Skip to content
2000
image of The Role of Electrochemical Sensors in Enhancing HIV Detection

Abstract

Human Immunodeficiency Virus (HIV) remains a significant global health challenge, necessitating rapid, sensitive, and accessible diagnostic tools. We examined recent advancements in electrochemical sensors for HIV gene detection, focusing on various sensing strategies, nanomaterial integration, and novel platform designs. Electrochemical sensors have demonstrated remarkable progress in HIV detection, offering high sensitivity and specificity. DNA/RNA-based sensors, aptamer approaches, and nanostructured platforms have detection limits as low as attomolar concentrations. Innovative signal amplification techniques, such as branched DNA amplification and toehold strand displacement reactions, have further enhanced sensitivity. Multiplexed detection systems enable simultaneous quantification of multiple HIV targets and related biomarkers. Integration of microfluidic technologies has improved sample processing and detection efficiency. Paper-based sensors show promise for low-cost, disposable testing platforms suitable for resource-limited settings. While challenges remain in terms of selectivity in complex biological samples and point-of-care applicability, electrochemical sensors hold great potential for revolutionizing HIV diagnostics. Future developments in recognition elements, artificial intelligence integration, and combined sensing modalities are expected to address current limitations and expand the capabilities of these sensors, ultimately contributing to improved HIV management and epidemic control strategies.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X363311250206045837
2025-02-11
2025-05-11
Loading full text...

Full text loading...

References

  1. Obeagu E. Obeagu G. Human immunodeficiency virus and tuberculosis infection: a review of prevalence of associated factors. Int. J. Adv. Multidiscip. Res. 2023 10 10 56 62 10.22192/ijamr.2023.10.10.005
    [Google Scholar]
  2. Assefa Y. Gilks C.F. Ending the epidemic of HIV/AIDS by 2030: Will there be an endgame to HIV, or an endemic HIV requiring an integrated health systems response in many countries? Int. J. Infect. Dis. 2020 100 273 277 10.1016/j.ijid.2020.09.011 32920236
    [Google Scholar]
  3. Uwishema O. Ayoub G. Badri R. Onyeaka H. Berjaoui C. Karabulut E. Anis H. Sammour C. Mohammed Yagoub F.E.A. Chalhoub E. Neurological disorders in HIV: Hope despite challenges. Immun. Inflamm. Dis. 2022 10 3 e591 10.1002/iid3.591 35146953
    [Google Scholar]
  4. Serrano-Villar S. Gutiérrez F. Miralles C. Berenguer J. Rivero A. Martínez E. Moreno S. Human immunodeficiency virus as a chronic disease: evaluation and management of nonacquired immune deficiency syndrome-defining conditions. Open Forum Infect. Dis. 2016 3 2 ofw097 10.1093/ofid/ofw097 27419169
    [Google Scholar]
  5. Ambrosioni J. Blanco J.L. Reyes-Urueña J.M. Davies M.A. Sued O. Marcos M.A. Martínez E. Bertagnolio S. Alcamí J. Miro J.M. Ambrosioni J. Blanco J.L. de la Mora L. Garcia-Alcaide F. González-Cordón A. Inciarte A. Laguno M. Leal L. Martínez-Chamorro E. Martínez-Rebollar M. Miró J.M. Rojas J.F. Torres B. Mallolas J. Albiac L. Agöero D.L. Bodro M. Cardozo C. Chumbita M. García N. García-Vidal C. Hernández-Meneses M.M. Herrera S. Linares L. Moreno A. Morata L. Martínez-Martínez J.A. Puerta P. Rico V. Soriano A. Martínez M. Mosquera M.M. Marcos M.A. Vila J. Tuset M. Soy D. Vilella A. Almuedo A. Pinazo M.J. Muñoz J. Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV 2021 8 5 e294 e305 10.1016/S2352‑3018(21)00070‑9 33915101
