Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

Neurodevelopmental disorders (NDDs) are types of disorders that are marked by a wide range of genetic and clinical mutability which will affect the development and function of the brain. Mitochondria are increasingly associated with various neurodevelopmental disorders and it is found because of mutation of mitochondrial genes, which leads to mitochondrial dysfunction.

Objective

Understanding the pathways and mechanisms of mitochondrial dysfunction related to neurodevelopmental disorders such as ADHD, Pelizaeus-Merzbacher Disease (PMD), mental retardation, Autism spectrum disorder, Rett's syndrome, and Fragile X syndrome is important. In this review, we discussed the possible factors associated with mitochondria that influence the clinical presentation of NDDs, better understanding of the mechanisms behind these pathways will hopefully be helpful for the diagnosis and treatment approaches.

Conclusion

Mitochondria are simply another subcellular victim of various neurodegenerative pathways, or are they a common denominator on the path to neurodegeneration? A better understanding of functional and molecular mechanistic pathways can lead to the identification of potential targets, thereby opening perspectives for future treatment.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X02666221107151717
2023-01-13
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E071122210702.html?itemId=/content/journals/cis/10.2174/2210299X02666221107151717&mimeType=html&fmt=ahah

References

  1. GilissenC. Hehir-KwaJ.Y. ThungD.T. van de VorstM. van BonB.W.M. WillemsenM.H. KwintM. JanssenI.M. HoischenA. SchenckA. LeachR. KleinR. TearleR. BoT. PfundtR. YntemaH.G. de VriesB.B.A. KleefstraT. BrunnerH.G. VissersL.E.L.M. VeltmanJ.A. Genome sequencing identifies major causes of severe intellectual disability.Nature2014511750934434710.1038/nature1339424896178
    [Google Scholar]
  2. MurrayR.M. LewisS.W. Is schizophrenia a neurodevelopmental disorder?Br. Med. J.198729568110.1136/bmj.295.6600.681
    [Google Scholar]
  3. JonesK. SmithD. Recognition of the fetal alcohol syndrome in early infancy.Lancet19733027836999100110.1016/S0140‑6736(73)91092‑14127281
    [Google Scholar]
  4. Whitmore Kingsley HartHilary Willems, Guy. A neurodevelopmental approach to specific learning disorders. DMCN1999417503503
    [Google Scholar]
  5. Neurodevelopmental aspects of schizophrenia, Medscape Psychiatry and Mental Health2008Available from: https://www.medscape.org/viewarticle/420830
  6. TărlungeanuD.C. NovarinoG. Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Exp. Mol. Med.20185081710.1038/s12276‑018‑0129‑730089840
    [Google Scholar]
  7. CristinoA.S. WilliamsS.M. HawiZ. AnJ.Y. BellgroveM.A. SchwartzC.E. CostaL.F. ClaudianosC. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system.Mol. Psychiatry201419329430110.1038/mp.2013.1623439483
    [Google Scholar]
  8. HormozdiariF. PennO. BorensteinE. EichlerE.E. The discovery of integrated gene networks for autism and related disorders.Genome Res.201525114215410.1101/gr.178855.11425378250
    [Google Scholar]
  9. LiY. JiaX. WuH. XunG. OuJ. ZhangQ. LiH. BaiT. HuZ. ZouX. XiaK. GuoH. Genotype and phenotype correlations for SHANK3 de novo mutations in neurodevelopmental disorders.Am. J. Med. Genet. A.201817612ajmg.a.4066610.1002/ajmg.a.4066630537371
    [Google Scholar]
