Skip to content
2000
image of Microwave Assisted Williamson Synthesis: A Green Approach Towards the Preparation of Ethers

Abstract

Introduction

Microwave-assisted reactions align with the principles of green chemistry by significantly reducing synthesis time, avoiding high temperatures, and typically yielding high product quantities.

Method

A catalyst was synthesized from waste banana peels, ensuring both availability and low-cost production. Ethers were synthesized using microwave irradiation at 300W, employing two different alkyl halide variants with both substituted and unsubstituted phenols.

Results

The reaction proceeded efficiently without the need for corrosive bases such as caustic soda or caustic potash. Microwave irradiation facilitated reduced reaction times for ether formation. Additionally, the supported catalyst demonstrated the advantage of reusability.

Conclusion

This protocol offers several benefits, including the use of a green solvent and the exclusion of phase transfer catalysts and harsh conditions. Consequently, an efficient and green synthesis of ethers has been achieved.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356347586241010083744
2024-10-11
2024-11-19
Loading full text...

Full text loading...

References

  1. Mitsudome T. Matsuno T. Sueoka S. Mizugaki T. Jitsukawa K. Kaneda K. Direct synthesis of unsymmetrical ethers from alcohols catalyzed by titanium cation-exchanged montmorillonite. Green Chem. 2012 14 3 610 613 10.1039/c2gc16135d
    [Google Scholar]
  2. Kulkarni P.P. Kulkarni A.M. Microwave assisted Williamson Ether Synthesis in the absence of Phase Transfer Catalyst. Res. J. Chem. Environ. 2021 26 1 49 52 10.25303/2601rjce4952
    [Google Scholar]
  3. Sun J. Yang G. Yoneyama Y. Tsubaki N. Catalysis chemistry of dimethyl ether synthesis. ACS Catal. 2014 4 10 3346 3356 10.1021/cs500967j
    [Google Scholar]
  4. Paul S. Gupta M. Zinc-catalyzed Williamson ether synthesis in the absence of base. Tetrahedron Lett. 2004 45 48 8825 8829 10.1016/j.tetlet.2004.10.009
    [Google Scholar]
  5. Harkal S. Kumar K. Michalik D. Zapf A. Jackstell R. Rataboul F. Riermeier T. Monsees A. Beller M. An efficient catalyst system for diaryl ether synthesis from aryl chlorides. Tetrahedron Lett. 2005 46 18 3237 3240 10.1016/j.tetlet.2005.03.033
    [Google Scholar]
  6. Sarju J. Danks T.N. Wagner G. Rapid microwave-assisted synthesis of phenyl ethers under mildly basic and nonaqueous conditions. Tetrahedron Lett. 2004 45 41 7675 7677 10.1016/j.tetlet.2004.08.087
    [Google Scholar]
  7. Kataki D. Phukan P. Iodine-catalyzed one-pot three-component synthesis of homoallyl benzyl ethers from aldehydes. Tetrahedron Lett. 2009 50 17 1958 1960 10.1016/j.tetlet.2009.02.052
    [Google Scholar]
  8. Yu J.L. Wang H. Zou K.F. Zhang J.R. Gao X. Zhang D.W. Li Z.T. Selective synthesis of unsymmetrical ethers from different alcohols catalyzed by sodium bisulfite. Tetrahedron 2013 69 1 310 315 10.1016/j.tet.2012.10.032
    [Google Scholar]
  9. Venkateswara Rao K.T. Rao P.S.N. Sai Prasad P.S. Lingaiah N. Cesium exchanged heteropoly tungstate supported on zirconia as an efficient and selective catalyst for the preparation of unsymmetrical ethers. Catal. Commun. 2009 10 10 1394 1397 10.1016/j.catcom.2009.03.004
    [Google Scholar]
  10. Weidlich T. Pokorný M. Padělková Z. Růžička A. Aryl ethyl ethers prepared by ethylation using diethyl carbonate. Green Chem. Lett. Rev. 2007 1 1 53 59 10.1080/17518250701816399
    [Google Scholar]
  11. Fuhrmann E. Talbiersky J. Synthesis of alkyl aryl ethers by catalytic Williamson ether synthesis with weak alkylation agents. Org. Process Res. Dev. 2005 9 2 206 211 10.1021/op050001h
    [Google Scholar]
  12. Massah A.R. Mosharafian M. Momeni A.R. Aliyan H. Naghash H.J. Adibnejad M. Solvent-free Williamson synthesis: An efficient, simple, and convenient method for chemoselective etherification of phenols and bisphenols. Synth. Commun. 2007 37 11 1807 1815 10.1080/00397910701316268
    [Google Scholar]
  13. Peng Y. Song G. Combined microwave and ultrasound assisted Williamson ether synthesis in the absence of phase-transfer catalysts. Green Chem. 2002 4 4 349 351 10.1039/b201543a
