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages.Eur. Respir. J.2018513170212010.1183/13993003.02120‑2017 29496785
    [Google Scholar]
  58. ChuaF. DunsmoreS.E. ClingenP.H. Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis.Am. J. Pathol.20071701657410.2353/ajpath.2007.060352 17200183
    [Google Scholar]
  59. BrodyS.L. GunstenS.P. LuehmannH.P. Chemokine receptor 2–targeted molecular imaging in pulmonary fibrosis. A clinical trial.Am. J. Respir. Crit. Care Med.20212031788910.1164/rccm.202004‑1132OC 32673071
    [Google Scholar]
  60. BallingerM.N. MoraA.L. The epigenomic landscape: A cornerstone of macrophage phenotype regulation in the fibrotic lung.Am. J. Respir. Crit. Care Med.2021204888188310.1164/rccm.202107‑1760ED 34478358
    [Google Scholar]
  61. LeeJ.U. SonJ.H. ShimE.Y. Global DNA methylation pattern of fibroblasts in idiopathic pulmonary fibrosis.DNA Cell Biol.201938990591410.1089/dna.2018.4557 31305135
    [Google Scholar]
  62. LiuS. LvX. LiuC. Targeting degradation of the transcription factor c/ebpβ reduces lung fibrosis by restoring activity of the ubiquitin-editing enzyme A20 in macrophages.Immunity2019513522534.e710.1016/j.immuni.2019.06.014 31471107
    [Google Scholar]
  63. SinghA. ChakrabortyS. WongS.W. Nanoparticle targeting of de novo profibrotic macrophages mitigates lung fibrosis.Proc. Natl. Acad. Sci. USA202211915e212109811910.1073/pnas.2121098119
    [Google Scholar]
  64. McCubbreyA.L. BarthelL. MohningM.P. Deletion of c-FLIP from CD11b hi macrophages prevents development of bleomycin-induced lung fibrosis.Am. J. Respir. Cell Mol. Biol.2018581667810.1165/rcmb.2017‑0154OC 28850249
    [Google Scholar]
  65. RicoteM. LiA.C. WillsonT.M. KellyC.J. GlassC.K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation.Nature19983916662798210.1038/34178 9422508
    [Google Scholar]
  66. KulkarniA.A. ThatcherT.H. OlsenK.C. MaggirwarS.B. PhippsR.P. SimeP.J. PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: Implications for therapy of fibrosis.PLoS One201161e1590910.1371/journal.pone.0015909 21253589
    [Google Scholar]
  67. LianQ. ZhangK. ZhangZ. Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model.Nat. Commun.2022131202810.1038/s41467‑022‑29731‑5 35440562
    [Google Scholar]
  68. HesseM. ModolellM. La FlammeA.C. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism.J. Immunol.19501671165333544
    [Google Scholar]
  69. SunL. LouieM.C. VannellaK.M. New concepts of IL-10-induced lung fibrosis: Fibrocyte recruitment and M 2 activation in a CCL2/CCR2 axis.Am. J. Physiol. Lung Cell. Mol. Physiol.20113003L341L35310.1152/ajplung.00122.2010 21131395
    [Google Scholar]
  70. WangJ. JiangM. XiongA. Integrated analysis of single-cell and bulk RNA sequencing reveals pro-fibrotic PLA2G7high macrophages in pulmonary fibrosis.Pharmacol. Res.202218210628610.1016/j.phrs.2022.106286 35662628
    [Google Scholar]
  71. GregoryA.D. KlimentC.R. MetzH.E. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis.J. Leukoc. Biol.201598214315210.1189/jlb.3HI1014‑493R 25743626
    [Google Scholar]
  72. PernetE. SunS. SardenN. Neonatal imprinting of alveolar macrophages via neutrophil-derived 12-HETE.Nature2023614794853053810.1038/s41586‑022‑05660‑7 36599368
    [Google Scholar]
  73. DennisE.A. NorrisP.C. Eicosanoid storm in infection and inflammation.Nat. Rev. Immunol.201515851152310.1038/nri3859 26139350
    [Google Scholar]
  74. WangB. GuoW. QiuC. Alveolar macrophage-derived NRP2 curtails lung injury while boosting host defense in bacterial pneumonia.J. Leukoc. Biol.2022112349951210.1002/JLB.4A1221‑770R 35435271