    [Google Scholar]
  6. Thompson M.A. Horberg M.A. Agwu A.L. Colasanti J.A. Jain M.K. Short W.R. Singh T. Aberg J.A. Primary care guidance for persons with human immunodeficiency virus: 2020 update by the HIV medicine association of the infectious diseases society of america. Clin. Infect. Dis. 2021 73 11 e3572 e3605 10.1093/cid/ciaa1391 33225349
    [Google Scholar]
  7. Opeyemi A.A. Obeagu E.I. Regulations of malaria in children with human immunodeficiency virus infection: A review. Medicine (Baltimore) 2023 102 46 e36166 10.1097/MD.0000000000036166 37986340
    [Google Scholar]
  8. Bacon O. Chin J. Cohen S.E. Hessol N.A. Sachdev D. Coffey S. Scheer S. Buchbinder S. Havlir D.V. Hsu L. Decreased time from human immunodeficiency virus diagnosis to care, antiretroviral therapy initiation, and virologic suppression during the citywide RAPID initiative in san francisco. Clin. Infect. Dis. 2021 73 1 e122 e128 10.1093/cid/ciaa620 32449916
    [Google Scholar]
  9. Rahman S.M.A. Vaidya N.K. Zou X. Impact of early treatment programs on HIV epidemics: An immunity-based mathematical model. Math. Biosci. 2016 280 38 49 10.1016/j.mbs.2016.07.009 27474205
    [Google Scholar]
  10. Poon P.K. Wong N. Leung W. Wong B.C. Kwong T. Kwan T. Lui G.C. Tsang O.T. Lee M. Wong K. Lee S. The differential impacts of early detection and accelerated antiretroviral therapy on the epidemiologic trend of sexually acquired HIV infection in Hong Kong. PLoS One 2022 17 9 e0274498 10.1371/journal.pone.0274498 36103496
    [Google Scholar]
  11. Cai Q. Wu D. Li H. Jie G. Zhou H. Versatile photoelectrochemical and electrochemiluminescence biosensor based on 3D CdSe QDs-DNA nanonetwork-SnO2 nanoflower coupled with DNA walker amplification for HIV detection. Biosens. Bioelectron. 2021 191 113455 10.1016/j.bios.2021.113455 34175650
    [Google Scholar]
  12. Wu G. Cheney C. Huang Q. Hazuda D.J. Howell B.J. Zuck P. Improved detection of HIV Gag p24 protein using a combined immunoprecipitation and digital elisa method. Front. Microbiol. 2021 12 636703 10.3389/fmicb.2021.636703 33796087
    [Google Scholar]
  13. Guney M.H. Nagalekshmi K. McCauley S.M. Carbone C. Aydemir O. Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. Proc. Natl. Acad. Sci. USA 2024 121 29 e2404349121 10.1073/pnas.2404349121 38985764
    [Google Scholar]
  14. Bukasov R. Dossym D. Filchakova O. Detection of RNA viruses from influenza and HIV to Ebola and SARS-CoV-2: a review. Anal. Methods 2021 13 1 34 55 10.1039/D0AY01886D 33283798
    [Google Scholar]
  15. Shapiro A.E. Olson A.M. Kidoguchi L. Niu X. Ngcobo Z. Magcaba Z.P. Ngwane M.W. Whitman G.R. Weigel K.M. Wood R.C. Wilson D.P.K. Drain P.K. Cangelosi G.A. Complementary nonsputum diagnostic testing for tuberculosis in people with HIV using oral swab PCR and urine lipoarabinomannan detection. J. Clin. Microbiol. 2022 60 8 e00431-22 10.1128/jcm.00431‑22 35913145
    [Google Scholar]
  16. Shrestha A. Poudel L. Shrestha S. Jha N. Kuikel B.S. Shakya P. Kunwar R.S. Pandey L.R. Kc M.B. Wilson E.C. Deuba K. Multilevel determinants of antiretroviral therapy initiation and retention in the test-and-treat era of Nepal: a qualitative study. BMC Health Serv. Res. 2024 24 1 927 10.1186/s12913‑024‑11311‑6 39138448
    [Google Scholar]
  17. Nikolopoulos G.K. Tsantes A.G. Recent HIV infection: diagnosis and public health implications. Diagnostics (Basel) 2022 12 11 2657 10.3390/diagnostics12112657 36359500
    [Google Scholar]