    [Google Scholar]
  14. Wang J.X. Zhang M. Xing Z. Hu Y. Synthesis of aromatic ethers without organic solvent and inorganic carrier under microwave irradiation. Synth. Commun. 1996 26 2 301 305 10.1080/00397919608003618
    [Google Scholar]
  15. Li F. Wang Q. Ding Z. Tao F. Microwave-assisted synthesis of diaryl ethers without catalyst. Org. Lett. 2003 5 12 2169 2171 10.1021/ol0346436 12790556
    [Google Scholar]
  16. Heravi M.M. Ahari N.Z. Oskooie H.A. Ghassemzadeh M. Solid state S-methylation of thiols and O-methylation of phenols and naphthols with dimethyl sulfate under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem. 2005 180 7 1701 1712 10.1080/10426500590885165
    [Google Scholar]
  17. Weissberg A. Dahan A. Portnoy M. Williamson ether synthesis on solid support: substitution versus elimination. J. Comb. Chem. 2001 3 2 154 156 10.1021/cc0000895 11300854
    [Google Scholar]
  18. Romero M.L. Borja Arco E.J. Magallon Cacho L. Ramirez Aparicio J. Enhancing Intrinsic Electrocatalytic Activity of Pt/C Nanoparticles for Oxygen Reduction Reaction in Acidic Media by Microwave-Assisted Synthesis. Curr. Microw. Chem. 2024 11 1 51 57 10.2174/0122133356300269240215073712
    [Google Scholar]
  19. Kumar Das R. Sharma D. Paul S. Sengupta D. Microwave-assisted Synthesis of 3-amino-2-phenylquinazolin-4(3H)-one (QH) and 4-oxo-2-phenylquinazoline-3(4H)-carbothioamide (QTh). Curr. Microw. Chem. 2023 10 1 53 59 10.2174/2213335610666230516165046
    [Google Scholar]
  20. Rosa D.S. Vargas B.P. Silveira M.V. Rosa C.H. Martins M.L. Rosa G.R. On the Use of Calcined Agro-Industrial Waste as Palladium Supports in the Production of Eco-Friendly Catalysts: Rice Husks and Banana Peels Tested in the Suzuki–Miyaura Reaction. Waste Biomass Valoriz. 2019 10 8 2285 2296 10.1007/s12649‑018‑0252‑7
    [Google Scholar]
  21. Pathak G. Das D. Rajkumari K. Rokhum S.L. Exploiting waste: towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chem. 2018 20 10 2365 2373 10.1039/C8GC00071A
    [Google Scholar]
  22. Rajkumari K. Das D. Pathak G. Rokhum S.L. Waste-to-useful: a biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction. New J. Chem. 2019 43 5 2134 2140 10.1039/C8NJ05029E
    [Google Scholar]
  23. Tamuli K.J. Sahoo R.K. Bordoloi M. Biocatalytic green alternative to existing hazardous reaction media: synthesis of chalcone and flavone derivatives via the Claisen–Schmidt reaction at room temperature. New J. Chem. 2020 44 48 20956 20965 10.1039/D0NJ03839C
    [Google Scholar]
  24. Das S.K. Tahu M. Gohain M. Deka D. Bora U. Bio-based sustainable heterogeneous catalyst for ipso-hydroxylation of arylboronic acid. Sustain. Chem. Pharm. 2020 17 100296 10.1016/j.scp.2020.100296
    [Google Scholar]
  25. Madai I.J. Chande Jande Y.A. Kivevele T. Fast Rate Production of Biodiesel from Neem Seed Oil Using a Catalyst Made from Banana Peel Ash Loaded with Metal Oxide (Li‐CaO/Fe 2 (SO 4) 3). Adv. Mater. Sci. Eng. 2020 2020 1 7825024 10.1155/2020/7825024
    [Google Scholar]
  26. Corma A. Renz M. A general method for the preparation of ethers using water-resistant solid lewis acids. Angew. Chem. Int. Ed. 2007 46 1-2 298 300 10.1002/anie.200604018 17136790
    [Google Scholar]
  27. Kazemi M. Shiri L. Heidari L. A brief review: Microwave assisted ethers synthesis. Org. Chem. Ind. J. 2016 12 6 107
    [Google Scholar]
  28. Mandal S. Mandal S. Ghosh S.K. Sar P. Ghosh A. Saha R. Saha B. A review on the advancement of ether synthesis from organic solvent to water. RSC Adv. 2016 6 73 69605 69614 10.1039/C6RA12914E
    [Google Scholar]
  29. Thornton M.T. Henderson L.C. Recent advances in the synthesis of diphenylmethyl ethers. Org. Prep. Proced. Int. 2013 45 5 395 420 10.1080/00304948.2013.816210
    [Google Scholar]
  30. Mitra A.K. De A. Karchaudhuri N. Microwave enhanced synthesis of aromatic methyl ether. Indian J. Chem. 2000 39
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356347586241010083744
Loading
/content/journals/cmic/10.2174/0122133356347586241010083744
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: banana peel ash ; williamson synthesis ; ether ; supported catalyst ; reusability ; Microwave
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test