    [Google Scholar]
  75. PortoB.N. SteinR.T. Neutrophil extracellular traps in pulmonary diseases: Too much of a good thing?Front. Immunol.2016731110.3389/fimmu.2016.00311 27574522
    [Google Scholar]
  76. PandolfiL. BozziniS. FrangipaneV. Neutrophil extracellular traps induce the epithelial-mesenchymal transition: implications in post-COVID-19 fibrosis.Front. Immunol.20211266330310.3389/fimmu.2021.663303 34194429
    [Google Scholar]
  77. ChrysanthopoulouA. MitroulisI. ApostolidouE. Neutrophil extracellular traps promote differentiation and function of fibroblasts.J. Pathol.2014233329430710.1002/path.4359 24740698
    [Google Scholar]
  78. VossenaarE.R. ZendmanA.J.W. van VenrooijW.J. PruijnG.J.M. PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease.BioEssays200325111106111810.1002/bies.10357 14579251
    [Google Scholar]
  79. HillJ.A. SouthwoodS. SetteA. JevnikarA.M. BellD.A. CairnsE. Cutting edge: The conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule.J. Immunol.19501712538541
    [Google Scholar]
  80. ChiriviR.G.S. van RosmalenJ.W.G. van der LindenM. Therapeutic ACPA inhibits NET formation: A potential therapy for neutrophil-mediated inflammatory diseases.Cell. Mol. Immunol.20211861528154410.1038/s41423‑020‑0381‑3 32203195
    [Google Scholar]
  81. FonsecaV.R. RibeiroF. GracaL. T follicular regulatory (Tfr) cells: Dissecting the complexity of Tfr‐cell compartments.Immunol. Rev.2019288111212710.1111/imr.12739 30874344
    [Google Scholar]
  82. WuX. SuZ. CaiB. Increased circulating follicular regulatory T-like cells may play a critical role in chronic hepatitis B virus infection and disease progression.Viral Immunol.201831537938810.1089/vim.2017.0171 29683413
    [Google Scholar]
  83. AbeR. DonnellyS.C. PengT. BucalaR. MetzC.N. Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites.J. Immunol.19501661275567562
    [Google Scholar]
  84. YangL. ScottP.G. GiuffreJ. ShankowskyH.A. GhaharyA. TredgetE.E. Peripheral blood fibrocytes from burn patients: Identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells.Lab. Invest.20028291183119210.1097/01.LAB.0000027841.50269.61 12218079
    [Google Scholar]
  85. SchmidtM. SunG. StaceyM.A. MoriL. MattoliS. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma.J. Immunol.19501711380389
    [Google Scholar]
  86. XiongS. PanX. XuL. Regulatory t cells promote β-catenin–mediated epithelium-to-mesenchyme transition during radiation-induced pulmonary fibrosis.Int. J. Radiat. Oncol. Biol. Phys.201593242543510.1016/j.ijrobp.2015.05.043 26253394
    [Google Scholar]
  87. XiongS. GuoR. YangZ. Treg depletion attenuates irradiation-induced pulmonary fibrosis by reducing fibrocyte accumulation, inducing Th17 response, and shifting IFN-γ, IL-12/IL-4, IL-5 balance.Immunobiology2015220111284129110.1016/j.imbio.2015.07.001 26224246
    [Google Scholar]
  88. Boveda-RuizD. D’Alessandro-GabazzaC.N. TodaM. Differential role of regulatory T cells in early and late stages of pulmonary fibrosis.Immunobiology2013218224525410.1016/j.imbio.2012.05.020 22739236
    [Google Scholar]
  89. JaffarJ. GriffithsK. OveissiS. CXCR4+ cells are increased in lung tissue of patients with idiopathic pulmonary fibrosis.Respir. Res.202021122110.1186/s12931‑020‑01467‑0 32843095
    [Google Scholar]
  90. GaribaldiB.T. D’AlessioF.R. MockJ.R. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.Am. J. Respir. Cell Mol. Biol.2013481354310.1165/rcmb.2012‑0198OC 23002097
