Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Neferine (Nef) has a renal protective effect. This research intended to explore the impact of Nef on hyperuricemic nephropathy (HN).

Methods

Adenine and potassium oxonate were administered to SD rats to induce the HN model. Bone marrow macrophages (BMDM) and NRK-52E were used to construct a transwell co-culture system. The polarization of BMDM and apoptosis levels were detected using immunofluorescence and flow cytometry. Renal pathological changes were detected using hematoxylin-eosin (HE) and Masson staining. Biochemical methods were adopted to detect serum in rats. CCK-8 and EDU staining were used to assess cell activity and proliferation. RT-qPCR and western blot were adopted to detect NLRC5, NLRP3, pyroptosis, proliferation, and apoptosis-related factor levels.

Results

After Nef treatment, renal injury and fibrosis in HN rats were inhibited, and UA concentration, urinary protein, BUN, and CRE levels were decreased. After Nef intervention, M1 markers, pyroptosis-related factors, and NLRC5 levels in BMDM stimulated with uric acid (UA) treatment were decreased. Meanwhile, the proliferation level of NRK-52E cells co-cultured with UA-treated BMDM was increased, but the apoptosis level was decreased. After NLRC5 overexpression, Nef-induced regulation was reversed, accompanied by increased NLRP3 levels. After NLRP3 was knocked down, the levels of M1-type markers and pyroptosis-related factors were reduced in BMDM.

Conclusion

Nef improved HN by inhibiting macrophages polarized to M1-type and pyroptosis by targeting the NLRC5/NLRP3 pathway. This research provides a scientific theoretical basis for the treatment of HN.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240272051240122074511
2024-02-16
2025-01-19
Loading full text...

Full text loading...

