Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

The study model of chronic musculoskeletal inflammatory pain, Rubiadin [1,3-dihydroxy-2-methylanthracene-9,10-dione] choice of a drug, aimed to evaluate the anti-hyperalgesic effects.

Objective

To induce gastrocnemius muscle-stimulated hyperalgesia, 3% carrageenan was injected intraperitoneally.

Methods

The response to heat and mechanical stimuli was monitored for 9 days. The effect of 1st dose of rubiadin started monitoring after the 14th day of carrageenan injection and continued monitoring until the 22nd day. After the administration of rubiadin intraperitoneally, antihyperanalgesic activity was observed.

Results

Furthermore, increasing the temperature and mechanical threshold supports histopathological observations with extreme reduction in prostaglandin E2 (PGE2) level.

Conclusion

The objective is to observe anti-inflammatory and anti-hyperalgesic activity of rubiadin in a pain model that is initiated via supraspinal or spinal neuronal mechanisms, predominantly by inhibition of PEG2. Rubiadin provides a wide range of activities in the treatment of chronic muscle pain and chronic muscular inflammation.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X01666220914113809
2023-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E140922208819.html?itemId=/content/journals/cis/10.2174/2210299X01666220914113809&mimeType=html&fmt=ahah

References

  1. BlythF.M. BriggsA.M. SchneiderC.H. HoyD.G. MarchL.M. The global burden of musculoskeletal pain—where to from here?Am. J. Public Health20191091354010.2105/AJPH.2018.30474730495997
    [Google Scholar]
  2. MogilJ.S. CragerS.E. What should we be measuring in behavioral studies of chronic pain in animals?Pain20041121121510.1016/j.pain.2004.09.02815494180
    [Google Scholar]
  3. LomazzoE. BindilaL. RemmersF. LernerR. SchwitterC. HoheiselU. LutzB. Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain.Neuropsychopharmacology201540248850110.1038/npp.2014.19825100669
    [Google Scholar]
  4. Ulrich-LaiY.M. XieW. MeijJ.T.A. DolgasC.M. YuL. HermanJ.P. Limbic and HPA axis function in an animal model of chronic neuropathic pain.Physiol. Behav.2006881-2677610.1016/j.physbeh.2006.03.01216647726
    [Google Scholar]
  5. RehnA.E. Van Den BuuseM. CopolovD. BriscoeT. LambertG. ReesS. An animal model of chronic placental insufficiency: Relevance to neurodevelopmental disorders including schizophrenia.Neuroscience2004129238139110.1016/j.neuroscience.2004.07.04715501595
    [Google Scholar]
  6. NunanR. HardingK.G. MartinP. Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity.Dis. Model. Mech.20147111205121310.1242/dmm.01678225359790
    [Google Scholar]
  7. SamyR.P. PushparajP.N. GopalakrishnakoneP. A compilation of bioactive compounds from Ayurveda.Bioinformation20083310011010.6026/9732063000310019238245
    [Google Scholar]
  8. TylerV.M. PremilaM.S. Antirheumatic agents.Ayurvedic HerbsRoutledge201218721610.4324/9780203049204‑14
    [Google Scholar]
  9. Hasani-RanjbarS. NayebiN. MoradiL. MehriA. LarijaniB. AbdollahiM. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia; a systematic review.Curr. Pharm. Des.201016262935294710.2174/13816121079317646420858178
    [Google Scholar]
  10. XuZ. ChangL. Rubiaceae.Identification and Control of Common Weeds.SingaporeSpringer2017Vol. 3375403
    [Google Scholar]
  11. ShenC.H. LiuC.T. SongX.J. ZengW.Y. LuX.Y. ZhengZ.L. Jie-Pan ZhanR.T. Ping-Yan Evaluation of analgesic and anti-inflammatory activities of Rubia cordifolia L. by spectrum-effect relationships.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20181090738010.1016/j.jchromb.2018.05.02129793098