    [Google Scholar]
  91. TangZ. GaoJ. WuJ. Human umbilical cord mesenchymal stromal cells attenuate pulmonary fibrosis via regulatory T cell through interaction with macrophage.Stem Cell Res. Ther.202112139710.1186/s13287‑021‑02469‑5 34256845
    [Google Scholar]
  92. GodfreyD.I. StankovicS. BaxterA.G. Raising the NKT cell family.Nat. Immunol.201011319720610.1038/ni.1841 20139988
    [Google Scholar]
  93. MarreroI. WareR. KumarV. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer.Front. Immunol.2015631610.3389/fimmu.2015.00316 26136748
    [Google Scholar]
  94. CarreñoL.J. Saavedra-ÁvilaN.A. PorcelliS.A. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents.Clin. Transl. Immunology201654e6910.1038/cti.2016.14 27195112
    [Google Scholar]
  95. GotoT. ItoY. SatohM. Activation of iNKT cells facilitates liver repair after hepatic ischemia reperfusion injury through acceleration of macrophage polarization.Front. Immunol.20211275410610.3389/fimmu.2021.754106 34691073
    [Google Scholar]
  96. HerroR. Da Silva AntunesR. AguileraA.R. TamadaK. CroftM. Tumor necrosis factor superfamily 14 (LIGHT) controls thymic stromal lymphopoietin to drive pulmonary fibrosis.J. Allergy Clin. Immunol.2015136375776810.1016/j.jaci.2014.12.1936 25680454
    [Google Scholar]
  97. ComeauM.R. ZieglerS.F. The influence of TSLP on the allergic response.Mucosal Immunol.20103213814710.1038/mi.2009.134 20016474
    [Google Scholar]
  98. GrabarzF. AguiarC.F. Correa-CostaM. Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis.Inflammopharmacology201826249150410.1007/s10787‑017‑0383‑7 28779430
    [Google Scholar]
  99. LeBienT.W. TedderT.F. B lymphocytes: How they develop and function.Blood200811251570158010.1182/blood‑2008‑02‑078071 18725575
    [Google Scholar]
  100. TzouvelekisA. ZacharisG. OikonomouA. Increased incidence of autoimmune markers in patients with combined pulmonary fibrosis and emphysema.BMC Pulm. Med.20131313110.1186/1471‑2466‑13‑31 23697753
    [Google Scholar]
  101. NumajiriH. KuzumiA. FukasawaT. B cell depletion inhibits fibrosis via suppression of profibrotic macrophage differentiation in a mouse model of systemic sclerosis.Arthritis Rheumatol.202173112086209510.1002/art.41798 33955200
    [Google Scholar]
  102. DePiantoD.J. ChandrianiS. AbbasA.R. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis.Thorax2015701485610.1136/thoraxjnl‑2013‑204596 25217476
    [Google Scholar]
  103. VincentF.B. Saulep-EastonD. FiggettW.A. FairfaxK.A. MackayF. The BAFF/APRIL system: Emerging functions beyond B cell biology and autoimmunity.Cytokine Growth Factor Rev.201324320321510.1016/j.cytogfr.2013.04.003 23684423
    [Google Scholar]
  104. HeukelsP. van HulstJ.A.C. van NimwegenM. Enhanced Bruton’s tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis.Respir. Res.201920123210.1186/s12931‑019‑1195‑7 31651327
    [Google Scholar]
  105. TailléC. Grootenboer-MignotS. BoursierC. Identification of periplakin as a new target for autoreactivity in idiopathic pulmonary fibrosis.Am. J. Respir. Crit. Care Med.2011183675976610.1164/rccm.201001‑0076OC 20935114
    [Google Scholar]
  106. MilaraJ. BallesterB. MorellA. JAK2 mediates lung fibrosis, pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis: An experimental study.Thorax201873651952910.1136/thoraxjnl‑2017‑210728 29440315
    [Google Scholar]
  107. CeladaL.J. KropskiJ.A. Herazo-MayaJ.D. PD-1 up-regulation on CD4 + T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production.Sci. Transl. Med.201810460eaar835610.1126/scitranslmed.aar8356 30257954
