Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7827
  • E-ISSN: 2666-7835

Abstract

This paper proposes a differential evolution algorithm to solve the multi-objective sparse reconstruction problem (DEMOSR).

The traditional method is to introduce the regularization coefficient and solve this problem through a regularization framework. But in fact, the sparse reconstruction problem can be regarded as a multi-objective optimization problem about sparsity and measurement error (two contradictory objectives).

A differential evolution algorithm to solve multi-objective sparse reconstruction problem (DEMOSR) in sparse signal reconstruction and the practical application.

First of all, new individuals are generated through tournament selection mechanism and differential evolution. Secondly, the iterative half thresholding algorithm is used for local search to increase the sparsity of the solution. To increase the diversity of solutions, a polynomial mutation strategy is introduced.

In sparse signal reconstruction, the performance of DEMOSR is better than MOEA/D-ihalf and StEMO. In addition, it can verify the effectiveness of DEMOSR in practical applications for sparse reconstruction of magnetic resonance images.

According to the experimental results of DEMOSR in sparse signal reconstruction and the practical application of reconstructing magnetic resonance images, it can be proved that DEMOSR is effective in sparse signal and image reconstruction.

Loading

Article metrics loading...

/content/journals/cjai/10.2174/2666782701666210910170504
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. DonohoD.L. Compressed sensing.IEEE Trans. Inf. Theory20065241289130610.1109/TIT.2006.871582
    [Google Scholar]
  2. StankovićL. SejdićE. StankovićS. DakovićM. OrovićI. A tutorial on sparse signal reconstruction and its applications in signal processing.Circuits Syst. Signal Process.20193812061263
    [Google Scholar]
  3. LaiZ. MoD. WenJ. ShenL. WongW.K. Generalized robust regression for jointly sparse subspace learning.IEEE Trans. Circ. Syst. Video Tech.201929375677210.1109/TCSVT.2018.2812802
    [Google Scholar]
  4. SeoJ.W. KimS.D. Dynamic background subtraction via sparse representation of dynamic textures in a low-dimensional subspace.Signal Image Video Process.2016101293610.1007/s11760‑014‑0697‑5
    [Google Scholar]
  5. ShahP. MoghaddamM. A fast level set method for multimaterial recovery in microwave imaging.IEEE Trans. Antenn. Propag.201866630173026
    [Google Scholar]
  6. IrmakE. ErtasA.H. A review of robust image enhancement algorithms and their applications.In 2016 IEEE Smart Energy Grid Engineering (SEGE).IEEE201637137510.1109/SEGE.2016.7589554
    [Google Scholar]
  7. IrmakE. ErçelebiE. ErtaşA.H. Brain tumor detection using monomodal intensity based medical image registration and MATLAB.Turk. J. Electr. Eng. Comput. Sci.20164242730274610.3906/elk‑1403‑75
    [Google Scholar]
  8. DavisG. Adaptive nonlinear approximations, Ph.D. dissertation, New York University, Graduate School of Arts and Science: New York, NY, USA1994
    [Google Scholar]
  9. ChenS.S. DonohoD.L. SaundersM.A. Atomic decomposition by basis pursuit.SIAM Rev.200143112915910.1137/S003614450037906X
    [Google Scholar]
  10. MallatS.G. ZhangZ. Matching pursuits with time-frequency dictionaries.IEEE Trans. Signal Process.199341123397341510.1109/78.258082
    [Google Scholar]
  11. PatiY.C. RezaiifarR. KrishnaprasadP.S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decompositionProceedings of 27th Asilomar conference on signals, systems and computers1993pp. 40-4410.1109/ACSSC.1993.342465
    [Google Scholar]
  12. BlumensathT. Accelerated iterative hard thresholding.Signal Processing201292375275610.1016/j.sigpro.2011.09.017
    [Google Scholar]
  13. HybertsS.G. MilbradtA.G. WagnerA.B. ArthanariH. WagnerG. Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling.J. Biomol. NMR201252431532710.1007/s10858‑012‑9611‑z22331404
    [Google Scholar]
  14. XuZ. ChangX. XuF. ZhangH. L1/2 regularization: A thresholding representation theory and a fast solver.IEEE Trans. Neural Netw. Learn. Syst.20122371013102710.1109/TNNLS.2012.219741224807129
    [Google Scholar]
