Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1573-4021
  • E-ISSN: 1875-6506

Abstract

Hypertension (HTN) is a leading risk factor for cardiovascular diseases (CVDs) and a major contributor to global morbidity and mortality. Conventional pharmacological treatments have been effective but are often accompanied by side effects and do not address all pathological aspects of the disease. Recent advances in molecular biology have identified non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as key regulators in the pathogenesis of hypertension. These ncRNAs influence various cellular processes, such as gene expression, vascular tone, and inflammation, making them promising targets for therapeutic intervention. This review explores the potential of polyphenols, a diverse group of phytochemicals with potent antioxidant and anti-inflammatory properties, in modulating ncRNA expression and function. We discuss how polyphenols, such as epigallocatechin-3-gallate (EGCG), resveratrol, curcumin, and quercetin impact the regulation of ncRNAs, particularly focusing on their roles in reducing oxidative stress, improving endothelial function, and ameliorating vascular remodeling associated with hypertension. The review synthesizes current evidence from both and studies, highlighting significant findings and the mechanisms by which polyphenols exert their effects on ncRNA-mediated pathways.

Moreover, we address the challenges of translating these findings into clinical applications, including issues related to bioavailability, dosing, and the complex interactions of polyphenols with other cellular components. Future directions for research are suggested, with an emphasis on the need for comprehensive clinical trials to establish the efficacy of polyphenol-based therapies targeting ncRNAs in hypertension management. By targeting ncRNAs, polyphenols offer a novel therapeutic strategy that could enhance the treatment landscape for hypertension and potentially other cardiovascular conditions.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021334958240903072642
2024-09-11
2025-05-08
Loading full text...

Full text loading...

References

  1. RajaB. SaranyaD. PrabhuR. Role of flavonoid troxerutin on blood pressure oxidative stress and regulation of lipid metabolism.Front. Biosci. (Elite Ed.)201911112112910.2741/e85130468643
    [Google Scholar]
  2. RossiG.P. RossittoG. MaifrediniC. BarchittaA. BettellaA. CerrutiL. LatellaR. RuzzaL. SabiniB. VigoloS. SecciaT.M. Modern management of hypertensive emergencies.High Blood Press. Cardiovasc. Prev.2022291334010.1007/s40292‑021‑00487‑134813055
    [Google Scholar]
  3. StampouloglouP.K. SiasosG. BletsaE. OikonomouE. VogiatziG. KalogerasK. KatsianosE. VavuranakisM.A. SouvaliotisN. VavuranakisM. The role of cell-derived microparticles in cardiovascular diseases: Current concepts.Curr. Pharm. Des.202228211745175710.2174/138161282866622042908155535986552
    [Google Scholar]
  4. Di PietroN. BaldassarreM.P.A. CichelliA. PandolfiA. FormosoG. PipinoC. Role of polyphenols and carotenoids in endothelial dysfunction: An overview from classic to innovative biomarkers.Oxid. Med. Cell. Longev.2020202011910.1155/2020/638138033133348
    [Google Scholar]
  5. Shirazi-TehraniE. ChamasemaniA. FirouzabadiN. MousaeiM. ncRNAs and polyphenols: new therapeutic strategies for hypertension.RNA Biol.202219157558710.1080/15476286.2022.206633535438046
    [Google Scholar]