References

  1. HuY. ShiY. ChenH. Blockade of autophagy prevents the progression of hyperuricemic nephropathy through inhibiting NLRP3 inflammasome-mediated pyroptosis.Front. Immunol.20221385849410.3389/fimmu.2022.858494 35309342
    [Google Scholar]
  2. ZhangC. SongY. ChenL. Urolithin A attenuates hyperuricemic nephropathy in fructose-fed mice by impairing STING-NLRP3 axis-mediated inflammatory response via restoration of parkin-dependent mitophagy.Front. Pharmacol.20221390720910.3389/fphar.2022.907209 35784701
    [Google Scholar]
  3. TangG.Y. LiS. XuY. Renal herb formula protects against hyperuricemic nephropathy by inhibiting apoptosis and inflammation.Phytomedicine202311615481210.1016/j.phymed.2023.154812 37167821
    [Google Scholar]
  4. LiX. YanZ. CarlströmM. Mangiferin ameliorates hyperuricemic nephropathy which is associated with downregulation of AQP2 and increased urinary uric acid excretion.Front. Pharmacol.2020114910.3389/fphar.2020.00049 32116724
    [Google Scholar]
  5. MazzaliM. HughesJ. KimY.G. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism.Hypertension20013851101110610.1161/hy1101.092839 11711505
    [Google Scholar]
  6. Sánchez-LozadaL.G. TapiaE. López-MolinaR. Effects of acute and chronic l -arginine treatment in experimental hyperuricemia.Am. J. Physiol. Renal Physiol.20072924F1238F124410.1152/ajprenal.00164.2006 17190912
    [Google Scholar]
  7. ZhangZ. ShaoX. JiangN. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury.Cell Death Dis.201891098310.1038/s41419‑018‑1023‑x 30250284
    [Google Scholar]
  8. SuL. ZhangJ. GomezH. KellumJ.A. PengZ. Mitochondria ROS and mitophagy in acute kidney injury.Autophagy202319240141410.1080/15548627.2022.2084862 35678504
    [Google Scholar]
  9. GuJ. HuangW. ZhangW. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis.Int. Immunopharmacol.20197510583210.1016/j.intimp.2019.105832 31473434
    [Google Scholar]
  10. ChengQ. PanJ. ZhouZ. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy.Acta Pharmacol. Sin.202142695496310.1038/s41401‑020‑00525‑z 32968210
    [Google Scholar]
  11. ZouX. GuJ. DuanJ. HuZ. CuiZ. The NLRP3 inhibitor Mcc950 attenuates acute allograft damage in rat kidney transplants.Transpl. Immunol.20206110129310.1016/j.trim.2020.101293 32407873
    [Google Scholar]
  12. LuA. LiH. NiuJ. Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus.J. Immunol.201719831119112910.4049/jimmunol.1600659 28039299
    [Google Scholar]
  13. ChenH.Y. ChiangY.F. HongY.H. Quercetin ameliorates renal injury and pyroptosis in lupus nephritis through inhibiting IL-33/ST2 pathway in vitro and in vivo.Antioxidants20221111223810.3390/antiox11112238 36421424
    [Google Scholar]
  14. ShiJ. GaoW. ShaoF. Pyroptosis: Gasdermin-mediated programmed necrotic cell death.Trends Biochem. Sci.201742424525410.1016/j.tibs.2016.10.004 27932073
    [Google Scholar]
  15. WeiX. XieF. ZhouX. Role of pyroptosis in inflammation and cancer.Cell. Mol. Immunol.202219997199210.1038/s41423‑022‑00905‑x 35970871
    [Google Scholar]
  16. LiS. SunY. SongM. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression.JCI Insight2021623e14685210.1172/jci.insight.146852 34877938
    [Google Scholar]
  17. SunL. MaW. GaoW. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome.Cell Death Dis.201910854210.1038/s41419‑019‑1761‑4 31316052
    [Google Scholar]
  18. FrankD. VinceJ.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk.Cell Death Differ.20192619911410.1038/s41418‑018‑0212‑6 30341423
    [Google Scholar]
  19. YanH. LuoB. WuX. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer.Int. J. Biol. Sci.202117102606262110.7150/ijbs.60292 34326697
    [Google Scholar]
  20. YinW. ZhouQ.L. OuYangS.X. ChenY. GongY.T. LiangY.M. Uric acid regulates NLRP3/IL-1β signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K+ efflux.BMC Nephrol.201920131910.1186/s12882‑019‑1506‑8 31412804