  18. Khera H.K. Mishra R. Nucleic acid based testing (NABing): A game changer technology for public health. Mol. Biotechnol. 2024 66 9 2168 2200 10.1007/s12033‑023‑00870‑4 37695473
    [Google Scholar]
  19. Pandey S.K. Mohanta G.C. Kumar V. Gupta K. Diagnostic tools for rapid screening and detection of SARS-CoV-2 infection. Vaccines (Basel) 2022 10 8 1200 10.3390/vaccines10081200 36016088
    [Google Scholar]
  20. Mauk M. Song J. Bau H.H. Gross R. Bushman F.D. Collman R.G. Liu C. Miniaturized devices for point of care molecular detection of HIV. Lab Chip 2017 17 3 382 394 10.1039/C6LC01239F 28092381
    [Google Scholar]
  21. Brazaca L.C. dos Santos P.L. de Oliveira P.R. Rocha D.P. Stefano J.S. Kalinke C. Abarza Muñoz R.A. Bonacin J.A. Janegitz B.C. Carrilho E. Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review. Anal. Chim. Acta 2021 1159 338384 10.1016/j.aca.2021.338384 33867035
    [Google Scholar]
  22. Welch E.C. Powell J.M. Clevinger T.B. Fairman A.E. Shukla A. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv. Funct. Mater. 2021 31 44 2104126 10.1002/adfm.202104126
    [Google Scholar]
  23. Yin X. Langer S. Zhang Z. Herbert K.M. Yoh S. König R. Chanda S.K. Sensor sensibility—HIV-1 and the innate immune response. Cells 2020 9 1 254 10.3390/cells9010254 31968566
    [Google Scholar]
  24. Nemčeková K. Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater. Sci. Eng. C 2021 120 111751 10.1016/j.msec.2020.111751 33545892
    [Google Scholar]
  25. Mohamad F. Mat Zaid M. Abdullah J. Zawawi R. Lim H. Sulaiman Y. Abdul Rahman N. Synthesis and characterization of polyaniline/graphene composite nanofiber and its application as an electrochemical DNA biosensor for the detection of mycobacterium tuberculosis. Sensors (Basel) 2017 17 12 2789 10.3390/s17122789 29207463
    [Google Scholar]
  26. Brett C.M.A. Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules 2022 27 5 1497 10.3390/molecules27051497 35268599
    [Google Scholar]
  27. Krüger A. de Jesus Santos A.P. de Sá V. Ulrich H. Wrenger C. Aptamer applications in emerging viral diseases. Pharmaceuticals (Basel) 2021 14 7 622 10.3390/ph14070622 34203242
    [Google Scholar]
  28. Sánchez-Báscones E. Parra F. Lobo-Castañón M.J. Aptamers against viruses: Selection strategies and bioanalytical applications. Trends Analyt. Chem. 2021 143 116349 10.1016/j.trac.2021.116349
    [Google Scholar]
  29. McManus M. Henderson J. Gautam A. Brody R. Weiss E.R. Persaud D. Mick E. Luzuriaga K. Quantitative HIV-1 antibodies correlate with plasma HIV-1 RNA and cell-associated DNA levels in children on ART. Clin. Infect. Dis. 2018 1 753 10.1093/cid/ciy753 30668843
    [Google Scholar]
  30. Li S. Zhang H. Zhu M. Kuang Z. Li X. Xu F. Miao S. Zhang Z. Lou X. Li H. Xia F. Electrochemical biosensors for whole blood analysis: recent progress, challenges, and future perspectives. Chem. Rev. 2023 123 12 7953 8039 10.1021/acs.chemrev.1c00759 37262362
    [Google Scholar]
  31. Ménard-Moyon C. Bianco A. Kalantar-Zadeh K. Two-dimensional material-based biosensors for virus detection. ACS Sens. 2020 5 12 3739 3769 10.1021/acssensors.0c01961 33226779
    [Google Scholar]
  32. Kappen J. Skorupa M. Krukiewicz K. Conducting polymers as versatile tools for the electrochemical detection of cancer biomarkers. Biosensors (Basel) 2022 13 1 31 10.3390/bios13010031 36671866
    [Google Scholar]
  33. Li J. Jin X. Feng M. Huang S. Feng J. Ultrasensitive and highly selective electrochemical biosensor for HIV gene detection based on amino-reduced graphene oxide and β-cyclodextrin modified glassy carbon electrode. Int. J. Electrochem. Sci. 2020 15 3 2727 2738 10.20964/2020.03.62