  10. CasanovaE.L. GerstnerZ. SharpJ.L. CasanovaM.F. FeltusF.A. Widespread genotype-phenotype correlations in intellectual disability.Front. Psychiatry2018953510.3389/fpsyt.2018.0053530420816
    [Google Scholar]
  11. KremerE.J. YuS. PritchardM. NagarajaR. HeitzD. LynchM. BakerE. HylandV.J. LittleR.D. WadaM. TonioloD. Isolation of a human DNA sequence which spans the fragile X.Am. J. Hum. Genet.19914936566611882843
    [Google Scholar]
  12. LubsH.A. StevensonR.E. SchwartzC.E. Fragile X and X-linked intellectual disability: four decades of discovery.Am. J. Hum. Genet.201290457959010.1016/j.ajhg.2012.02.01822482801
    [Google Scholar]
  13. SodenS.E. SaundersC.J. WilligL.K. FarrowE.G. SmithL.D. PetrikinJ.E. LePichonJ.B. MillerN.A. ThiffaultI. DinwiddieD.L. TwistG. NollA. HeeseB.A. ZellmerL. AthertonA.M. AbdelmoityA.T. SafinaN. NypS.S. ZuccarelliB. LarsonI.A. ModrcinA. HerdS. CreedM. YeZ. YuanX. BrodskyR.A. KingsmoreS.F. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders.Sci. Transl. Med.20146265265ra16810.1126/scitranslmed.301007625473036
    [Google Scholar]
  14. Ortiz-GonzálezX.R. Mitochondrial dysfunction: A common denominator in neurodevelopmental disorders?Dev. Neurosci.2021433-422222910.1159/00051787034350863
    [Google Scholar]
  15. PicardM. WallaceD.C. BurelleY. The rise of mitochondria in medicine.Mitochondrion20163010511610.1016/j.mito.2016.07.00327423788
    [Google Scholar]
  16. SpinelliJ.B. HaigisM.C. The multifaceted contributions of mitochondria to cellular metabolism.Nat. Cell Biol.201820774575410.1038/s41556‑018‑0124‑129950572
    [Google Scholar]
  17. VyasS. ZaganjorE. HaigisM.C. Mitochondria and Cancer.Cell2016166355556610.1016/j.cell.2016.07.00227471965
    [Google Scholar]
  18. AlstonC.L. RochaM.C. LaxN.Z. TurnbullD.M. TaylorR.W. The genetics and pathology of mitochondrial disease.J. Pathol.2017241223625010.1002/path.480927659608
    [Google Scholar]
  19. ParikhS. GoldsteinA. KoenigM.K. ScagliaF. EnnsG.M. SanetoR. AnselmI. CohenB.H. FalkM.J. GreeneC. GropmanA.L. HaasR. HiranoM. MorganP. SimsK. TarnopolskyM. Van HoveJ.L.K. WolfeL. DiMauroS. Diagnosis and management of mitochondrial disease: A consensus statement from the mitochondrial medicine society.Genet. Med.201517968970110.1038/gim.2014.17725503498
    [Google Scholar]
  20. GuhaM. AvadhaniN.G. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics.Mitochondrion201313657759110.1016/j.mito.2013.08.00724004957
    [Google Scholar]
  21. BurgenerA.V. BantugG.R. MeyerB.J. HigginsR. GhoshA. BignucoloO. MaE.H. LoeligerJ. UnterstabG. GeiggesM. SteinerR. EnamoradoM. IvanekR. HunzikerD. SchmidtA. Müller-DurovicB. GrählertJ. EppleR. DimeloeS. LötscherJ. SauderU. EbnötherM. BurgerB. HeijnenI. Martínez-CanoS. CantoniN. BrückerR. KahlertC.R. SanchoD. JonesR.G. NavariniA. RecherM. HessC. SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1–Nrf2.Nat. Immunol.201920101311132110.1038/s41590‑019‑0482‑231527833
    [Google Scholar]
  22. TanJ.X. FinkelT. Mitochondria as intracellular signaling platforms in health and disease.J. Cell Biol.20202195e20200217910.1083/jcb.20200217932320464
    [Google Scholar]
  23. O’MalleyJ. KumarR. InigoJ. YadavaN. ChandraD. Mitochondrial stress response and cancer.Trends Cancer20206868870110.1016/j.trecan.2020.04.00932451306
    [Google Scholar]
