Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7827
  • E-ISSN: 2666-7835

Abstract

Different chaotic APSO-based algorithms are developed to deal with high non-linear optimization problems. Then, considering the difficulty of the problem, an adaptation of these algorithms is presented to enhance the algorithm.

Particle swarm optimization (PSO) is a population-based stochastic optimization technique suitable for global optimization with no need for direct evaluation of gradients. The method mimics the social behavior of flocks of birds and swarms of insects and satisfies the five axioms of swarm intelligence, namely proximity, quality, diverse response, stability, and adaptability. There are some advantages to using the PSO consisting of easy implementation and a smaller number of parameters to be adjusted; however, it is known that the original PSO had difficulties in controlling the balance between exploration and exploitation. In order to improve this character of the PSO, recently, an improved PSO algorithm, called the accelerated PSO (APSO), was proposed, and preliminary studies show that the APSO can perform superiorly.

This paper presents several chaos-enhanced accelerated particle swarm optimization methods for high non-linear optimization problems.

Some modifications to the APSO-based algorithms are performed to enhance their performance. Then, the algorithms are employed to find the optimal parameters of the various types of hysteretic Bouc-Wen models. The problems are solved by the standard PSO, APSO, different CAPSO, and adaptive CAPSO, and the results provide the most useful method. The sub-optimization mechanism is added to these methods to enhance the performance of the algorithm.

Seven different chaotic maps have been investigated to tune the main parameter of the APSO. The main advantage of the CAPSO is that there is a fewer number of parameters compared with other PSO variants. In CAPSO, there is only one parameter to be tuned using chaos theory.

To adapt the new algorithm for susceptible parameter identification algorithm, two series of Bouc-Wen model parameters containing standard and modified Bouc-Wen models are used. Performances are assessed on the basis of the best fitness values and the statistical results of the new approaches from 20 runs with different seeds. Simulation results show that the CAPSO method with Gauss/mouse, Liebovitch, Tent, and Sinusoidal maps performs satisfactorily.

Loading

Article metrics loading...

