Skip to content
2000
image of Ultrasonic Investigation of Molecular Interactions in Novel Polymer Dextran and Aqueous Urea Solutions

Abstract

Aim

The purpose of this study was to investigate the molecular interactions between urea and dextran.

Background

The molecular interaction was examined using an ultrasonic method.

Objective: The objective of the study was to use measurable data such as density, viscosity, and ultrasonic velocity to determine the thermoacoustical parameters. The kind and intensity of polymer molecular interactions as a function of temperature and concentration at various frequencies have been extensively assessed using the ultrasonic approach. The viscosity (η), density (d), and ultrasonic speed (U) of polymer dextran and aqueous 6(M) urea were measured throughout a temperature range of 303 K to 323 K at 5 K intervals.

Method

A specific gravity bottle, an Ostwald viscometer, and an ultrasonic interferometer were used to determine the density, viscosity, and ultrasonic velocity, respectively.

Results

The obtained thermo acoustic parameter suggests the presence of a molecular interaction in the investigated solution.

Conclusion

Solute-solvent interactions make up the bulk of interactions. The dynamics of molecular interactions change with frequency, resulting in less favorable and less efficient interactions at higher frequencies.

Others

The analysis revealed that changes in frequency and temperature produce specific differences in acoustic parameters.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356334681241126062641
2025-01-10
2025-04-22
Loading full text...

Full text loading...