  24. BushN.R. WakschlagL.S. LeWinnK.Z. Hertz-PicciottoI. NozadiS.S. PieperS. LewisJ. BiezonskiD. BlairC. DeardorffJ. NeiderhiserJ.M. LeveL.D. ElliottA.J. DuarteC.S. Lugo-CandelasC. O’SheaT.M. AvalosL.A. PageG.P. PosnerJ. Family environment, neurodevelopmental risk, and the environmental influences on child health outcomes (ECHO) initiative: Looking back and moving forward.Front. Psychiatry20201154710.3389/fpsyt.2020.0054732636769
    [Google Scholar]
  25. DuarteC.S. MonkC. WeissmanM.M. PosnerJ. Intergenerational psychiatry: a new look at a powerful perspective.World Psychiatry202019217517610.1002/wps.2073332394546
    [Google Scholar]
  26. ScriverC.R. The metabolic & molecular bases of inherited disease.MHMcGraw-Hill2001
    [Google Scholar]
  27. ValentiD. de BariL. De FilippisB. Henrion-CaudeA. VaccaR.A. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome.Neurosci. Biobehav. Rev.201446Pt 220221710.1016/j.neubiorev.2014.01.01224548784
    [Google Scholar]
  28. IannelloR.C. CrackP.J. de HaanJ.B. KolaI. Oxidative stress and neural dysfunction in Down Syndrome.J. Neural Transm. Suppl.19995725726710.1007/978‑3‑7091‑6380‑1_1710666681
    [Google Scholar]
  29. HuangT.T. ManthaS. EpsteinC.J. The role of oxidative Imbalance in the pathogenesis of Down syndrome. Redox; Genome Interactions in Health and Disease FuchsJ. PoddaM. PackerL. DekkerNew York2003409424
    [Google Scholar]
  30. WangX. MichaelisE.K. Selective neuronal vulnerability to oxidative stress in the brain.Front. Aging Neurosci.201021210.3389/fnagi.2010.0001220552050
    [Google Scholar]
  31. BusciglioJ. YanknerB.A. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro.Nature1995378655977677910.1038/378776a08524410
    [Google Scholar]
  32. BusciglioJ. PelsmanA. WongC. PiginoG. YuanM. MoriH. YanknerB.A. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome.Neuron200233567768810.1016/S0896‑6273(02)00604‑911879646
    [Google Scholar]
  33. YounusH. Therapeutic potentials of superoxide dismutase.Int. J. Health Sci.2018123889329896077
    [Google Scholar]
  34. GulesserianT. SeidlR. HardmeierR. CairnsN. LubecG. Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome.J. Investig. Med.2001491414610.2310/6650.2001.3408911217146
    [Google Scholar]
  35. LeeM. HyunD. JennerP. HalliwellB. Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defences: relevance to Down’s Syndrome and familial amyotrophic lateral sclerosis.J. Neurochem.20017695796510.1046/j.1471‑4159.2001.00107.x
    [Google Scholar]
  36. TellerJ.K. RussoC. DebuskL.M. AngeliniG. ZaccheoD. Dagna-BricarelliF. ScartezziniP. BertoliniS. MannD.M.A. TabatonM. GambettiP. Presence of soluble amyloid β–peptide precedes amyloid plaque formation in Down’s syndrome.Nat. Med.199621939510.1038/nm0196‑938564851
    [Google Scholar]
  37. HalliwellB. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?Lancet1994344892472172410.1016/S0140‑6736(94)92211‑X7915779
    [Google Scholar]
  38. RahaS. RobinsonB.H. Mitochondria, oxygen free radicals, disease and ageing.Trends Biochem. Sci.2000251050250810.1016/S0968‑0004(00)01674‑111050436
    [Google Scholar]
  39. GandhiS. AbramovAY. Mehanism of oxidative stress in neurodegeneration.Oxidative Med. Cell. Longev.2012201211
    [Google Scholar]
  40. PuisségurM-P. MazureN.M. BerteroT. PradelliL. GrossoS. Robbe-SermesantK. MaurinT. LebrigandK. CardinaudB. HofmanV. FourreS. MagnoneV. RicciJ.E. PouysségurJ. GounonP. HofmanP. BarbryP. MariB. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity.Cell Death Differ.201118346547810.1038/cdd.2010.11920885442