    [Google Scholar]
  21. LiG. GuanC. XuL. Scutellarin ameliorates renal injury via increasing CCN1 expression and suppressing NLRP3 inflammasome activation in hyperuricemic mice.Front. Pharmacol.20201158494210.3389/fphar.2020.584942 33192525
    [Google Scholar]
  22. DengY. FuY. ShengL. The regulatory NOD-Like receptor NLRC5 promotes ganglion cell death in ischemic retinopathy by inducing microglial pyroptosis.Front. Cell Dev. Biol.2021966969610.3389/fcell.2021.669696 34095138
    [Google Scholar]
  23. RobinsonN. GanesanR. HegedűsC. KovácsK. KuferT.A. VirágL. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos.Redox Biol.20192610123910.1016/j.redox.2019.101239 31212216
    [Google Scholar]
  24. WuK. YuanY. YuH. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice.Blood2020136450151510.1182/blood.2019003990 32291445
    [Google Scholar]
  25. JuanC.X. MaoY. CaoQ. Exosome‐mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference between M1 and M2 macrophages in sepsis-induced acute kidney injury.J. Cell. Mol. Med.202125104786479910.1111/jcmm.16449 33745232
    [Google Scholar]
  26. ZengW. ZhangX. LuY. Neferine ameliorates hypertensive vascular remodeling modulating multiple signaling pathways in spontaneously hypertensive rats.Biomed. Pharmacother.202315811420310.1016/j.biopha.2022.114203 36916429
    [Google Scholar]
  27. WichaP. Onsa-ardA. ChaichompooW. SuksamrarnA. TocharusC. Vasorelaxant and antihypertensive effects of neferine in rats: An in vitro and in vivo study.Planta Med.202086749650410.1055/a‑1123‑7852 32219782
    [Google Scholar]
  28. JahanN. ChowdhuryA. LiT. XuK. WeiF. WangS. Neferine improves oxidative stress and apoptosis in benign prostate hyperplasia via Nrf2-ARE pathway.Redox Rep.20212611910.1080/13510002.2021.1871814 33416009
    [Google Scholar]
  29. TangY.S. ZhaoY.H. ZhongY. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway.Inflamm. Res.201968972773810.1007/s00011‑019‑01256‑6 31172209
    [Google Scholar]
  30. LiH. GaoL. MinJ. YangY. ZhangR. Neferine suppresses autophagy-induced inflammation, oxidative stress and adipocyte differentiation in Graves’ orbitopathy.J. Cell. Mol. Med.20212541949195710.1111/jcmm.15931 33443817
    [Google Scholar]
  31. ChiuK.M. HungY.L. WangS.J. Anti-allergic and anti-inflammatory effects of neferine on RBL-2H3 cells.Int. J. Mol. Sci.202122201099410.3390/ijms222010994 34681651
    [Google Scholar]
  32. ZhouY.J. XiangJ.Z. YuanH. Neferine exerts its antithrombotic effect by inhibiting platelet aggregation and promoting dissociation of platelet aggregates.Thromb. Res.2013132220221010.1016/j.thromres.2013.05.018 23773522
    [Google Scholar]
  33. EidW. Abdel-RehimW. Neferine enhances the antitumor effect of mitomycin-C in hela cells through the activation of p38-MAPK pathway.J. Cell. Biochem.2017118103472347910.1002/jcb.26006 28328092
    [Google Scholar]
  34. ZhongP.C. LiuZ.W. XingQ.C. ChenJ. YangR.P. Neferine inhibits the development of lung cancer cells by downregulating TGF-β to regulate MST1/ROS-induced pyroptosis.Kaohsiung J. Med. Sci.202339111106111810.1002/kjm2.12752 37698291
    [Google Scholar]
  35. ZhuJ. YuB. HuangX. Neferine protects against hypoxic-ischemic brain damage in neonatal rats by suppressing NLRP3-mediated inflammasome activation.Oxid. Med. Cell. Longev.2021202111910.1155/2021/6654954 34046147
    [Google Scholar]
  36. LiH. ChenW. ChenY. Neferine attenuates acute kidney injury by inhibiting NF-κB signaling and upregulating klotho expression.Front. Pharmacol.201910119710.3389/fphar.2019.01197 31680971
    [Google Scholar]