  6. RanaA. SamtiyaM. DhewaT. MishraV. AlukoR.E. Health benefits of polyphenols: A concise review.J. Food Biochem.20224610e1426410.1111/jfbc.1426435694805
    [Google Scholar]
  7. Nattagh-EshtivaniE. GheflatiA. BarghchiH. RahbarinejadP. HachemK. ShalabyM.N. AbdelbassetW.K. RanjbarG. Olegovich BokovD. RahimiP. Gholizadeh NavashenaqJ. PahlavaniN. The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: Molecular aspects.Phytother. Res.20223662352237410.1002/ptr.745435583807
    [Google Scholar]
  8. SufianovaG. GareevI. BeylerliO. WuJ. ShumadalovaA. SufianovA. ChenX. ZhaoS. Modern aspects of the use of natural polyphenols in tumor prevention and therapy.Front. Cell Dev. Biol.202210101143510.3389/fcell.2022.101143536172282
    [Google Scholar]
  9. PuteraH.D. DoewesR.I. ShalabyM.N. Ramírez-CoronelA.A. ClaytonZ.S. AbdelbassetW.K. MurtazaevS.S. JalilA.T. RahimiP. Nattagh-EshtivaniE. MalekahmadiM. PahlavaniN. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms.Nutr. Metab. (Lond.)20232013510.1186/s12986‑023‑00758‑937644566
    [Google Scholar]
  10. XuL. JiaoS. ZhangD. WuS. ZhangH. GaoB. Identification of long noncoding RNAs with machine learning methods: a review.Brief. Funct. Genomics202120317418010.1093/bfgp/elab01733758917
    [Google Scholar]
  11. Pandima DeviK. RajavelT. DagliaM. NabaviS.F. BishayeeA. NabaviS.M. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer.Semin. Cancer Biol.20174614615710.1016/j.semcancer.2017.02.00128185862
    [Google Scholar]
  12. Nascimento-SouzaM.A. de PaivaP.G. Pérez-JiménezJ. do Carmo Castro FranceschiniS. RibeiroA.Q. Estimated dietary intake and major food sources of polyphenols in elderly of Viçosa, Brazil: a population-based study.Eur. J. Nutr.201857261762710.1007/s00394‑016‑1348‑027873069
    [Google Scholar]
  13. DurazzoA. LucariniM. SoutoE.B. CicalaC. CaiazzoE. IzzoA.A. NovellinoE. SantiniA. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.641931359516
    [Google Scholar]
  14. BellaviaD. CaradonnaF. DimarcoE. CostaV. CarinaV. De LucaA. RaimondiL. GentileC. AlessandroR. FiniM. GiavaresiG. Terpenoid treatment in osteoporosis: this is where we have come in research.Trends Endocrinol. Metab.2021321184686110.1016/j.tem.2021.07.01134481733
    [Google Scholar]
  15. WilliamsonG. The role of polyphenols in modern nutrition.Nutr. Bull.201742322623510.1111/nbu.1227828983192
    [Google Scholar]
  16. VetraniC. VitaleM. BozzettoL. Della PepaG. CocozzaS. CostabileG. MangioneA. CiprianoP. AnnuzziG. RivelleseA.A. Association between different dietary polyphenol subclasses and the improvement in cardiometabolic risk factors: evidence from a randomized controlled clinical trial.Acta Diabetol.201855214915310.1007/s00592‑017‑1075‑x29151225
    [Google Scholar]
  17. FuentesE. PalomoI. Mechanisms of endothelial cell protection by hydroxycinnamic acids.Vascul. Pharmacol.201463315516110.1016/j.vph.2014.10.00625459650
    [Google Scholar]
  18. DaiberA. StevenS. EulerG. SchulzR. Vascular and cardiac oxidative stress and inflammation as targets for cardioprotection.Curr. Pharm. Des.202127182112213010.2174/138161282766621012515582133550963
    [Google Scholar]
  19. YamagataK. YamoriY. Inhibition of endothelial dysfunction by dietary flavonoids and preventive effects against cardiovascular disease.J. Cardiovasc. Pharmacol.20207511910.1097/FJC.000000000000075731613843
    [Google Scholar]