    [Google Scholar]
  34. Campuzano S. Yáñez-Sedeño P. Pingarrón J. Electrochemical genosensing of circulating biomarkers. Sensors (Basel) 2017 17 4 866 10.3390/s17040866 28420103
    [Google Scholar]
  35. Bigdeli I.K. Yeganeh M. Shoushtari M.T. Zadeh M.K. Electrochemical impedance spectroscopy (EIS) for biosensing. Nanosens. Smart. Manuf. 2021 3 533 554 10.1016/B978‑0‑12‑823358‑0.00025‑3
    [Google Scholar]
  36. Ma E. Liu C. Bai X. Fan P. Li G. Chen K. Li L. Qu Q. An ultrasensitive electrochemical DNA biosensor based on the highly conductive Nd–Sb-co-doped SnO2@Pt nanocomposite for the rapid detection of HIV-DNA. J. Mater. Res. 2022 37 21 3617 3628 10.1557/s43578‑022‑00731‑x
    [Google Scholar]
  37. Saha R. Singh S.N. Samal J. Gupta E. Bhattacharya S. Impedance spectroscopy-based detection of viral RNA from clinical samples. IEEE Sens. Lett. 2023 7 8 1 4 10.1109/LSENS.2023.3297368 37529707
    [Google Scholar]
  38. Moço A.C.R. Neto J.A.S. de Moraes D.D. Guedes P.H. Brussasco J.G. Flauzino J.M.R. Luz L.F.G. Soares M.M.C.N. Madurro J.M. Brito-Madurro A.G. Carbon ink-based electrodes modified with nanocomposite as a platform for electrochemical detection of HIV RNA. Microchem. J. 2021 170 106739 10.1016/j.microc.2021.106739
    [Google Scholar]
  39. Abdulbari H.A. Basheer E.A.M. Electrochemical biosensors: electrode development, materials, design, and fabrication. ChemBioEng Rev. 2017 4 2 92 105 10.1002/cben.201600009
    [Google Scholar]
  40. Zhang J. Zhao W. Zhang H. Wang Z. Fan C. Zang L. Recent achievements in enhancing anaerobic digestion with carbon- based functional materials. Bioresour. Technol. 2018 266 555 567 10.1016/j.biortech.2018.07.076 30037522
    [Google Scholar]
  41. Rizvi A. S. Murtaza G. Xu X. Gao P. Qiu L. Meng Z. Aptamer-linked photonic crystal assay for high-throughput screening of HIV and SARS-CoV-2. Anal. Chem. 2022 89 17 8620 8625 10.1021/acs.analchem.2c03467
    [Google Scholar]
  42. Zou X. Wu J. Gu J. Shen L. Mao L. Application of aptamers in virus detection and antiviral therapy. Front. Microbiol. 2019 10 1462 10.3389/fmicb.2019.01462 31333603
    [Google Scholar]
  43. González V. Martín M. Fernández G. García-Sacristán A. Use of aptamers as diagnostics tools and antiviral agents for human viruses. Pharmaceuticals (Basel) 2016 9 4 78 10.3390/ph9040078 27999271
    [Google Scholar]
  44. Nandi S. Mondal A. Roberts A. Gandhi S. Biosensor platforms for rapid HIV detection. Adv. Clin. Chem. 2020 98 1 34 10.1016/bs.acc.2020.02.001 32564784
    [Google Scholar]
  45. Santhanam M. Algov I. Alfonta L. DNA/RNA electrochemical biosensing devices a future replacement of PCR methods for a fast epidemic containment. Sensors (Basel) 2020 20 16 4648 10.3390/s20164648 32824787
    [Google Scholar]
  46. Pajkossy T. Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. Electrochem. 2017 1 1 53 58 10.1016/j.coelec.2017.01.006
    [Google Scholar]
  47. Laschuk N.O. Easton E.B. Zenkina O.V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances 2021 11 45 27925 27936 10.1039/D1RA03785D 35480766
    [Google Scholar]
  48. Shamsipur M. Samandari L. Farzin L. Besharati-Seidani A. Development of an ultrasensitive electrochemical genosensor for detection of HIV-1 pol gene using a gold nanoparticles coated carbon paste electrode impregnated with lead ion-imprinted polymer nanomaterials as a novel electrochemical probe. Microchem. J. 2021 160 105714 10.1016/j.microc.2020.105714