    [Google Scholar]
  41. ChenZ. LiY. ZhangH. HuangP. LuthraR. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression.Oncogene201029304362436810.1038/onc.2010.19320498629
    [Google Scholar]
  42. EltonT.S. SansomS.E. MartinM.M. Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins.RNA Biol.20107554054710.4161/rna.7.5.1268521081842
    [Google Scholar]
  43. DelabarJ.M. TheophileD. RahmaniZ. ChettouhZ. BlouinJ.L. PrieurM. NoelB. SinetP.M. Molecular mapping of twenty-four features of Down syndrome on chromosome 21.Eur. J. Hum. Genet.19931211412410.1159/0004723988055322
    [Google Scholar]
  44. AntonarakisS.E. LyleR. DermitzakisE.T. ReymondA. DeutschS. Chromosome 21 and Down syndrome: from genomics to pathophysiology.Nat. Rev. Genet.200451072573810.1038/nrg144815510164
    [Google Scholar]
  45. ChangX. LiuY. MentchF. GlessnerJ. QuH. NguyenK. SleimanP.M.A. HakonarsonH. Mitochondrial DNA haplogroups and risk of attention deficit and hyperactivity disorder in European Americans.Transl. Psychiatry202010137010.1038/s41398‑020‑01064‑133139694
    [Google Scholar]
  46. VermaP. SinghA. Nthenge-NgumbauD.N. RajammaU. SinhaS. MukhopadhyayK. MohanakumarK.P. Attention deficit-hyperactivity disorder suffers from mitochondrial dysfunction.BBA Clin.2016615315810.1016/j.bbacli.2016.10.00327896136
    [Google Scholar]
  47. SalimiA. Nikoosiar JahromiM. PourahmadJ. Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: An explanation for perfluorooctanoic acid induced abortion and developmental toxicity.Environ. Toxicol.201934787888510.1002/tox.2276031037826
    [Google Scholar]
  48. ÖğütlüH. Esinİ.S. ErdemH.B. TatarA. DursunO.B. Mitochondrial DNA copy number may be associated with attention deficit/hyperactivity disorder severity in treatment: a one-year follow-up study.Int. J. Psychiatry Clin. Pract.2021251374210.1080/13651501.2021.187915833555215
    [Google Scholar]
  49. JosephN. Zhang-JamesY. PerlA. FaraoneS.V. Oxidative stress and ADHD.J. Atten. Disord.2015191191592410.1177/108705471351035424232168
    [Google Scholar]
  50. PalladinoV.S. ChiocchettiA.G. FrankL. HaslingerD. McNeillR. RadtkeF. TillA. HauptS. BrüstleO. GüntherK. EdenhoferF. HoffmannP. ReifA. Kittel-SchneiderS. Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD.J. Clin. Med.2020912409210.3390/jcm912409233353000
    [Google Scholar]
  51. InoueK. Pelizaeus-merzbacher disease: Molecular and cellular pathologies and associated phenotypes.Adv. Exp. Med. Biol.2019119020121610.1007/978‑981‑32‑9636‑7_1331760646
    [Google Scholar]
  52. HobsonG.M. GarbernJ.Y. Pelizaeus-merzbacher disease, pelizaeus-merzbacher-like disease 1, and related hypomyelinating disorders.Semin, Neurol.2012320106206710.1055/s‑0032‑1306388
    [Google Scholar]
  53. ZhengX. DuanR. LiL. XingS. JiH. YanH. GaoK. WangJ. WangJ. ChenL. Live-cell superresolution pathology reveals different molecular mechanisms of pelizaeus-merzbacher disease.Sci. Bull.202065242061206410.1016/j.scib.2020.08.016
    [Google Scholar]
  54. DuanR. LiL. YanH. HeM. GaoK. XingS. JiH. WangJ. CaoB. LiD. XieH. ZhaoS. WuY. JiangY. XiaoJ. GuQ. LiM. ZhengX. ChenL. WangJ. Novel insight into the potential pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication mutations in patients with Pelizaeus–Merzbacher disease.Neuroscience2021476607110.1016/j.neuroscience.2021.08.02934506833