  20. GarciaC. BlessoC.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis.Free Radic. Biol. Med.202117215216610.1016/j.freeradbiomed.2021.05.04034087429
    [Google Scholar]
  21. TolbaM.F. OmarH.A. AzabS.S. KhalifaA.E. Abdel-NaimA.B. Abdel-RahmanS.Z. Caffeic acid phenethyl ester: a review of its antioxidant activity, protective effects against ischemia-reperfusion injury and drug adverse reactions.Crit. Rev. Food Sci. Nutr.201656132183219010.1080/10408398.2013.82196725365228
    [Google Scholar]
  22. BartákováA. NovákováM. Secondary metabolites of plants as modulators of endothelium functions.Int. J. Mol. Sci.2021225253310.3390/ijms2205253333802468
    [Google Scholar]
  23. DavinelliS. ScapagniniG. Polyphenols: a promising nutritional approach to prevent or reduce the progression of prehypertension.High Blood Press. Cardiovasc. Prev.201623319720210.1007/s40292‑016‑0149‑027115149
    [Google Scholar]
  24. Ditano-VázquezP. Torres-PeñaJ.D. Galeano-ValleF. Pérez-CaballeroA.I. Demelo-RodríguezP. Lopez-MirandaJ. KatsikiN. Delgado-ListaJ. Alvarez-Sala-WaltherL.A. The fluid aspect of the mediterranean diet in the prevention and management of cardiovascular disease and diabetes: the role of polyphenol content in moderate consumption of wine and olive oil.Nutrients20191111283310.3390/nu1111283331752333
    [Google Scholar]
  25. SongS. XiaoX. GuoD. MoL. BuC. YeW. DenQ. LiuS. YangX. Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1α/VEGF pathway.Phytomedicine20173411512610.1016/j.phymed.2017.08.01028899493
    [Google Scholar]
  26. ZhongL. SimardM.J. HuotJ. Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation.FASEB J.20183284070408410.1096/fj.201701536R29565737
    [Google Scholar]
  27. TungW.C. RizzoB. DabbaghY. SaraswatS. RomanczykM. Codorniu-HernándezE. Rebollido-RiosR. NeedsP.W. KroonP.A. RakotomanomanaN. DanglesO. WeikelK. VinsonJ. Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease.Arch. Biochem. Biophys.202069410858910.1016/j.abb.2020.10858933010229
    [Google Scholar]
  28. AhmadiA. JamialahmadiT. SahebkarA. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation.Pharmacol. Res.202218410641410.1016/j.phrs.2022.10641436028188
    [Google Scholar]
  29. KohilA. Al-AsmakhM. Al-ShafaiM. TerranegraA. The interplay between diet and the epigenome in the pathogenesis of type-1 diabetes.Front. Nutr.2021761211510.3389/fnut.2020.61211533585535
    [Google Scholar]
  30. AmiotM.J. LatgéC. PlumeyL. RaynalS. Intake Estimation of Phytochemicals in a French Well-Balanced Diet.Nutrients20211310362810.3390/nu1310362834684628
    [Google Scholar]
  31. RenJ. AnJ. ChenM. YangH. MaY. Effect of proanthocyanidins on blood pressure: A systematic review and meta-analysis of randomized controlled trials.Pharmacol. Res.202116510532910.1016/j.phrs.2020.10532933465473
    [Google Scholar]
  32. DingF. MaB. Nazary-VannaniA. Kord-VarkanehH. FatahiS. PapageorgiouM. RahmaniJ. PoursoleimanF. Júnior Borges do NascimentoI. LiH. HanD. WangD. The effects of green coffee bean extract supplementation on lipid profile in humans: A systematic review and meta-analysis of randomized controlled trials.Nutr. Metab. Cardiovasc. Dis.202030111010.1016/j.numecd.2019.10.00231748178
    [Google Scholar]
  33. Rodríguez-PérezC. García-VillanovaB. Guerra-HernándezE. VerardoV. Grape seeds proanthocyanidins: an overview of in vivo bioactivity in animal models.Nutrients20191110243510.3390/nu1110243531614852
    [Google Scholar]