    [Google Scholar]
  108. HartlD. GrieseM. KapplerM. Pulmonary TH2 response in Pseudomonas aeruginosa–infected patients with cystic fibrosis.J. Allergy Clin. Immunol.2006117120421110.1016/j.jaci.2005.09.023 16387607
    [Google Scholar]
  109. DonahoeM. ValentineV.G. ChienN. Correction: Autoantibody-targeted treatments for acute exacerbations of idiopathic pulmonary fibrosis.PLoS One2015107e013368410.1371/journal.pone.0133684 26193485
    [Google Scholar]
  110. BritoY. GlassbergM.K. AschermanD.P. Rheumatoid arthritis-associated interstitial lung disease: Current concepts.Curr. Rheumatol. Rep.201719127910.1007/s11926‑017‑0701‑5 29119259
    [Google Scholar]
  111. SinhaS. SparksH.D. LabitE. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer.Cell20221852547174736.e2510.1016/j.cell.2022.11.004 36493752
    [Google Scholar]
  112. HoeftK. SchaeferG.J.L. KimH. Platelet-instructed SPP1+ macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner.Cell Rep.2023422112131Advance online publication10.1016/j.celrep.2023.112131 36807143
    [Google Scholar]
  113. WendischD. DietrichO. MariT. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis.Cell20211842662436261.e2710.1016/j.cell.2021.11.033 34914922
    [Google Scholar]
  114. NovakC.M. SethuramanS. LuikartK.L. Alveolar macrophages drive lung fibroblast function in cocultures of IPF and normal patient samples.Am. J. Physiol. Lung Cell. Mol. Physiol.20233244L507L52010.1152/ajplung.00263.2022 36791050
    [Google Scholar]
  115. ThéryC. WitwerK.W. AikawaE. Minimal information for studies of extracellular vesicles. a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J. Extracell. Vesicles2018711535750
    [Google Scholar]
  116. StahlP.D. RaposoG. Extracellular vesicles: Exosomes and microvesicles, integrators of homeostasis.Physiology201934316917710.1152/physiol.00045.2018 30968753
    [Google Scholar]
  117. LiY. ShenZ. JiangX. Mouse mesenchymal stem cell-derived exosomal miR-466f-3p reverses EMT process through inhibiting AKT/GSK3β pathway via c-MET in radiation-induced lung injury. Journal of experimental & clinical cancer research.CR (East Lansing Mich.)2022411128
    [Google Scholar]
  118. WuX. LiuZ. HuL. GuW. ZhuL. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126.Exp. Cell Res.20183701132310.1016/j.yexcr.2018.06.003 29883714
    [Google Scholar]
  119. TanJ.L. LauS.N. LeawB. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair.Stem Cells Transl. Med.20187218019610.1002/sctm.17‑0185 29297621
    [Google Scholar]
  120. DinhP.U.C. PaudelD. BrochuH. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis.Nat. Commun.2020111106410.1038/s41467‑020‑14344‑7 32111836
    [Google Scholar]
  121. AnnangiB. LuZ. BruniauxJ. Macrophage autophagy protects mice from cerium oxide nanoparticle-induced lung fibrosis.Part. Fibre Toxicol.2021181610.1186/s12989‑021‑00398‑y 33526046
    [Google Scholar]
  122. LiX. WangS. MuW. Reactive oxygen species reprogram macrophages to suppress antitumor immune response through the exosomal miR-155-5p/PD-L1 pathway.J. Exp. Clin. Cancer Res.20224114110.1186/s13046‑022‑02244‑1 35086548
    [Google Scholar]
  123. BrodyA.R. How inhaled asbestos causes scarring and cancer.Curr. Respir. Med. Rev.201814114
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240286046240112112310
Loading
/content/journals/cmm/10.2174/0115665240286046240112112310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test