    [Google Scholar]
  55. Saugier-VeberP. MunnichA. BonneauD. RozetJ.M. Le MerrerM. GilR. Boespflug-TanguyO. X–linked spastic paraplegia and Pelizaeus–Merzbacher disease are allelic disorders at the proteolipid protein locus.Nat. Genet.19946325726210.1038/ng0394‑2578012387
    [Google Scholar]
  56. OsórioM.J. GoldmanS.A. Neurogenetics of Pelizaeus–Merzbacher disease.Handb. Clin. Neurol.201814870172210.1016/B978‑0‑444‑64076‑5.00045‑429478609
    [Google Scholar]
  57. BahrambeigiV. SongX. SperleK. BeckC.R. HijaziH. GrochowskiC.M. GuS. SeemanP. WoodwardK.J. CarvalhoC.M.B. HobsonG.M. LupskiJ.R. Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants.Genome Med.20191118010.1186/s13073‑019‑0676‑031818324
    [Google Scholar]
  58. HudsonL.D. Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene.J. Child Neurol.200318961662410.1177/0883073803018009080114572140
    [Google Scholar]
  59. PenagarikanoO. MulleJ.G. WarrenS.T. The pathophysiology of fragile x syndrome.Annu. Rev. Genomics Hum. Genet.20078110912910.1146/annurev.genom.8.080706.09224917477822
    [Google Scholar]
  60. FischG.S. SimensenR.J. SchroerR.J. Longitudinal changes in cognitive and adaptive behavior scores in children and adolescents with the fragile X mutation or autism.J. Autism Dev. Disord.200232210711410.1023/A:101488850518512058838
    [Google Scholar]
  61. LubsH.A. A marker X chromosome.Am. J. Hum. Genet.19692132312445794013
    [Google Scholar]
  62. SutherlandG.R. Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium.Science1977197430026526610.1126/science.877551877551
    [Google Scholar]
  63. BergerR. BloomfieldC.D. SutherlandG.R. Report of the committee on chromosome rearrangements in neoplasia and on fragile sites.Cytogenet. Genome Res.1985401-449053510.1159/0001321813864602
    [Google Scholar]
  64. WallaceD.C. FanW. Energetics, epigenetics, mitochondrial genetics.Mitochondrion2010101123110.1016/j.mito.2009.09.00619796712
    [Google Scholar]
  65. YaoA. JinS. LiX. LiuZ. MaX. TangJ. ZhangY.Q. Drosophila FMRP regulates microtubule network formation and axonal transport of mitochondria.Hum. Mol. Genet.2011201516310.1093/hmg/ddq43120935173
    [Google Scholar]
  66. WeiszE.D. TowheedA. MonyakR.E. TothM.S. WallaceD.C. JongensT.A. Loss of Drosophila FMRP leads to alterations in energy metabolism and mitochondrial function.Hum. Mol. Genet.20182719510610.1093/hmg/ddx38729106525
    [Google Scholar]
  67. GriffithsK.K. WangA. WangL. TraceyM. KleinerG. QuinziiC.M. SunL. YangG. Perez-ZoghbiJ.F. LicznerskiP. YangM. JonasE.A. LevyR.J. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome.FASEB J.20203467404742610.1096/fj.202000283RR32307754
    [Google Scholar]
  68. LicznerskiP. ParkH.A. RolyanH. ChenR. MnatsakanyanN. MirandaP. GrahamM. WuJ. Cruz-ReyesN. MehtaN. SohailS. SalcedoJ. SongE. EffmanC. EffmanS. BrandaoL. XuG.N. BrakerA. GribkoffV.K. LevyR.J. JonasE.A. ATP synthase c-subunit leak causes aberrant cellular metabolism in fragile X syndrome.Cell2020182511701185.e910.1016/j.cell.2020.07.00832795412
    [Google Scholar]
  69. HaB.G. HeoJ.Y. JangY.J. ParkT.S. ChoiJ.Y. JangW.Y. JeongS.J. Depletion of mitochondrial components from extracellular vesicles secreted from astrocytes in a mouse model of fragile X syndrome.Int. J. Mol. Sci.202122141010.3390/ijms2201041033401721
    [Google Scholar]