References

  1. Mahapatra A.P. Samal R.K. Samal R.N. Roy G.S. Evaluation of thermo‐viscosity parameters of dextran in polar and nonpolar solvent. J. Appl. Polym. Sci. 2001 81 2 440 452 10.1002/app.1456
    [Google Scholar]
  2. Das N. Kumar Praharaj M. Panda S. Exploring ultrasonic wave transmission in liquids and liquid mixtures: A comprehensive overview. J. Mol. Liq. 2024 403 124841 10.1016/j.molliq.2024.124841
    [Google Scholar]
  3. Panda R. Panda S. Biswal S.K. A review of ultrasonic wave propagation through liquid solutions. Curr. Microw. Chem. 2024 11 1 2 15 10.2174/0122133356288437240131061541
    [Google Scholar]
  4. Panda S. Mahapatra A.P. Ultrasonic investigation of aqueous dextran at different temperatures and frequencies. World J. Pharm. Life Sci. 2018 4 12 76 82
    [Google Scholar]
  5. Nithiyanantham S. Palaniappan L. Ultrasonic studies of dextrin in aqueous media at 298 K. Asian J. Chem. 2010 22 7 5419
    [Google Scholar]
  6. Nithiyanantham S. Palaniappan L. Ultrasonic study on some monosaccharides in aqueous media at 298.15K. Arab. J. Chem. 2012 5 1 25 30 10.1016/j.arabjc.2010.07.018
    [Google Scholar]
  7. Jyothirmai G. Nayeem S.M. Khan I. Anjaneyulu C. Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate). J. Therm. Anal. Calorim. 2018 132 1 693 707 10.1007/s10973‑017‑6926‑8
    [Google Scholar]
  8. Beebi S. Nayeem S.M. Rambabu C. Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15) K. J. Therm. Anal. Calorim. 2019 135 6 3387 3399 10.1007/s10973‑018‑7574‑3
    [Google Scholar]
  9. Panda S. Thermoacoustical parameters of dextran polymer in sodium hydroxide solutions. Songklanakarin J. Sci. Technol. 2022 44 4
    [Google Scholar]
  10. Gerecze N.G. Ultrasonic studies in solutions of dextran and d-glucose. Acta Acust. United Acust. 1975 32 3 201 206
    [Google Scholar]
  11. Pawar N.R. Chimankar O.P. Bhandakkar V.D. Padole N.N. Study of binary mixtures of acrylonitrile with methanol at different frequencies. J. Pure Appl. Ultrason 2012 34 49
    [Google Scholar]
  12. Tabhane P.V. Chimankar O.P. Tabhane V.A. Phase separation studies in polyvinyl chloride-polyvinyl acetate blend by ultrasonic technique. J. Chem. Pharm. Res. 2012 4 6 3051 3056
    [Google Scholar]
  13. Bhandakkar V.D. Chimankar O.P. Pawar N.R. Ultrasonic study of molecular interactions in some bio-liquids. J. Chem. Pharm. Res. 2010 2 4 873 877
    [Google Scholar]
  14. Panda S. Mahapatra A.P. Study of acoustical parameters of dextran in 2 (M) glycine using ultrasonic technique at different frequencies. J. Pure Appl. Ultrasonic 2017 39 83 87
    [Google Scholar]
  15. Lagemann R.T. Dunbar W.S. Relationships between the velocity of sound and other physical properties of liquids. J. Phys. Chem. 1945 49 5 428 436 10.1021/j150443a003
    [Google Scholar]
  16. Sarkar A. Sinha B. Solution thermodynamics of aqueous nicotinic acid solutions in presence of tetrabutylammonium hydrogen sulphate. J. Serb. Chem. Soc. 2013 78 8 1225 1240 10.2298/JSC111212027S
    [Google Scholar]
  17. Palani R. Geetha A. Swara R.K. Ultrasonic studies on molecular interaction and physico-chemical behaviour of some divalent transition metal sulphates in aqueous propylene glycol at 303.15 K. Rasyan J. Chem. 2009 2 3 602 608
    [Google Scholar]
  18. Prasad N. Excess free volume and internal pressure of binary solutions of N, N–dimethyl aniline and halomethanes. Virtual 2003 1 1 25 30
    [Google Scholar]
  19. Pal A. Kumar H. Kumar B. Gaba R. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures. J. Mol. Liq. 2013 187 278 286 10.1016/j.molliq.2013.08.009
    [Google Scholar]
  20. Panda S. Mahapatra A.P. Molecular interaction of dextran with urea through ultrasonic technique. Clay Res. 2019 38 1 35 42