  15. LiH. SuX. XuZ. ZhangQ. MOEA/D with iterative thresholding algorithm for sparse optimization problemsInternational Conference on Parallel Problem Solving from Nature2012pp. 93-10110.1007/978‑3‑642‑32964‑7_10
    [Google Scholar]
  16. LiL. YaoX. StolkinR. GongM.G. HeS. An evolutionary multi-objective approach to sparse reconstruction.IEEE Trans. Evol. Comput.201418682784510.1109/TEVC.2013.2287153
    [Google Scholar]
  17. HerrityK.K. GilbertA.C. TroppJ.A. Sparse approximation via iterative thresholdingIEEE International Conference on Acoustics Speech and Signal Processing Proceedings2006vol. 3pp. IIIIII
    [Google Scholar]
  18. LiH. FanY. ZhangQ. XuZ. DengJ. A multi-phase multi-objective approach based on decomposition for sparse reconstruction Proc.IEEE Congress on Evolutionary Computation2016601608
    [Google Scholar]
  19. LiH. ZhangQ. DengJ. XuZ-B. A preference-based multiobjective evolutionary approach for sparse optimization.IEEE Trans. Neural Netw. Learn. Syst.20182951716173110.1109/TNNLS.2017.267797328368832
    [Google Scholar]
  20. YanB. ZhaoQ. WangZ. ZhaoX.Y. A hybrid evolutionary algorithm for multi-objective sparse reconstruction.Signal Image Video Process.2017116993100010.1007/s11760‑016‑1049‑4
    [Google Scholar]
  21. YanB. ZhaoQ. ZhangJ.A. WangZ. Multi-objective sparse reconstruction with transfer learning and localized regularization.IEEE Access2020818492018493310.1109/ACCESS.2020.3029968
    [Google Scholar]
  22. YueC.T. LiangJ. QuB.Y. HanY.H. ZhuY.S. CrisalleO.D. A novel multiobjective optimization algorithm for sparse signal reconstruction.Signal Processing202016710729210.1016/j.sigpro.2019.107292
    [Google Scholar]
  23. LiuH.L. ChiJ.L. DengQ.Y. PengX. PeiT.R. Multi-Objective Evolutionary Sparse Recovery Approach Based on Adaptive Local Search.J. Compu. Res. Develop.20195671420
    [Google Scholar]
  24. DasS. SuganthanP.N. Differential evolution: A survey of the state-of-the-art.IEEE Trans. Evol. Comput.201015143110.1109/TEVC.2010.2059031
    [Google Scholar]
  25. BabuB.V. AnbarasuB. Multi-objective differential evolution (MODE): An evolutionary for multi-objective optimization problems. (MOOPsProceedings of the Third International Conference on Computational Intelligence, Robotics, and Autonomous Systems (CIRAS-2005)Singapore, 2005
    [Google Scholar]
  26. AliM. SiarryP. PantM. An efficient differential evolution-based algorithm for solving multi-objective optimization problems.Eur. J. Oper. Res.20122172404416
    [Google Scholar]
  27. FanR. WeiL. LiX. ZhangJ. FanZ. Self-adaptive weight vector adjustment strategy for decomposition-based multi-objective differential evolution algorithm.Soft Comput.20202417131791319510.1007/s00500‑020‑04732‑y
    [Google Scholar]
  28. RenW. WangY. HanM. Time series prediction based on echo state network tuned by divided adaptive multi-objective differential evolution algorithm.Soft Comput.20212564489450210.1007/s00500‑020‑05457‑8
    [Google Scholar]
  29. QiaoB. LiuJ. HaoX. A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems.Appl. Soft Comput.202110810741910.1016/j.asoc.2021.107419
    [Google Scholar]
  30. LiangJ.J. ZhuX.P. YueC.T. LiZ.H. QuB.Y. Performance analysis on knee point selection methods for multi-objective sparse optimization problems.IEEE Congress on Evolutionary Computation (CEC)20181810.1109/CEC.2018.8477915
    [Google Scholar]
  31. ZilleH. IshibuchiH. MostaghimS. NojimaY. Mutation operators based on variable grouping for multi-objective largescale optimizationIEEE Symposium Series on Computational Intelligence2016pp. 1-810.1109/SSCI.2016.7850214
    [Google Scholar]
  32. DebK. PratapA. AgarwalS. MeyarivanT. A fast and elitist multi-objective genetic algorithm: NSGA-II.IEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
    [Google Scholar]
  33. LiuC. LiangY. LuanX.Z. LeungK.S. ChanT.M. XuZ.B. ZhangH. The L1/2 regularization method for variable selection in the Cox model.Appl. Soft Comput.20141449850310.1016/j.asoc.2013.09.006
    [Google Scholar]
/content/journals/cjai/10.2174/2666782701666210910170504
Loading
/content/journals/cjai/10.2174/2666782701666210910170504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test