  70. CanK. MenzfeldC. RinneL. RehlingP. KüglerS. GolubianiG. DudekJ. MüllerM. Neuronal redox-imbalance in rett syndrome affects mitochondria as well as cytosol and is accompanied by intensified mitochondrial O2 consumption and ROS release.Front. Physiol.20191047910.3389/fphys.2019.0047931114506
    [Google Scholar]
  71. RettA. On a unusual brain atrophy syndrome in hyperammonemia in childhood.Wien. Med. Wochenschr.1966116377237265300597
    [Google Scholar]
  72. HagbergB. AicardiJ. DiasK. RamosO. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases.Ann. Neurol.198314447147910.1002/ana.4101404126638958
    [Google Scholar]
  73. American Psychiatric AssociationAmerican Psychiatric Association. DSM-5 Task force. Diagnostic and statistical manual of mental disorders: DSM-5American Psychiatric AssociationWashington, D.C2013
    [Google Scholar]
  74. ChahrourM. ZoghbiH.Y. The story of Rett syndrome: from clinic to neurobiology.Neuron200756342243710.1016/j.neuron.2007.10.00117988628
    [Google Scholar]
  75. BallasN. LioyD.T. GrunseichC. MandelG. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology.Nat. Neurosci.200912331131710.1038/nn.227519234456
    [Google Scholar]
  76. CronkJ.C. DereckiN.C. JiE. XuY. LampanoA.E. SmirnovI. BakerW. NorrisG.T. MarinI. CoddingtonN. WolfY. TurnerS.D. AderemA. KlibanovA.L. HarrisT.H. JungS. LitvakV. KipnisJ. Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli.Immunity201542467969110.1016/j.immuni.2015.03.01325902482
    [Google Scholar]
  77. MaezawaI. JinL.W. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate.J. Neurosci.201030155346535610.1523/JNEUROSCI.5966‑09.201020392956
    [Google Scholar]
  78. MaezawaI. SwanbergS. HarveyD. LaSalleJ.M. JinL.W. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions.J. Neurosci.200929165051506110.1523/JNEUROSCI.0324‑09.200919386901
    [Google Scholar]
  79. CuddapahV.A. PillaiR.B. ShekarK.V. LaneJ.B. MotilK.J. SkinnerS.A. TarquinioD.C. GlazeD.G. McGwinG. KaufmannW.E. PercyA.K. NeulJ.L. OlsenM.L. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome.J. Med. Genet.201451315215810.1136/jmedgenet‑2013‑10211324399845
    [Google Scholar]
  80. NeulJ.L. LaneJ.B. LeeH.S. GeertsS. BarrishJ.O. AnneseF. BaggettL.M. BarnesK. SkinnerS.A. MotilK.J. GlazeD.G. KaufmannW.E. PercyA.K. Developmental delay in Rett syndrome: data from the natural history study.J. Neurodev. Disord.2014612010.1186/1866‑1955‑6‑2025071871
    [Google Scholar]
  81. SamacoR.C. Mandel-BrehmC. ChaoH.T. WardC.S. Fyffe-MaricichS.L. RenJ. HylandK. ThallerC. MaricichS.M. HumphreysP. GreerJ.J. PercyA. GlazeD.G. ZoghbiH.Y. NeulJ.L. Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities.Proc. Natl. Acad. Sci.200910651219662197110.1073/pnas.091225710620007372
    [Google Scholar]
  82. ValentiD. de BariL. VigliD. LacivitaE. LeopoldoM. LaviolaG. VaccaR.A. De FilippisB. Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome.Neuropharmacology2017121798810.1016/j.neuropharm.2017.04.02428419872
    [Google Scholar]
  83. ZulianiI. UrbinatiC. ValentiD. QuattriniM.C. MediciV. CosentinoL. The antidiabetic drug metformin rescues aberrant mitochondrial activity and restrains oxidative stress in a female mouse model of rett syndrome.J. Clin. Med. Res.2020961669
    [Google Scholar]
  84. GroßerE. HirtU. JancO.A. MenzfeldC. FischerM. KempkesB. VogelgesangS. ManzkeT.U. OpitzL. Salinas-RiesterG. MüllerM. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome.Neurobiol. Dis.201248110211410.1016/j.nbd.2012.06.00722750529