    [Google Scholar]
  49. Zhang D. Peng Y. Qi H. Gao Q. Zhang C. Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens. Bioelectron. 2010 25 5 1088 1094 10.1016/j.bios.2009.09.032 19850463
    [Google Scholar]
  50. Xu Y. Zheng Z. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction. Biosens. Bioelectron. 2016 79 593 599 10.1016/j.bios.2015.12.057 26761615
    [Google Scholar]
  51. Torrente-Rodríguez R.M. Campuzano S. Montiel V.R.V. Montoya J.J. Pingarrón J.M. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification. Biosens. Bioelectron. 2016 86 516 521 10.1016/j.bios.2016.07.003 27447448
    [Google Scholar]
  52. Qaddare S.H. Salimi A. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens. Bioelectron. 2017 89 Pt 2 773 780 10.1016/j.bios.2016.10.033 27816581
    [Google Scholar]
  53. Ruiz-Valdepeñas Montiel V. Povedano E. Vargas E. Torrente-Rodríguez R.M. Pedrero M. Reviejo A.J. Campuzano S. Pingarrón J.M. Comparison of different strategies for the development of highly sensitive electrochemical nucleic acid biosensors using neither nanomaterials nor nucleic acid amplification. ACS Sens. 2018 3 1 211 221 10.1021/acssensors.7b00869 29282977
    [Google Scholar]
  54. Farzin L. Shamsipur M. Samandari L. Sheibani S. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta 2020 206 120201 10.1016/j.talanta.2019.120201 31514868
    [Google Scholar]
  55. Guo Y. Chen J. Chen G. A label-free electrochemical biosensor for detection of HIV related gene based on interaction between DNA and protein. Sens. Actuators B Chem. 2013 184 113 117 10.1016/j.snb.2013.04.046
    [Google Scholar]
  56. Rashid J.I.A. Yusof N.A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Biosensing Res. 2017 16 19 31 10.1016/j.sbsr.2017.09.001
    [Google Scholar]
  57. Bi S. Yue S. Zhang S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 2017 46 14 4281 4298 10.1039/C7CS00055C 28573275
    [Google Scholar]
  58. Farka Z. Juřík T. Kovář D. Trnková L. Skládal P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev. 2017 117 15 9973 10042 10.1021/acs.chemrev.7b00037 28753280
    [Google Scholar]
  59. Petralia S. Conoci S. PCR technologies for point of care testing: progress and perspectives. ACS Sens. 2017 2 7 876 891 10.1021/acssensors.7b00299 28750519
    [Google Scholar]
  60. Tsang H.F. Chan L.W.C. Tong J.C.H. Wong H.T. Lai C.K.C. Au T.C.C. Chan A.K.C. Ng L.P.W. Cho W.C.S. Wong S.C.C. Implementation and new insights in molecular diagnostics for HIV infection. Expert Rev. Mol. Diagn. 2018 18 5 433 441 10.1080/14737159.2018.1464393 29641941
    [Google Scholar]
  61. Chen Y. Qian C. Liu C. Shen H. Wang Z. Ping J. Wu J. Chen H. Nucleic acid amplification free biosensors for pathogen detection. Biosens. Bioelectron. 2020 153 112049 10.1016/j.bios.2020.112049 32056663
    [Google Scholar]
  62. Li Z. Xu H. Li S. Wu S. Miao X. Zettomole electrochemical HIV DNA detection using 2D DNA-Au nanowire structure, hemin/G-quadruplex and polymerase chain reaction multi-signal synergistic amplification. Anal. Chim. Acta 2021 1159 338428 10.1016/j.aca.2021.338428 33867042
    [Google Scholar]
  63. Babamiri B. Salimi A. Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens. Bioelectron. 2018 117 332 339 10.1016/j.bios.2018.06.003 29933224
    [Google Scholar]
  64. Ziółkowski R. Jarczewska M. Górski Ł. Malinowska E. From small molecules toward whole cells detection: application of electrochemical aptasensors in modern medical diagnostics. Sensors (Basel) 2021 21 3 724 10.3390/s21030724 33494499
    [Google Scholar]