  34. BlessoC.N. Dietary anthocyanins and human health.Nutrients2019119210710.3390/nu1109210731491856
    [Google Scholar]
  35. dos Santos BaiãoD. Vieira Teixeira da SilvaD. Margaret Flosi PaschoalinV. A narrative review on dietary strategies to provide nitric oxide as a non-drug cardiovascular disease therapy: beetroot formulations—a smart nutritional intervention.Foods202110485910.3390/foods1004085933920855
    [Google Scholar]
  36. SamodienE. JohnsonR. PheifferC. MabasaL. ErasmusM. LouwJ. ChellanN. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols.Mol. Metab.20192711010.1016/j.molmet.2019.06.02231300352
    [Google Scholar]
  37. ZhangW. ZhangS. DengY. WuS. RenJ. SunG. YangJ. JiangY. XuX. WangT.D. ChenY. LiY. YaoL. LiD. WangL. ShenX. YinX. LiuW. ZhouX. ZhuB. GuoZ. LiuH. ChenX. FengY. TianG. GaoX. KarioK. CaiJ. Trial of intensive blood-pressure control in older patients with hypertension.N. Engl. J. Med.2021385141268127910.1056/NEJMoa211143734491661
    [Google Scholar]
  38. DangwalS. SchimmelK. FoinquinosA. XiaoK. ThumT. Noncoding RNAs in heart failure.Handb. Exp. Pharmacol.201624342344510.1007/164_2016_9927995387
    [Google Scholar]
  39. TadicM. CuspidiC. FrydasA. GrassiG. The role of arterial hypertension in development heart failure with preserved ejection fraction: just a risk factor or something more?Heart Fail. Rev.201823563163910.1007/s10741‑018‑9698‑829619635
    [Google Scholar]
  40. FirouzabadiN. TajikN. BahramaliE. BakhshandehH. EbrahimiS.A. MaadaniM. RasoulianM. MobasheriT. ShafieiM. Association of angiotensin-converting enzyme polymorphism with coronary artery disease in Iranian patients with unipolar depression.Clin. Biochem.20124516-171347135210.1016/j.clinbiochem.2012.05.03322683751
    [Google Scholar]
  41. BahramaliE. FirouzabadiN. RajabiM. ManafiA. ZarghamiM. MousaviS.M. JamshidiJ. Association of renin–angiotensin–aldosterone system gene polymorphisms with left ventricular hypertrophy in patients with heart failure with preserved ejection fraction: A case–control study.Clin. Exp. Hypertens.201739437137610.1080/10641963.2016.126719628513230
    [Google Scholar]
  42. SufianovA. BegliarzadeS. BeilerliA. LiangY. IlyasovaT. BeylerliO. Circular RNAs as biomarkers for lung cancer.Noncoding RNA Res.202381838810.1016/j.ncrna.2022.11.00236407660
    [Google Scholar]
  43. MarquesF.Z. CharcharF.J. microRNAs in Essential Hypertension and Blood Pressure Regulation.Adv. Exp. Med. Biol.201588821523510.1007/978‑3‑319‑22671‑2_1126663185
    [Google Scholar]
  44. KohaguraK. KochiM. ZamamiR. OhyaY. Understanding the Complex Interaction Between Uric Acid and Hypertension.Am. J. Hypertens.202033982282410.1093/ajh/hpaa05032267516
    [Google Scholar]
  45. PollerW. DimmelerS. HeymansS. ZellerT. HaasJ. KarakasM. LeistnerD.M. JakobP. NakagawaS. BlankenbergS. EngelhardtS. ThumT. WeberC. MederB. HajjarR. LandmesserU. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives.Eur. Heart J.201839292704271610.1093/eurheartj/ehx16528430919
    [Google Scholar]
  46. BeilerliA. BegliarzadeS. SufianovA. IlyasovaT. LiangY. BeylerliO. Circulating ciRS-7 as a potential non-invasive biomarker for epithelial ovarian cancer: An investigative study.Noncoding RNA Res.20227319720410.1016/j.ncrna.2022.07.00435991513
    [Google Scholar]
  47. MartiniA.G. DanserA.H.J. Juxtaglomerular Cell Phenotypic Plasticity.High Blood Press. Cardiovasc. Prev.201724323124210.1007/s40292‑017‑0212‑528527017
    [Google Scholar]