  37. ZhangT. PengT. RaoJ. WangK. QiuF. Quantitation of diclofenac, tolbutamide, and warfarin as typical cyp2c9 substrates in rat plasma by UPLC-MS/MS and its application to evaluate linderane-mediated herb-drug interactions.J. Anal. Methods Chem.2022202211110.1155/2022/1900037 35309717
    [Google Scholar]
  38. LiL. ChengD. AnX. Mesenchymal stem cells transplantation attenuates hyperuricemic nephropathy in rats.Int. Immunopharmacol.20219910800010.1016/j.intimp.2021.108000 34352566
    [Google Scholar]
  39. XiongC. DengJ. WangX. Pharmacologic targeting of BET proteins attenuates hyperuricemic nephropathy in rats.Front. Pharmacol.20211263615410.3389/fphar.2021.636154 33664670
    [Google Scholar]
  40. ZhangZ. ChenY. ZhengL. A DUSP6 inhibitor suppresses inflammatory cardiac remodeling and improves heart function after myocardial infarction.Dis. Model. Mech.2023165dmm04966210.1242/dmm.049662 36478044
    [Google Scholar]
  41. LuoY. ZhangY. HanX. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis.EBioMedicine20228210408710.1016/j.ebiom.2022.104087 35797768
    [Google Scholar]
  42. ChenS. ChuB. ChenY. Neferine suppresses osteoclast differentiation through suppressing NF-κB signal pathway but not MAPKs and promote osteogenesis.J. Cell. Physiol.201923412229602297110.1002/jcp.28857 31127627
    [Google Scholar]
  43. KimS.W. LeeJ.H. KimH. improvement effect of soyeom pharmacopuncture on gout via NLRP3 inflammasome regulation.J. Pharmacopuncture202225439640310.3831/KPI.2022.25.4.396 36628347
    [Google Scholar]
  44. JungM. BrüneB. von KnethenA. Lipocalin-2 abrogates epithelial cell cycle arrest by PPARγ inhibition.Lab. Invest.201898111408142210.1038/s41374‑018‑0098‑4 30087458
    [Google Scholar]
  45. LuZ.H. TuG.J. FuS.L. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen class I expression to induce immune escape in non‐small cell lung cancer.Kaohsiung J. Med. Sci.202238121190120210.1002/kjm2.12602 36194200
    [Google Scholar]
  46. BaoJ. ShiY. TaoM. LiuN. ZhuangS. YuanW. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy.Clin. Sci.2018132212299232210.1042/CS20180563 30293967
    [Google Scholar]
  47. LiM.H. GuanJ. ChenZ. Fufang Zhenzhu Tiaozhi capsule ameliorates hyperuricemic nephropathy by inhibition of PI3K/AKT/NF-κB pathway.J. Ethnopharmacol.202229811564410.1016/j.jep.2022.115644 35987412
    [Google Scholar]
  48. DavisB.K. RobertsR.A. HuangM.T. Cutting edge: NLRC5-dependent activation of the inflammasome.J. Immunol.201118631333133710.4049/jimmunol.1003111 21191067
    [Google Scholar]
  49. ZhangJ. LiuX. WanC. NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption.J. Clin. Periodontol.202047445146010.1111/jcpe.13258 31976565
    [Google Scholar]
  50. YeY. JinT. ZhangX. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway.Front. Cell. Neurosci.20191355310.3389/fncel.2019.00553 31920554
    [Google Scholar]
  51. ShiY. TaoM. ChenH. Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis.Kidney Int.2023103354456410.1016/j.kint.2022.11.027 36581018
    [Google Scholar]
  52. LiY. ZhaoZ. LuoJ. Apigenin ameliorates hyperuricemic nephropathy by inhibiting URAT1 and GLUT9 and relieving renal fibrosis via the Wnt/β-catenin pathway.Phytomedicine20218715358510.1016/j.phymed.2021.153585 34044255
    [Google Scholar]
  53. LiuN. WangL. YangT. EGF receptor inhibition alleviates hyperuricemic nephropathy.J. Am. Soc. Nephrol.201526112716272910.1681/ASN.2014080793 25788532
    [Google Scholar]
  54. ChenY. LiC. DuanS. YuanX. LiangJ. HouS. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice.Biomed. Pharmacother.201911810919510.1016/j.biopha.2019.109195 31362244
    [Google Scholar]
  55. WenY. CrowleyS.D. The varying roles of macrophages in kidney injury and repair.Curr. Opin. Nephrol. Hypertens.202029328629210.1097/MNH.0000000000000595 32235271
    [Google Scholar]