  65. Bala J. Chinnapaiyan S. Dutta R.K. Unwalla H. Aptamers in HIV research diagnosis and therapy. RNA Biol. 2018 15 3 327 337 10.1080/15476286.2017.1414131 29431588
    [Google Scholar]
  66. Chakraborty B. Das S. Gupta A. Xiong Y. T-v V. Kizer M.E. Duan J. Chandrasekaran A.R. Wang X. Aptamers for viral detection and inhibition. ACS Infect. Dis. 2022 8 4 667 692 10.1021/acsinfecdis.1c00546 35220716
    [Google Scholar]
  67. Yoo H. Jo H. Oh S.S. Detection and beyond: challenges and advances in aptamer-based biosensors. Mater. Adv. 2020 1 8 2663 2687 10.1039/D0MA00639D
    [Google Scholar]
  68. Gogola J.L. Martins G. Gevaerd A. Blanes L. Cardoso J. Marchini F.K. Banks C.E. Bergamini M.F. Marcolino-Junior L.H. Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal. Chim. Acta 2021 1166 338548 10.1016/j.aca.2021.338548 34022998
    [Google Scholar]
  69. Curulli A. Functional nanomaterials enhancing electrochemical biosensors as smart tools for detecting infectious viral diseases. Molecules 2023 28 9 3777 10.3390/molecules28093777 37175186
    [Google Scholar]
  70. Silwana B. Matoetoe M.C. Review—nanostructured electrochemical sensors for determination of the first generation of the NNRTIs for HIV-1. ECS Adv. 2022 1 046502 10.1149/2754‑2734/ac9323
    [Google Scholar]
  71. Hassan Pour B. Haghnazari N. Keshavarzi F. Ahmadi E. Zarif B.R. A sensitive sensor based on molecularly imprinted polypyrrole on reduced graphene oxide modified glassy carbon electrode for nevirapine analysis. Anal. Methods 2021 13 40 4767 4777 10.1039/D1AY00500F 34569556
    [Google Scholar]
  72. Foroughi M.M. Jahani S. Aramesh-Boroujeni Z. Rostaminasab Dolatabad M. Shahbazkhani K. Synthesis of 3D cubic of Eu3+/Cu2O with clover-like faces nanostructures and their application as an electrochemical sensor for determination of antiretroviral drug nevirapine. Ceram. Int. 2021 47 14 19727 19736 10.1016/j.ceramint.2021.03.311
    [Google Scholar]
  73. Yeter E.Ç. Şahin S. Caglayan M.O. Üstündağ Z. An electrochemical label-free DNA impedimetric sensor with AuNP-modified glass fiber/carbonaceous electrode for the detection of HIV-1 DNA. Chem. Pap. 2021 75 1 77 87 10.1007/s11696‑020‑01280‑5 32836707
    [Google Scholar]
  74. Valizadeh A. Sohrabi N. Badrzadeh F. Electrochemical detection of HIV-1 by nanomaterials. Artif. Cells Nanomed. Biotechnol. 2017 45 8 1467 1477 10.1080/21691401.2017.1282494 28129690
    [Google Scholar]
  75. Dasgupta A. Rajukumar L.P. Rotella C. Lei Y. Terrones M. Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. Nano Today 2017 12 116 135 10.1016/j.nantod.2016.12.011
    [Google Scholar]
  76. Ma Y. Shen X.L. Zeng Q. Wang H.S. Wang L.S. A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24. Talanta 2017 164 121 127 10.1016/j.talanta.2016.11.043 28107905
    [Google Scholar]
  77. Vermisoglou E. Panáček D. Jayaramulu K. Pykal M. Frébort I. Kolář M. Hajdúch M. Zbořil R. Otyepka M. Human virus detection with graphene-based materials. Biosens. Bioelectron. 2020 166 112436 10.1016/j.bios.2020.112436 32750677
    [Google Scholar]
  78. Sengupta J. Adhikari A. Hussain C.M. Graphene-based analytical lab-on-chip devices for detection of viruses: A review. Carbon Trends 2021 4 100072 10.1016/j.cartre.2021.100072
    [Google Scholar]
  79. Ma K. Li X. Xu B. Tian W. Label-free bioassay with graphene oxide-based fluorescent aptasensors: A review. Anal. Chim. Acta 2021 1188 338859 10.1016/j.aca.2021.338859 34794573
    [Google Scholar]