    [Google Scholar]
  85. BebenseeD.F. CanK. MüllerM. Increased mitochondrial mass and cytosolic redox imbalance in hippocampal astrocytes of a mouse model of rett syndrome: subcellular changes revealed by ratiometric imaging of JC-1 and roGFP1 fluorescence.Oxid. Med. Cell. Longev.2017201711510.1155/2017/306401628894505
    [Google Scholar]
  86. JancO.A. MüllerM. The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome.Front. Cell. Neurosci.201485610.3389/fncel.2014.0005624605086
    [Google Scholar]
  87. ShulyakovaN. AndreazzaA.C. MillsL.R. EubanksJ.H. Mitochondrial dysfunction in the pathogenesis of rett syndrome: implications for mitochondrial-targeted therapies.Front. Cell. Neurosci.2017115810.3389/fncel.2017.0005828352216
    [Google Scholar]
  88. MüllerM. Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome.Neurosci. Biobehav. Rev.20199815416310.1016/j.neubiorev.2018.12.00930639673
    [Google Scholar]
  89. ForlaniG. GiardaE. AlaU. Di CuntoF. SalaniM. TuplerR. Kilstrup-NielsenC. LandsbergerN. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis.Hum. Mol. Genet.201019163114312310.1093/hmg/ddq21420504995
    [Google Scholar]
  90. HoshinoA. WangW. WadaS. McDermott-RoeC. EvansC.S. GosisB. MorleyM.P. RathiK.S. LiJ. LiK. YangS. McManusM.J. BowmanC. PotluriP. LevinM. DamrauerS. WallaceD.C. HolzbaurE.L.F. AranyZ. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange.Nature2019575778237537910.1038/s41586‑019‑1667‑431618756
    [Google Scholar]
  91. BertholetA.M. ChouchaniE.T. KazakL. AngelinA. FedorenkoA. LongJ.Z. VidoniS. GarrityR. ChoJ. TeradaN. WallaceD.C. SpiegelmanB.M. KirichokY. H+ transport is an integral function of the mitochondrial ADP/ATP carrier.Nature2019571776651552010.1038/s41586‑019‑1400‑331341297
    [Google Scholar]
  92. CicaloniV. PecorelliA. TintiL. RossiM. BenedusiM. CervellatiC. SpigaO. SantucciA. HayekJ. SalviniL. TintiC. ValacchiG. Proteomic profiling reveals mitochondrial alterations in Rett syndrome.Free Radic. Biol. Med.2020155374810.1016/j.freeradbiomed.2020.05.01432445864
    [Google Scholar]
  93. MardeV.S. AtkareU.A. GawaliS.V. TiwariP.L. BadoleS.P. WankhedeN.L. TaksandeB.G. UpaganlawarA.B. UmekarM.J. KaleM.B. Alzheimer’s disease and sleep disorders: Insights into the possible disease connections and the potential therapeutic targets.Asian J. Psychiatr.20226810296110.1016/j.ajp.2021.10296134890930
    [Google Scholar]
  94. MardeV.S. TiwariP.L. WankhedeN.L. TaksandeB.G. UpaganlawarA.B. UmekarM.J. KaleM.B. Neurodegenerative disorders associated with genes of mitochondria.Fut. J. Pharma. Sci.2021716610.1186/s43094‑021‑00215‑5
    [Google Scholar]
  95. UmareM.D. ChimthanawalaN.M. TrivediR.V. WankhedeN.L. UmekarM.J. KaleM.B. Neuropsychiatric Disorders: A Pharmacovigilance Perspective. Bull.Env. Pharmacol. Life Sci.202110141155
    [Google Scholar]
  96. TiwariP. WankhedeN. BadoleS. UmareM. TaksandeB. UpaganlawarA. UmekarM. KaleM. Mitochondrial dysfunction in ageing: Involvement of oxidative stress and role of melatonin. bull.Env. Pharmacol. Life Sci202110156172
    [Google Scholar]
  97. ColemanM. BlassJ.P. Autism and lactic acidosis.J. Autism Dev. Disord.19851511810.1007/BF018378943980425
    [Google Scholar]
/content/journals/cis/10.2174/2210299X02666221107151717
Loading
/content/journals/cis/10.2174/2210299X02666221107151717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test