    [Google Scholar]
  12. MohrE.T.B. dos Santos NascimentoM.V.P. da RosaJ.S. VieiraG.N. KretzerI.F. SandjoL.P. DalmarcoE.M. Evidence that the anti-inflammatory effect of rubiadin-1-methyl ether has an immunomodulatory context.Mediators Inflamm.2019201911210.1155/2019/647416831780865
    [Google Scholar]
  13. TripathiY.B. SharmaM. ManickamM. Rubiadin, a new antioxidant from Rubia cordifolia.Indian J. Biochem. Biophys.19973433023069425750
    [Google Scholar]
  14. RaoG.M.M. RaoC.V. PushpangadanP. ShirwaikarA. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn.J. Ethnopharmacol.2006103348449010.1016/j.jep.2005.08.07316213120
    [Google Scholar]
  15. RussellF.A. FernandesE.S. CouradeJ.P. KeebleJ.E. BrainS.D. Tumour necrosis factor α mediates transient receptor potential vanilloid 1-dependent bilateral thermal hyperalgesia with distinct peripheral roles of interleukin-1β, protein kinase C and cyclooxygenase-2 signalling.Pain2009142326427410.1016/j.pain.2009.01.02119231080
    [Google Scholar]
  16. SalatK. MoniczewskiA. LibrowskiT. Nitrogen, oxygen or sulfur containing heterocyclic compounds as analgesic drugs used as modulators of the nitroxidative stress.Mini Rev. Med. Chem.201313333535222876956
    [Google Scholar]
  17. Guerrero-SolanoJ.A. Jaramillo-MoralesO.A. Velázquez-GonzálezC. De la O-ArciniegaM. Castañeda-OvandoA. Betanzos-CabreraG. BautistaM. Pomegranate as a potential alternative of pain management: A review.Plants20209441910.3390/plants904041932235455
    [Google Scholar]
  18. UrbanM.O. GebhartG.F. Supraspinal contributions to hyperalgesia.Proc. Natl. Acad. Sci. USA199996147687769210.1073/pnas.96.14.768710393881
    [Google Scholar]
  19. MaliS.N. PandeyA. ThoratB.R. LaiC.H. Multiple 3D- and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis.Struct. Chem.202233367969410.1007/s11224‑022‑01879‑2
    [Google Scholar]
  20. NagreD.T. ThoratB.R. MaliS.N. FarooquiM. AgrawalB. Experimental and computational insights into bis-indolylmethane derivatives as potent antimicrobial agents inhibiting 2, 2-dialkylglycine decarboxylase.Curr. Enzym. Inhib.202117320421610.2174/1573408017666210914105731
    [Google Scholar]
  21. MaliS.N. PandeyA. Unveiling naturally occurring green tea polyphenol epigallocatechin-3-gallate (EGCG) targeting mycobacterium DPRE1 for anti-tb drug discovery.Eng. Proc.2021113110.3390/ASEC2021‑11185
    [Google Scholar]
  22. GhoshS. MaliS.N. BhowmickD.N. PratapA.P. Neem oil as natural pesticide: Pseudo ternary diagram and computational study.J. Indian Chem. Soc.202198710008810.1016/j.jics.2021.100088
    [Google Scholar]
  23. DesaleV.J. MaliS.N. ThoratB.R. YamgarR.S. Synthesis, admetSAR predictions, DPPH radical scavenging activity, and potent anti-mycobacterial studies of hydrazones of substituted 4-(anilino methyl) benzohydrazides (Part 2).Curr. Computeraided Drug Des.202117449350310.2174/157340991666620061514104732538732
    [Google Scholar]
  24. KshatriyaR. ShelkeP. MaliS. YashwantraoG. PratapA. SahaS. Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs).ChemistrySelect20216246230623910.1002/slct.202101083
    [Google Scholar]
  25. MaliS.N. PandeyA. Multiple QSAR and molecular modelling for identification of potent human adenovirus inhibitors.J. Indian Chem. Soc.202198610008210.1016/j.jics.2021.100082
    [Google Scholar]
  26. MaliS.N. PandeyA. Molecular modeling studies on 2, 4-disubstituted imidazopyridines as anti-malarials: Atom-based 3D-QSAR, molecular docking, virtual screening, in-silico ADMET and theoretical analysis.J. Comput. Biophys. Chemist202120326728210.1142/S2737416521500125