  48. MouX. WangJ. WangL. WangS. Correlation Between Single Nucleotide Polymorphisms of the rs664589 Locus in the Long-Chain Noncoding RNA Lung Adenocarcinoma Metastasis-Associated Gene 1, Hypertension, and Its Mechanism.Genet. Test. Mol. Biomarkers202024312013010.1089/gtmb.2019.019332109146
    [Google Scholar]
  49. FangG. QiJ. HuangL. ZhaoX. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension.Biosci. Rep.2019393BSR2018222910.1042/BSR2018222930833363
    [Google Scholar]
  50. GareevI. KudriashovV. SufianovA. BegliarzadeS. IlyasovaT. LiangY. BeylerliO. The role of long non-coding RNA ANRIL in the development of atherosclerosis.Noncoding RNA Res.20227421221610.1016/j.ncrna.2022.09.00236157350
    [Google Scholar]
  51. JiangX. NingQ. Long noncoding RNAs as novel players in the pathogenesis of hypertension.Hypertens. Res.202043759760810.1038/s41440‑020‑0408‑232020084
    [Google Scholar]
  52. ZahidK.R. RazaU. ChenJ. RajU.J. GouD. Pathobiology of pulmonary artery hypertension: role of long non-coding RNAs.Cardiovasc. Res.2020116121937194710.1093/cvr/cvaa05032109276
    [Google Scholar]
  53. YaoQ.P. XieZ.W. WangK.X. ZhangP. HanY. QiY.X. JiangZ.L. Profiles of long noncoding RNAs in hypertensive rats.J. Hypertens.20173561195120310.1097/HJH.000000000000130428319593
    [Google Scholar]
  54. YuC.K. XuT. AssoianR.K. RaderD.J. Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators.Arterioscler. Thromb. Vasc. Biol.201838116417310.1161/ATVBAHA.117.31023729051139
    [Google Scholar]
  55. LiY. YangN. Microarray expression profile analysis of long non-coding RNAs in thoracic aortic aneurysm.Kaohsiung J. Med. Sci.2018341344210.1016/j.kjms.2017.09.00529310814
    [Google Scholar]
  56. TangR. MeiX. WangY.C. CuiX.B. ZhangG. LiW. ChenS.Y. LncRNA GAS5 regulates vascular smooth muscle cell cycle arrest and apoptosis via p53 pathway.Biochim. Biophys. Acta Mol. Basis Dis.2019186592516252510.1016/j.bbadis.2019.05.02231167125
    [Google Scholar]
  57. ZhangX. YangX. LinY. SuoM. GongL. ChenJ. HuiR. Anti-hypertensive effect of Lycium barbarum L. with down-regulated expression of renal endothelial lncRNA sONE in a rat model of salt-sensitive hypertension.Int. J. Clin. Exp. Pathol.2015866981698726261587
    [Google Scholar]
  58. YehC.F. ChangY.C.E. LuC.Y. HsuanC.F. ChangW.T. YangK.C. Expedition to the missing link: Long noncoding RNAs in cardiovascular diseases.J. Biomed. Sci.20202714810.1186/s12929‑020‑00647‑w32241300
    [Google Scholar]
  59. ZhangX. TangX. HamblinM.H. YinK.J. Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia.Int. J. Mol. Sci.2018196172310.3390/ijms1906172329891768
    [Google Scholar]
  60. KunnasT. PiesanenJ. NikkariS.T. Association of a Chromosome Locus 9p21.3 CDKN2B-AS1 Variant rs4977574 with Hypertension: The TAMRISK Study.Genet. Test. Mol. Biomarkers201822532733010.1089/gtmb.2017.024929791233
    [Google Scholar]
  61. SuH. XuX. YanC. ShiY. HuY. DongL. YingS. YingK. ZhangR. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension.Respir. Res.201819125410.1186/s12931‑018‑0956‑z30547791
    [Google Scholar]
  62. FabianM.R. SonenbergN. FilipowiczW. Regulation of mRNA Translation and Stability by microRNAs.Annu. Rev. Biochem.201079135137910.1146/annurev‑biochem‑060308‑10310320533884
    [Google Scholar]
  63. LiuL. WangX. ZhaoW. LiQ. LiJ. ChenH. ShanG. Systematic characterization of small RNAs associated with C. elegans Argonautes.Sci. China Life Sci.20236661303132210.1007/s11427‑022‑2304‑837154856