    [Google Scholar]
  21. Sastry N.V. George J. Thermophysical properties of nonelectrolyte mixtures. Densities, viscosities, and sound speeds of binary mixtures of methyl methacrylate+ branched alcohols (propan-2-ol, 2-methylpropan-1-ol, butan-2-ol, and 2-methylpropan-2-ol) at T= 298.15 and 308.15 K. Int. J. Thermophys. 2003 24 4 1089 1104 10.1023/A:1025061103289
    [Google Scholar]
  22. Ali Anwar Akhtar Yasmin Hyder Soghra Ultrasonic and volumetric studies of glycine in aqueous electrolytic solutions. J. Pure Appl. Ultrason. 2003 25 1 13 18
    [Google Scholar]
  23. Palani R. Balakrishnan S. Acoustical properties of ternary mixtures of 1-alkanols in di-isopropyl ether and 2,2,2-trifluoroethanol mixed solvent. Indian J. Pure Appl. Phys. 2010 48 9 644 650
    [Google Scholar]
  24. Mehra R. Malav B.B. Ultrasonic, volumetric and viscometric studies of lactose in mixed solvent of DMF–H2O at 298, 308 and 318 K. Arab. J. Chem. 2017 10 S1894 S1900 10.1016/j.arabjc.2013.07.018
    [Google Scholar]
  25. Rajulu A. Ultrasonic attenuation in aqueous dispersion of polytetrafluoroethylene. Indian J. Chem. Technol. 1994
    [Google Scholar]
  26. Panda S. Molecular interaction of polymer dextran in sodium hydroxide through evaluation of thermo acoustic parameters. Indian J. Pharm. Educ. Res. 2020 54 3 630 636 10.5530/ijper.54.3.112
    [Google Scholar]
  27. Jeanes A. Haynes W.C. Characterization and classification of dextrans from ninety-six strains of bacteria. J. Am. Chem. Soc. 1954 76 5041 5052 10.1021/ja01649a011
    [Google Scholar]
  28. Arond L.H. Frank H.P. Molecular weight distribution and molecular size of a native dextran. J. Phys. Chem. 1954 58 11 953 957 10.1021/j150521a006
    [Google Scholar]
  29. Armstrong J.K. Wenby R.B. Meiselman H.J. Fisher T.C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 2004 87 6 4259 4270 10.1529/biophysj.104.047746 15361408
    [Google Scholar]
  30. Pribush A. Zilberman-Kravits D. Meyerstein N. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J. 2007 36 2 85 94 10.1007/s00249‑006‑0107‑1 17091267
    [Google Scholar]
  31. Barshtein G. Tamir I. Yedgar S. Red blood cell rouleaux formation in dextran solution: Dependence on polymer conformation. Eur. Biophys. J. 1998 27 2 177 181 10.1007/s002490050124 9530828
    [Google Scholar]
  32. Gil E.C. Colarte A.I. El Ghzaoui A. Durand D. Delarbre J.L. Bataille B. A sugar cane native dextran as an innovative functional excipient for the development of pharmaceutical tablets. Eur. J. Pharm. Biopharm. 2008 68 2 319 329 10.1016/j.ejpb.2007.04.015 17540546
    [Google Scholar]
  33. Panda S. Mahapatra A.P. Variation of acoustical parameters of dextran in 2(M) glycine with temperature and concentrations. Int. J. Chem. Phys. Sci. 2016 5 5 15 22
    [Google Scholar]
  34. Patnaik P. Chakraborty N. Kaur P. Juglan K.C. Kumar H. Thermodynamic and acoustic investigation of d-panthenol in homologous series of polyethylene glycol at different temperatures. Advances in Functional and Smart Materials. Singapore Springer 2023 403 424 10.1007/978‑981‑19‑4147‑4_41
    [Google Scholar]
  35. Ali K.F. Hummadi H.H. a study of some physical properties for B12 in aqueous solution at four temperatures. Al-Nahrain J. Sci. 2007 10 1 13 17
    [Google Scholar]
  36. Awasthi A. Awasthi A. Intermolecular interactions in formamide+2-alkoxyethanols: Viscometric study. Thermochim. Acta 2012 537 57 64 10.1016/j.tca.2012.03.001
    [Google Scholar]
  37. Panda S. Acoustical analysis of dextran+urea: Insights into molecular interactions. Recent Innov. Chem. Eng. 2024 17 1 44 54 10.2174/0124055204271465231204112233
    [Google Scholar]
  38. Browne J.E. Review of the acoustic impedance mismatch technique for ultrasonic measurements. Ultrasonics 2003 41 5 287 293 10.1016/S0041‑624X(03)00166‑4
