Skip to content
2000
Volume 13, Issue 1
  • ISSN: 1570-162X
  • E-ISSN: 1873-4251

Abstract

The NeuN antibody has been widely used to identify and quantify neurons in normal and disease situations based on binding to a nuclear epitope in most types of neurons. This epitope was recently identified as the RNA-binding, feminizing locus on X-3 (Rbfox3), a member of the larger, mammalian Fox1 family of RNA binding proteins. Fox1 proteins recognize a unique UGCAUG mRNA motif and regulate alternative splicing of precursor mRNA to control post-transcriptional events important in neuronal differentiation and central nervous system development. Recent clinical findings show that Rbfox3/NeuN gene dosage is altered in certain human neurodevelopmental disorders, and redistribution has been noted in HIV+ tissue. We hypothesized that HIV-1 Tat might affect Rbfox3/NeuN expression, and examined this question in vivo using inducible transgenic mice, and in vitro using human mesencephalic-derived neurons. Rbfox3/NeuN expression and localization in HIV+ basal ganglia and hippocampus was also examined. Chronic Tat exposure reduced Rbfox3/NeuN protein levels and increased cytoplasmic localization, similar to the effect of HIV exposure. Cytoplasmic Rbfox3/NeuN signal has occasionally been reported, although the meaning or function of cytoplasmic versus nuclear localization remains speculative. Importantly, Rbfox3/NeuN reductions were more significant in male mice. Although Rbfox3/NeuN-expressing cells were significantly decreased by Tat exposure, stereology showed that Nissl+ neuron numbers remained normal. Thus, loss of Rbfox3/NeuN may relate more to functional change than to neuron loss. The effects of Tat by itself are highly relevant to HIV+ individuals maintained on antiretroviral therapy, since Tat is released from infected cells even when viral replication is inhibited.

Loading

Article metrics loading...

/content/journals/chr/10.2174/1570162X13666150311163733
2015-01-01
2025-05-25
Loading full text...

Full text loading...

/content/journals/chr/10.2174/1570162X13666150311163733
Loading

  • Article Type:
    Research Article
Keyword(s): Human; male; NeuroAIDS; neurodegeneration; stereology; transgenic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test