    [Google Scholar]
  64. BadawyH.K. Abo-ElmattyD.M. MesbahN.M. Differential expression of MicroRNA let-7e and 296-5p in plasma of Egyptian patients with essential hypertension.Heliyon2018411e0096910.1016/j.heliyon.2018.e0096930519661
    [Google Scholar]
  65. ShenK. XuL. ChenD. TangW. HuangY. Human cytomegalovirus-encoded miR-UL112 contributes to HCMV-mediated vascular diseases by inducing vascular endothelial cell dysfunction.Virus Genes201854217218110.1007/s11262‑018‑1532‑929330663
    [Google Scholar]
  66. LiuG.X. LiY.Q. HuangX.R. WeiL.H. ZhangY. FengM. MengX.M. ChenH.Y. ShiY.J. LanH.Y. Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension.Clin. Sci. (Lond.)2014127319520810.1042/CS2013070624511990
    [Google Scholar]
  67. KlimczakD. JazdzewskiK. KuchM. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.Blood Press.20172612810.3109/08037051.2016.116735527177042
    [Google Scholar]
  68. LiuK. YingZ. QiX. ShiY. TangQ. MicroRNA-1 regulates the proliferation of vascular smooth muscle cells by targeting insulin-like growth factor 1.Int. J. Mol. Med.201536381782410.3892/ijmm.2015.227726166810
    [Google Scholar]
  69. ZhangW.F. XiongY.W. ZhuT.T. XiongA.Z. BaoH. ChengX.S. MicroRNA let-7g inhibited hypoxia-induced proliferation of PASMCs via G0/G1 cell cycle arrest by targeting c-myc.Life Sci.201717091510.1016/j.lfs.2016.11.02027889560
    [Google Scholar]
  70. ZhangB. YaoY. SunQ.F. LiuS. JingB. YuanC. LiuX.Y. JiaoT. LiH. WangH.Y. Circulating mircoRNA-21 as a predictor for vascular restenosis after interventional therapy in patients with lower extremity arterial occlusive disease.Biosci. Rep.2017372BSR2016050210.1042/BSR2016050228250135
    [Google Scholar]
  71. ChadhaP.S. ZunkeF. ZhuH.L. DavisA.J. JeppsT.A. OlesenS.P. ColeW.C. MoffattJ.D. GreenwoodI.A. Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired β-adrenoceptor-mediated relaxation of renal arteries in hypertension.Hypertension201259487788410.1161/HYPERTENSIONAHA.111.18742722353613
    [Google Scholar]
  72. LiuY. LiuG. ZhangH. WangJ. MiRNA-199a-5p influences pulmonary artery hypertension via downregulating Smad3.Biochem. Biophys. Res. Commun.2016473485986610.1016/j.bbrc.2016.03.14027038547
    [Google Scholar]
  73. YangF. LiH. DuY. ShiQ. ZhaoL. Downregulation of microRNA-34b is responsible for the elevation of blood pressure in spontaneously hypertensive rats.Mol. Med. Rep.20171531031103610.3892/mmr.2017.612228098882
    [Google Scholar]
  74. HuberL.C. UlrichS. LeuenbergerC. GassmannM. VogelJ. von BlotzheimL.G. SpeichR. KohlerM. BrockM. Featured Article: microRNA-125a in pulmonary hypertension: Regulator of a proliferative phenotype of endothelial cells.Exp. Biol. Med. (Maywood)2015240121580158910.1177/153537021557901825854878
    [Google Scholar]
  75. KangB.Y. ParkK.K. GreenD.E. BijliK.M. SearlesC.D. SutliffR.L. HartC.M. Hypoxia mediates mutual repression between microRNA-27a and PPARγ in the pulmonary vasculature.PLoS One2013811e7950310.1371/journal.pone.007950324244514
    [Google Scholar]
  76. JinY. JinY. ChenB. TippleT.E. NelinL.D. Arginase II is a target of miR-17-5p and regulates miR-17-5p expression in human pulmonary artery smooth muscle cells.Am. J. Physiol. Lung Cell. Mol. Physiol.20143072L197L20410.1152/ajplung.00266.201324879052
    [Google Scholar]
  77. ZhangW. TaoZ. XuF. DiaoQ. LiJ. ZhouL. MiaoY. XieS. WanJ. XuR. An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension.BioMed Res. Int.2021202111810.1155/2021/576502934660794