  56. WenY. LuX. RenJ. KLF4 in macrophages attenuates TNFα-mediated kidney injury and fibrosis.J. Am. Soc. Nephrol.201930101925193810.1681/ASN.2019020111 31337692
    [Google Scholar]
  57. ChenT. CaoQ. WangY. HarrisD.C.H. M2 macrophages in kidney disease: Biology, therapies, and perspectives.Kidney Int.201995476077310.1016/j.kint.2018.10.041 30827512
    [Google Scholar]
  58. LuH. WuL. LiuL. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization.Biochem. Pharmacol.201815420321210.1016/j.bcp.2018.05.007 29753749
    [Google Scholar]
  59. XieY. HuX. LiS. Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice.Pharmacol. Res.202217810616110.1016/j.phrs.2022.106161 35259481
    [Google Scholar]
  60. DingZ. ZhaoJ. WangX. Total extract of Abelmoschus manihot L. alleviates uric acid-induced renal tubular epithelial injury via inhibition of caspase-8/caspase-3/NLRP3/GSDME signaling.Front. Pharmacol.20221390798010.3389/fphar.2022.907980 36052125
    [Google Scholar]
  61. ZhouJ. WangC. ZhangX. Shizhifang ameliorates pyroptosis of renal tubular epithelial cells in hyperuricemia through inhibiting NLRP3 inflammasome.J. Ethnopharmacol.202331711677710.1016/j.jep.2023.116777 37311502
    [Google Scholar]
  62. JalalD.I. ChoncholM. ChenW. TargherG. Uric acid as a target of therapy in CKD.Am. J. Kidney Dis.201361113414610.1053/j.ajkd.2012.07.021 23058478
    [Google Scholar]
  63. RenQ. TaoS. GuoF. Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 signaling.Phytomedicine20218715355210.1016/j.phymed.2021.153552 33994251
    [Google Scholar]
  64. ZhengD. LiwinskiT. ElinavE. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms.Cell Discov.2020613610.1038/s41421‑020‑0167‑x 32550001
    [Google Scholar]
  65. LatzE. XiaoT.S. StutzA. Activation and regulation of the inflammasomes.Nat. Rev. Immunol.201313639741110.1038/nri3452 23702978
    [Google Scholar]
  66. JoE.K. KimJ.K. ShinD.M. SasakawaC. Molecular mechanisms regulating NLRP3 inflammasome activation.Cell. Mol. Immunol.201613214815910.1038/cmi.2015.95 26549800
    [Google Scholar]
  67. ChenC. XuP. Activation and pharmacological regulation of inflammasomes.Biomolecules2022127100510.3390/biom12071005 35883561
    [Google Scholar]
  68. LiuD. YangP. GaoM. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound.Clin. Sci.2019133456558210.1042/CS20180600 30626731
    [Google Scholar]
  69. BlevinsH.M. XuY. BibyS. ZhangS. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases.Front. Aging Neurosci.20221487902110.3389/fnagi.2022.879021 35754962
    [Google Scholar]
  70. CuiD. LiuS. TangM. Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption.Phytomedicine20206615311110.1016/j.phymed.2019.153111 31790902
    [Google Scholar]
  71. HughesM.M. O’NeillL.A.J. Metabolic regulation of NLRP 3.Immunol. Rev.20182811889810.1111/imr.12608 29247992
    [Google Scholar]
  72. BashirS. SharmaY. ElahiA. KhanF. Macrophage polarization: The link between inflammation and related diseases.Inflamm. Res.201665111110.1007/s00011‑015‑0874‑1 26467935
    [Google Scholar]
  73. RosinD.L. OkusaM.D. Dangers within.J. Am. Soc. Nephrol.201122341642510.1681/ASN.2010040430 21335516
    [Google Scholar]
  74. CaoQ. WangY. HarrisD.C. Macrophage heterogeneity, phenotypes, and roles in renal fibrosis.Kidney Int. Suppl.201441161910.1038/kisup.2014.4
    [Google Scholar]
  75. LvL.L. TangP.M.K. LiC.J. The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation.Kidney Int.201791358760210.1016/j.kint.2016.10.020 28017324
    [Google Scholar]
  76. LvL.L. FengY. WuM. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury.Cell Death Differ.202027121022610.1038/s41418‑019‑0349‑y 31097789
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240272051240122074511
Loading
/content/journals/cmm/10.2174/0115665240272051240122074511
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test