    [Google Scholar]
  39. Cole K.S. Cole R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941 9 4 341 351 10.1063/1.1750906
    [Google Scholar]
  40. Jacobson B. Intermolecular free lengths in liquids. Acta Chem. Scand. 1952 6 9 1485 1498 10.3891/acta.chem.scand.06‑1485
    [Google Scholar]
  41. Callen H.B. The application of Gibbs free energy to thermodynamic systems. J. Chem. Phys. 1948 16 1 83 95 10.1063/1.1746576
    [Google Scholar]
  42. Panda S. Mahapatra A.P. Ultrasonic study of acoustical parameters of dextran solution with 1 (N) NaOH at different temperatures and concentrations. J. Pure Appl. Ultrasonic 2018 40 100 105
    [Google Scholar]
  43. Chandrasekaran J.H.R. Nithiyanantham S. Study of water and water–ethanol solutions of potassium salts through ultrasonic and spectroscopic approach. Chemistry Africa 2022 5 5 1397 1415 10.1007/s42250‑022‑00412‑6
    [Google Scholar]
  44. Magazù S. Migliardo P. Musolino A.M. Sciortino M.T. α, α-trehalose− water solutions. 1. Hydration phenomena and anomalies in the acoustic properties. J. Phys. Chem. B 1997 101 13 2348 2351 10.1021/jp961139s
    [Google Scholar]
  45. Pavai R.E. Renuka S. Vasantharani L.B.P. Study of molecular interactions among esters, toluene and aniline using ultrasonic technique. J. Exp. Sci. 2010 1 6
    [Google Scholar]
  46. Parveen S. Shukla D. Singh S. Singh K.P. Gupta M. Shukla J.P. Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures. Appl. Acoust. 2009 70 3 507 513 10.1016/j.apacoust.2008.05.008
    [Google Scholar]
  47. Panda S. Mahapatra A.P. Acoustic and ultrasonic studies of dextran in 2 (M) glycine-variation with frequencies and concentrations. Int. J. Pure Appl. Phys. 2016 12 1 71 79
    [Google Scholar]
  48. Reddy S. Sk M.N. Raju K.T.S.S. The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium ethylsulfate+ 2-ethoxyethanol from density, speed of sound and refractive index measurements. J. Mol. Liq. 2016 218 83 94 10.1016/j.molliq.2016.01.096
    [Google Scholar]
  49. Akhtar Y. Study of solute-solute and solute-solvent interaction of glycerin and dextrose in buffer solutions at different temperature by using volumetric and acoustic methods. Chem. Sci. Int. J. 2016 17 2 1 7 10.9734/CSJI/2016/28872
    [Google Scholar]
  50. Mirikar S. Pawar P.P. Bichile G.K. Studies of acoustic and thermodynamic properties of Glycine in double distilled water at different temperatures. J. Chem. 2011 3 5 306 310
    [Google Scholar]
  51. Panda S. Molecular interaction of dextran and sodium hydroxide through ultrasonic investigation. JOTCSA 2024 11 4 1369 1376
    [Google Scholar]
  52. Kaur M. Pathania V. Vermani B.K. Anand V. Gill D.S. Ultrasonic velocity and thermoacoustic parameters for Copper(I) nitrates in dimethylsulfoxide with pyridine as a co-solvent at 298 K. Curr. Phys. Chem. 2022 12 2 136 158 10.2174/1877946812666220331122201
    [Google Scholar]
  53. Godhani D.R. Dobariya P.B. Sanghani A.M. Mehta J.P. Thermodynamic properties of binary mixtures of 1,3,4-oxadiazole derivative with chloroform, N, N -dimethyl formamide at 303, 308 and 313 K and atmospheric pressure. Arab. J. Chem. 2017 10 S422 S430 10.1016/j.arabjc.2012.10.002
    [Google Scholar]
  54. R P. K V. R A. A study on the acoustic and rheological properties of polystyrene in different solvents. Int. J. Curr. Res. Rev. 2018 10 21 99 102 10.31782/IJCRR.2018.99102
    [Google Scholar]
  55. Paulraj P. Thangam Gandhi J.R. Rexceline Antony Muthu L. Lancy Sreedharan I.S. Pandey K.K. Jawaharlal P. Investigation of excess thermo‐acoustic behavior of binary liquid mixture with various temperatures using ultrasonic technique. Macromol. Symp. 2024 413 1 2300047 10.1002/masy.202300047