    [Google Scholar]
  78. BouyahyaA. OmariN.E. EL HachlafiN. JemlyM.E. HakkourM. BalahbibA. El MenyiyN. BakrimS. Naceiri MrabtiH. KhouchlaaA. MahomoodallyM.F. CatauroM. MontesanoD. ZenginG. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer.Molecules20222710328610.3390/molecules2710328635630763
    [Google Scholar]
  79. YangR. DongY. GaoF. LiJ. StevanovicZ.D. LiH. ShiL. Comprehensive Analysis of Secondary Metabolites of Four Medicinal Thyme Species Used in Folk Medicine and Their Antioxidant Activities In Vitro.Molecules2023286258210.3390/molecules2806258236985554
    [Google Scholar]
  80. TurnerA.J. NalivaevaN.N. Angiotensin-converting enzyme 2 (ACE2): Two decades of revelations and re-evaluation.Peptides202215117076610.1016/j.peptides.2022.17076635151768
    [Google Scholar]
  81. ChenB.C. HungM.Y. WangH.F. YehL.J. PandeyS. ChenR.J. ChangR.L. ViswanadhaV.P. LinK.H. HuangC.Y. GABA tea attenuates cardiac apoptosis in spontaneously hypertensive rats (SHR) by enhancing PI3K/Akt-mediated survival pathway and suppressing Bax/Bak dependent apoptotic pathway.Environ. Toxicol.201833778979710.1002/tox.2256529708300
    [Google Scholar]
  82. PatelS.S. AcharyaA. RayR.S. AgrawalR. RaghuwanshiR. JainP. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease.Crit. Rev. Food Sci. Nutr.202060688793910.1080/10408398.2018.155224430632782
    [Google Scholar]
  83. DiaoP. HeH. TangJ. XiongL. LiL. Natural compounds protect the skin from airborne particulate matter by attenuating oxidative stress.Biomed. Pharmacother.202113811153410.1016/j.biopha.2021.11153434311532
    [Google Scholar]
  84. BeylerliO. BeilerliA. ShumadalovaA. WangX. YangM. SunH. TengL. Therapeutic effect of natural polyphenols against glioblastoma.Front. Cell Dev. Biol.202210103680910.3389/fcell.2022.103680936268515
    [Google Scholar]
  85. GawronskiA.R. UhlM. ZhangY. LinY.Y. NiknafsY.S. RamnarineV.R. MalikR. FengF. ChinnaiyanA.M. CollinsC.C. SahinalpS.C. BackofenR. MechRNA: prediction of lncRNA mechanisms from RNA–RNA and RNA–protein interactions.Bioinformatics201834183101311010.1093/bioinformatics/bty20829617966
    [Google Scholar]
  86. JiaP. CaiH. LiuX. ChenJ. MaJ. WangP. LiuY. ZhengJ. XueY. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a.Cancer Lett.2016381235936910.1016/j.canlet.2016.08.00927543358
    [Google Scholar]
  87. ChiangJ.T. BadrealamK.F. ShibuM.A. KuoC.H. HuangC.Y. ChenB.C. LinY.M. ViswanadhaV.P. KuoW.W. HuangC.Y. Eriobotrya japonica ameliorates cardiac hypertrophy in H9c2 cardiomyoblast and in spontaneously hypertensive rats.Environ. Toxicol.201833111113112210.1002/tox.2258929974613
    [Google Scholar]
  88. ChiangJ.T. BadrealamK.F. ShibuM.A. ChengS.F. ShenC.Y. ChangC.F. LinY.M. ViswanadhaV.P. LiaoS.C. HuangC.Y. Anti-Apoptosis and Anti-Fibrosis Effects of Eriobotrya Japonica in Spontaneously Hypertensive Rat Hearts.Int. J. Mol. Sci.2018196163810.3390/ijms1906163829857545
    [Google Scholar]
  89. CioneE. La TorreC. CannataroR. CaroleoM.C. PlastinaP. GallelliL. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation.Molecules20192516310.3390/molecules2501006331878082
    [Google Scholar]
  90. FuQ. ShiH. NiW. ShiM. MengL. ZhangH. RenY. GuoF. WangP. QiaoJ. JiaB. ChenC. Lentivirus-mediated Bos taurus bta-miR-29b overexpression interferes with bovine viral diarrhoea virus replication and viral infection-related autophagy by directly targeting ATG14 and ATG9A in Madin–Darby bovine kidney cells.J. Gen. Virol.2015961859410.1099/vir.0.067140‑025234643