/content/journals/cjai/10.2174/2666782701666210520124649
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. CharalampakisA.E. KoumousisV.K. Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm.J. Sound Vibrat.200831457158510.1016/j.jsv.2008.01.018
    [Google Scholar]
  2. TalatahariS. KavehA. Mohajer RahbariN. Parameter identification of Bouc-Wen Model for MR fluid dampers using adaptive charged system search optimization.J. Mech. Sci. Technol.20122682523253410.1007/s12206‑012‑0625‑y
    [Google Scholar]
  3. YarM. HammondJ.K. Parameter estimation for hysteretic systems.J. Sound Vibrat.1987117116117210.1016/0022‑460X(87)90442‑1
    [Google Scholar]
  4. KunnathS.K. ManderJ.B. FangL. Parameter identification for degrading and pinched hysteretic structural concrete systems.Eng. Struct.199719322423210.1016/S0141‑0296(96)00058‑2
    [Google Scholar]
  5. SuesR.H. MauS.T. WenY. System identification of degrading hysteretic restoring forces.J. Eng. Mech.1988114583384610.1061/(ASCE)0733‑9399(1988)114:5(833)
    [Google Scholar]
  6. ZhangH. FolienteG.C. YangY. MaF. Parameter identification of inelastic structures under dynamic loads.Earthquake Eng. Struct. Dynam.2002311113113010.1002/eqe.151
    [Google Scholar]
  7. NiY.Q. KoJ.M. WongC.W. Identification of non-linear hysteretic isolators from periodic vibration tests.J. Sound Vibrat.1998217473775610.1006/jsvi.1998.1804
    [Google Scholar]
  8. LinJ-S. ZhangY. Nonlinear structural identification using extended Kalman filter.Comput. Struc.199452475776410.1016/0045‑7949(94)90357‑3
    [Google Scholar]
  9. KwokN.M. HaQ.P. NguyenM.T. LiJ. SamaliB. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA.ISA Trans.200746216717910.1016/j.isatra.2006.08.00517349644
    [Google Scholar]
  10. HaJ-L. KungY-S. FungR-F. HsienS-C. A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm.Sens. Actuators A Phys.200613264365010.1016/j.sna.2006.02.022
    [Google Scholar]
  11. KyprianouA. WordenK. PanetM. Identification of hysteretic systems using the differential evolution algorithm.J. Sound Vibrat.2001248228931410.1006/jsvi.2001.3798
    [Google Scholar]
  12. MaF. NgC.H. AjavakomN. On system identification and response prediction of degrading structures.Struct. Contr. Health Monit.20061334736410.1002/stc.122
    [Google Scholar]
  13. HaJ-L. FungR-F. YangC-S. Hysteresis identification and dynamic responses of the impact drive mechanism.J. Sound Vibrat.200528394395610.1016/j.jsv.2004.05.032
    [Google Scholar]
  14. CharalampakisA.E. DimouC.K. Identification of Bouc–Wen hysteretic systems using particle swarm optimization.Comput. Struc.2010881197120510.1016/j.compstruc.2010.06.009
    [Google Scholar]
  15. TalatahariS. Mohajer RahbariN. KavehA. A New hybrid optimization algorithm for recognition of hysteretic non-linear systems.KSCE J. Civ. Eng.20131751099110810.1007/s12205‑013‑0341‑x
    [Google Scholar]
  16. KennedyJ. EberhartR.C. Particle swarm optimization.Proceedings of IEEEinternational conference on neural networks IVPerth AustraliaPiscataway,NJIEEE Press19951942810.1109/ICNN.1995.488968
    [Google Scholar]
  17. MillonasM.M. Swarms, phase transitions and collective intelligence.Artificial life.Reading, MAAddison Wesley1994Vol. III417445
    [Google Scholar]
  18. ClercM. KennedyJ. The particle swarm – explosion, stability, and convergence in a multidimensional complex space.IEEE Trans. Evol. Comput.200261587310.1109/4235.985692
    [Google Scholar]
  19. KavehA. TalatahariS. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures.Comput. Struc.2009875-626728310.1016/j.compstruc.2009.01.003
    [Google Scholar]
  20. YangX.S. Nature-inspired metaheuristic algorithms.2nd edLuniver Press2010
    [Google Scholar]
  21. TalatahariS. KhaliliE. AlavizadehS.M. Accelerated particle swarm for optimum design of frame atructures.Mathematical Problems in Engineering20132013610.1155/2013/649857
    [Google Scholar]
  22. GandomiA.H. YunG.J. YangX-S. TalatahariS. Chaos-enhanced accelerated particle swarm optimization.Commun. Nonlinear Sci. Numer. Simul.20131832734010.1016/j.cnsns.2012.07.017
    [Google Scholar]
  23. EberhartR.C. ShiY. Comparing inertia weights and constriction factors in particle swarmoptimization. Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512); 2000 July 16-19, La Jolla, CA, USA. IEEE 2020.10.1109/CEC.2000.870279
  24. ZhangZ. DingS. SunY. A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task.Neurocomputing202041018520110.1016/j.neucom.2020.05.075
    [Google Scholar]
  25. LiM-W. GengJ. HongW-C. ZhangL-D. Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion.Nonlinear Dyn.20199742579259410.1007/s11071‑019‑05149‑5
    [Google Scholar]
  26. SpencerB.F.Jr DykeS.J. SainM.K. CarlsonD. Phenomenological model of a magnetorheological damper.J. Eng. Mech.1997123323023810.1061/(ASCE)0733‑9399(1997)123:3(230)
    [Google Scholar]
  27. TalatahariS. Mohajer RabariN. Enriched imperialist competitive algorithm for system identification of magneto-rheological dampers.Mech. Syst. Signal Process.201562-6350651610.1016/j.ymssp.2015.03.020
    [Google Scholar]
/content/journals/cjai/10.2174/2666782701666210520124649
Loading
/content/journals/cjai/10.2174/2666782701666210520124649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test