    [Google Scholar]
  56. Panda S. Mahapatra A.P. Study of acoustic and thermodynamic properties of aqueous solution of dextran at different concentration and temperature through ultrasonic technique. Int. Symp. Ultrasonics. 2015 22 503 508
    [Google Scholar]
  57. Semwal H.K. Bhatt S.C. Semwal B.S. Acoustical study of binary liquid mixture of acetic acid & Isopropyl sulphide. J. Pure Appl. Ultrason. 2003 25 1 6 12
    [Google Scholar]
  58. Priya C.S. Nithya S. Velraj G. Kanappan A.N. Molecular interactions studies in liquid mixture using ultrasonic technique. J Adv Sci Technol 2010 18 59 74
    [Google Scholar]
  59. Gopal A. M. Poongodi J. Study of thermodynamic properties in binary liquid mixtures through ultrasonic measurement. J. Pure Appl. 2017 122
    [Google Scholar]
  60. Abdel Jabbar N.M. Mjalli F.S. Ultrasonic study of binary aqueous mixtures of three common eutectic solvents. Phys. Chem. Liquids 2019 57 1 1 18 10.1080/00319104.2017.1385075
    [Google Scholar]
  61. Panda S. Thermoacoustical analysis of polymer dextran at different frequencies. Bulgar. J. Phys. 2022 49 2 136 144
    [Google Scholar]
  62. Rajagopal K. Edwin Gladson S. Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures. J. Chem. Thermodyn. 2011 43 6 852 867 10.1016/j.jct.2011.01.004
    [Google Scholar]
  63. Chakraborty N. Thakur P. Juglan K.C. Thermodynamic investigation of glycol ethers in aqueous sugar alcohol at multiple temperatures. E3S Web. Conf. 2023 453 01051 10.1051/e3sconf/202345301051
    [Google Scholar]
  64. Rathi M. Exploring molecular interactions of sucrose in aqueous potassium clavulanate solutions at different temperatures: Volumetric and acoustic approaches. Multiscale Multidiscip. Model. Exp. Des. 2024 7 2717 2730
    [Google Scholar]
  65. Punitha S. Uvarani R. Panneerselvam A. Nithiyanantham S. Physico-chemical studies on some saccharides in aqueous cellulose solutions at different temperatures – Acoustical and FTIR analysis. J. Saudi Chem. Soc. 2014 18 5 657 665 10.1016/j.jscs.2014.01.008
    [Google Scholar]
  66. Panda S. Mahapatra A.P. Intermolecular interaction of dextran with urea. Int. J. Innov. Technol. Explor. Eng. 2019 8 11 742 748 10.35940/ijitee.K1445.0981119
    [Google Scholar]
  67. Sumathi T. Anandhi S. ultrasonic studies on some electrolytes in n, n, imethylformamide+ water mixtures at 303K. Int. J. Phys. Appl. Sci 2015 2 8 7 20
    [Google Scholar]
  68. Sharma A.K. Sharma R. Gangwal A. Ultrasonic studies and acoustic parameters of complexes containing copper surfactants with 2-amino-6-methyl benzo-thiazole. Curr. Phys. Chem. 2019 8 3 222 229 10.2174/1573412914666181003151414
    [Google Scholar]
  69. Nayak S. Panigrahi R. Das B.R. Acoustic study of butylated hydroxy toluene (BHT) in ethanol by ultrasonic technique. Adv. Sci. Lett. 2016 22 2 301 304 10.1166/asl.2016.6840
    [Google Scholar]
  70. Bhandakkar V. Bhat V. Chimankar O. Asole A. Thermo acoustical study of Tetrahydrofuran with ethanol using ultrasonic technique at 323K. Adv. Appl. Sci. Res. 2014 5 80 85
    [Google Scholar]
  71. Panda S. Molecular interaction of novel polymer dextran with 1 (N) sodium hydroxide solution: Ultrasonic studies. Asia-Pac. J. Sci. Technol. 2022 27 6 1 7 10.14456/apst.2022.85
    [Google Scholar]
  72. Kalimulla T. Babu S. Das D. Gowrisankar M. Rao K.G. Ultrasonic investigations in binary liquid mixtures of 2-methylcyclohexanone with formamide, n-methylformamide and n, n-dimethylformamide at different temperatures. J. Pharm. Sci. Res. 2019 11 7 2645 2655
    [Google Scholar]
  73. Sharma D. K. Agarwal S. Pandey E. Ultrasonic study of molecular interaction in binary liquid mixtures of ethyl acetate with alcohols at 303.15 K. J. Pure Appl. Ultrason. 2022 28 36