    [Google Scholar]
  27. ChopadeA.R. SomadeP.M. SomadeP.P. MaliS.N. Identification of anxiolytic potential of niranthin: In-vivo and computational investigations.Nat. Prod. Bioprospect.202111222323310.1007/s13659‑020‑00284‑833175328
    [Google Scholar]
  28. ThoratB.R. MaliS.N. RaniD. YamgarR.S. Synthesis, in silico and in vitro analysis of hydrazones as potential antituberculosis agents.Curr. Comput. Aided Drug Des.202117229430610.2174/15734099MTA0sOTQ3x32141422
    [Google Scholar]
  29. ChopadeA.R. PolR.P. PatilP.A. DharanguttikarV.R. NaikwadeN.S. DiasR.J. MaliS.N. An insight into the anxiolytic effects of lignans (phyllanthin and hypophyllanthin) and tannin (corilagin) rich extracts of Phyllanthus amarus: An in-silico and in-vivo approaches.Comb. Chem. High Throughput Screen.202124341542210.2174/138620732366620060515091532503404
    [Google Scholar]
  30. MaliS.N. ThoratB.R. GuptaD.R. PandeyA. Mini-review of the importance of hydrazides and their derivatives-synthesis and biological activity.Eng. Proceed.202111121
    [Google Scholar]
  31. NagreD.T. MaliS.N. ThoratB.R. ThoratS.A. ChopadeA.R. FarooquiM. AgrawalB. Synthesis, in-silico potential enzymatic target predictions, pharmacokinetics, toxicity, anti-microbial and anti-inflammatory studies of bis-(2-methylindolyl) methane derivatives.Curr. Enzym. Inhib.202117212714310.2174/1573408017666210203203735
    [Google Scholar]
  32. ChopadeA.R. PolR.P. PatilP.A. DharanguttikarV.R. NaikwadeN.S. DiasR.J. MaliS.N. Pharmacological and in-silico investigations of anxiolytic-like effects of Phyllanthus fraternus: A probable involvement of GABA-A receptor.Curr. Enzym. Inhib.2021171424810.2174/1573408016999201026200650
    [Google Scholar]
  33. AnuseD.G. MaliS.N. ThoratB.R. YamgarR.S. ChaudhariH.K. Synthesis, SAR, in silico appraisal and anti-microbial study of substituted 2-aminobenzothiazoles derivatives.Curr. Comput. Aided Drug Des.202116680281310.2174/157340991566619121012564731820704
    [Google Scholar]
  34. JadhavB.S. YamgarR.S. KennyR.S. MaliS.N. ChaudhariH.K. MandewaleM.C. Synthesis, in silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents.Curr. Comput. Aided Drug Des.202016551152210.2174/138620732266619072216210031438831
    [Google Scholar]
  35. DesaleV.J. MaliS.N. ChaudhariH.K. MaliM.C. ThoratB.R. YamgarR.S. Synthesis and anti-mycobacterium study on halo-substituted 2-aryl oxyacetohydrazones.Curr. Comput. Aided Drug Des.202016561862810.2174/157340991566619101812061131648645
    [Google Scholar]
  36. AnuseD.G. ThoratB.R. SawantS. YamgarR.S. ChaudhariH.K. MaliS.N. Synthesis, SAR, molecular docking and anti-microbial study of substituted N-bromoamido-2-aminobenzothiazoles.Curr. Computeraided Drug Des.202016553054010.2174/157340991566619090214364831475902
    [Google Scholar]
  37. ThoratB.R. RaniD. YamgarR.S. MaliS.N. Synthesis, spectroscopic, in-vitro and computational analysis of hydrazones as potential antituberculosis agents: (part-I).Comb. Chem. High Throughput Screen.202023539240110.2174/138620732399920032512585832209038
    [Google Scholar]
  38. MaliS.N. PandeyA. Synthesis of new hydrazones using a biodegradable catalyst, their biological evaluations and molecular modeling studies (Part-II).J. Comput. Biophys. Chem.20222178578210.1142/S2737416522500387
    [Google Scholar]
/content/journals/cis/10.2174/2210299X01666220914113809
Loading
/content/journals/cis/10.2174/2210299X01666220914113809
Loading

Data & Media loading...

Supplements

Supplementary material isavailable on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test