    [Google Scholar]
  91. LeeH.Y. ChenY.J. ChangW.A. LiW.M. KeH.L. WuW.J. KuoP.L. Effects of Epigallocatechin Gallate (EGCG) on Urinary Bladder Urothelial Carcinoma―Next-Generation Sequencing and Bioinformatics Approaches.Medicina (Kaunas)2019551276810.3390/medicina5512076831805718
    [Google Scholar]
  92. LiuJ. WuP. XuZ. ZhangJ. LiuJ. YangZ. Ginkgolide B inhibits hydrogen peroxide-induced apoptosis and attenuates cytotoxicity via activating the PI3K/Akt/mTOR signaling pathway in H9c2 cells.Mol. Med. Rep.202022131031610.3892/mmr.2020.1109932377729
    [Google Scholar]
  93. Tomé-CarneiroJ. GonzálvezM. LarrosaM. Yáñez-GascónM.J. García-AlmagroF.J. Ruiz-RosJ.A. Tomás-BarberánF.A. García-ConesaM.T. EspínJ.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease.Cardiovasc. Drugs Ther.2013271374810.1007/s10557‑012‑6427‑823224687
    [Google Scholar]
  94. TarbitE. SinghI. PeartJ.N. Rose’MeyerR.B. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells.Heart Fail. Rev.201924111510.1007/s10741‑018‑9720‑129987445
    [Google Scholar]
  95. GareevI. BeylerliO. YangG. IzmailovA. ShiH. SunJ. ZhaoB. LiuB. ZhaoS. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms.Neurosurg. Rev.20214442025203910.1007/s10143‑020‑01427‑833094424
    [Google Scholar]
  96. LiY. LiL. QianZ. LinB. ChenJ. LuoY. QuJ. RajJ.U. GouD. Phosphatidylinositol 3-Kinase–DNA Methyltransferase 1–miR-1281–Histone Deacetylase 4 Regulatory Axis Mediates Platelet-Derived Growth Factor–Induced Proliferation and Migration of Pulmonary Artery Smooth Muscle Cells.J. Am. Heart Assoc.201876e00757210.1161/JAHA.117.00757229514810
    [Google Scholar]
  97. ChangY.C. LiuH.W. ChanY.C. HuS.H. LiuM.Y. ChangS.J. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin.Arch. Biochem. Biophys.202069210851110.1016/j.abb.2020.10851132710883
    [Google Scholar]
  98. RajabiS. NajafipourH. Jafarinejad-FarsangiS. JoukarS. BeikA. AskaripourM. JafariE. SafiZ. Quercetin, Perillyl Alcohol, and Berberine Ameliorate Right Ventricular Disorders in Experimental Pulmonary Arterial Hypertension: Effects on miR-204, miR-27a, Fibrotic, Apoptotic, and Inflammatory Factors.J. Cardiovasc. Pharmacol.202177677778610.1097/FJC.000000000000101534016844
    [Google Scholar]
  99. IshisakaA. KawabataK. MikiS. ShibaY. MinekawaS. NishikawaT. MukaiR. TeraoJ. KawaiY. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages.PLoS One2013811e8084310.1371/journal.pone.008084324260490
    [Google Scholar]
  100. SolichJ. KuśmiderM. Faron-GóreckaA. PabianP. Dziedzicka-WasylewskaM. Restraint Stress in Mice Alters Set of 25 miRNAs Which Regulate Stress- and Depression-Related mRNAs.Int. J. Mol. Sci.20202124946910.3390/ijms2124946933322800
    [Google Scholar]
  101. ZaiouM. El AmriH. BakillahA. The clinical potential of adipogenesis and obesity-related microRNAs.Nutr. Metab. Cardiovasc. Dis.20182829111110.1016/j.numecd.2017.10.01529170059
    [Google Scholar]
  102. DostalZ. ModrianskyM. The effect of quercetin on microRNA expression: A critical review.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.201916329510610.5507/bp.2019.03031263290
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021334958240903072642
Loading
/content/journals/chyr/10.2174/0115734021334958240903072642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test