    [Google Scholar]
  74. Sheba S.G.S. Priakumari R.O. Ultrasonic investigation of molecular interaction in binary liquid mixture of Polyethylene Glycol with ethanol. Int. J. Chem. Mol. Eng. 2014 8 2 156 160
    [Google Scholar]
  75. Panda S. Mahapatra A.P. Molecular interaction studies of aqueous Dextran solution through ultrasonic measurement at 313 K with different concentration and frequency. Arch. Phys. Res. 2015 6 1 6 12
    [Google Scholar]
  76. Zolkiflee N.F. Affandi M.M.R.M.M. Majeed A.B.A. Molecular dynamics and related solution chemistry of lovastatin in aqueous solution of arginine: Viscometric analysis. J. Mol. Liq. 2019 279 386 391 10.1016/j.molliq.2019.01.102
    [Google Scholar]
  77. Dash U.N. Roy G.S. Talukdar M. Moharatha D. Acoustic and viscosity studies of alkali metals and ammonium halides in aqueous dextran solutions at four different temperatures. Indian J. Pure Appl. Phy. 2010 48 651 657
    [Google Scholar]
  78. Rajathi K. Askar S.J. Rajendran A. Ultrasonic study of molecular dynamics in some binary mixtures. J. Chem. Pharm. Res. 2011 3 5 348 358
    [Google Scholar]
  79. Tiwari S. Kusmariya B.S. Tiwari A. Pathak V. Mishra A.P. Acoustical and viscometric studies of buspirone hydrochloride with cobalt(II) and copper(II) ions in aqueous medium. J. Taibah Univ. Sci. 2017 11 1 101 109 10.1016/j.jtusci.2015.10.012
    [Google Scholar]
  80. Meshram B. Agrawal P. Chandak H. Chapke U. A study of acoustical behaviour of paracetamol in 70% methanol at various temperature. Int. J. Emerg. Technol. Comput. Appl. Sci. 2013 5 369 373
    [Google Scholar]
  81. Nain A.K. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of formamide with ethanol, 1-propanol, 1,2-ethanediol and 1,2-propanediol at different temperatures. J. Mol. Liq. 2008 140 1-3 108 116 10.1016/j.molliq.2008.01.016
    [Google Scholar]
  82. Gopal A.M. Lancy A.I.S. Pandey K.K. Fernando J. Evaluation of sound velocity and molar refraction in binary liquid mixtures through ultrasonic measurement. Macromol. Symp. 2023 407 1
    [Google Scholar]
  83. Panda S. Acoustic and thermodynamics study of aqueous dextran: An ultrasonic analysis. Rom. J. Biophys. 2023 33 3 105 117 10.59277/RJB.2023.3.02
    [Google Scholar]
  84. Pandiyan V. Oswal S.L. Vasantharani P. Thermodynamic and acoustic properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline or N,N-diethylaniline at 303.15, 313.15 and 323.15K. Thermochim. Acta 2011 518 1-2 36 46 10.1016/j.tca.2011.02.004
    [Google Scholar]
  85. Thirumaran S. George D. Ultrasonic study of intermolecular association through hydrogen bonding in ternary liquid mixtures. J. Eng. Appl. Sci. 2009 4 4 1 11
    [Google Scholar]
  86. Prakash O. Sinha S. Ultrasonic studies in binary mixtures of tetrahydrofuran with formamide, methyl formamide, dimethyl formamide and 2-methyl pyridine. Acta Acust. United Acust. 1984 54 4 223 225
    [Google Scholar]
  87. Sehgal C.M. Porter B.R. Greenleaf J.F. Ultrasonic nonlinear parameters and sound speed of alcohol–water mixtures. J. Acoust. Soc. Am. 1986 79 2 566 570 10.1121/1.393548 3950207
    [Google Scholar]
  88. Panda S. Ultrasonic investigation of dextran with glycine at different temperatures and frequencies. Indian J. Nat. Sci. 2020 10 59 18436 18441
    [Google Scholar]
  89. Panda R. Panda S. Biswal S.K. Acoustic behavior of electrolytes in aqueous dimethyl sulphoxide as a solvent at different temperatures. J. Therm. Anal. Calorim. 2024 149 10 4839 4853 10.1007/s10973‑024‑13031‑9
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356334681241126062641
Loading
/content/journals/cmic/10.2174/0122133356334681241126062641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test