  80. Gong Q. Han H. Yang H. Zhang M. Sun X. Liang Y. Liu Z. Zhang W. Qiao J. Sensitive electrochemical DNA sensor for the detection of HIV based on a polyaniline/graphene nanocomposite. Journal of Materiomics 2019 5 2 313 319 10.1016/j.jmat.2019.03.004
    [Google Scholar]
  81. Ebrahimi M. Asadi M. Akhavan O. Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders. ACS Biomater. Sci. Eng. 2022 8 1 54 81 10.1021/acsbiomaterials.1c01184 34967216
    [Google Scholar]
  82. Gong Q. Wang Y. Yang H. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens. Bioelectron. 2017 89 Pt 1 565 569 10.1016/j.bios.2016.02.045 26920111
    [Google Scholar]
  83. Islam S. Shukla S. Bajpai V.K. Han Y.K. Huh Y.S. Kumar A. Ghosh A. Gandhi S. A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens. Bioelectron. 2019 126 792 799 10.1016/j.bios.2018.11.041 30557838
    [Google Scholar]
  84. Lu Q. Su T. Shang Z. Jin D. Shu Y. Xu Q. Hu X. Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens. Bioelectron. 2021 184 113229 10.1016/j.bios.2021.113229 33894427
    [Google Scholar]
  85. Mahmoud K.A. Hrapovic S. Luong J.H.T. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano 2008 2 5 1051 1057 10.1021/nn8000774 19206503
    [Google Scholar]
  86. Adam T. Gopinath C.B. Nanosensors S. Recent perspectives on attainments and future promise of downstream applications. Process Biochem. 2022 117 153 173 10.1016/j.procbio.2022.03.024
    [Google Scholar]
  87. Ma M. He L. Shi X. Wang Y. Hai H. Wei X. Ultrasensitive detection of HIV DNA using an electrochemical biosensor with branched DNA amplification. Int. J. Electrochem. Sci. 2023 18 10 100286 10.1016/j.ijoes.2023.100286
    [Google Scholar]
  88. Dong Y. Yao C. Zhu Y. Yang L. Luo D. Yang D. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev. 2020 120 17 9420 9481 10.1021/acs.chemrev.0c00294 32672036
    [Google Scholar]
  89. Hu Y. Li H. Li J. A novel electrochemical biosensor for HIV-related DNA detection based on toehold strand displacement reaction and cruciform DNA crystal. J. Electroanal. Chem. (Lausanne) 2018 822 66 72 10.1016/j.jelechem.2018.05.011
    [Google Scholar]
  90. Yano N. Fedulov A.V. Targeted DNA demethylation: vectors, effectors and perspectives. Biomedicines 2023 11 5 1334 10.3390/biomedicines11051334 37239005
    [Google Scholar]
  91. Shamsipur M. Samandari L. Taherpour A.A. Pashabadi A. Sub-femtomolar detection of HIV-1 gene using DNA immobilized on composite platform reinforced by a conductive polymer sandwiched between two nanostructured layers: A solid signal-amplification strategy. Anal. Chim. Acta 2019 1055 7 16 10.1016/j.aca.2018.12.013 30782372
    [Google Scholar]
  92. Diao W. Tang M. Ding S. Li X. Cheng W. Mo F. Yan X. Ma H. Yan Y. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices. Biosens. Bioelectron. 2018 100 228 234 10.1016/j.bios.2017.08.042 28918231
    [Google Scholar]
  93. Zhao C. Liu X. A portable paper-based microfluidic platform for multiplexed electrochemical detection of human immunodeficiency virus and hepatitis C virus antibodies in serum. Biomicrofluidics 2016 10 2 024119 10.1063/1.4945311 27158287
    [Google Scholar]
  94. White R.J. Kallewaard H.M. Hsieh W. Patterson A.S. Kasehagen J.B. Cash K.J. Uzawa T. Soh H.T. Plaxco K.W. Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies. Anal. Chem. 2012 84 2 1098 1103 10.1021/ac202757c 22145706
    [Google Scholar]
  95. Zhao K.R. Wang L. Liu P.F. Hang X.M. Wang H.Y. Ye S.Y. Liu Z.J. Liang G.X. A signal-switchable electrochemiluminescence biosensor based on the integration of spherical nucleic acid and CRISPR/Cas12a for multiplex detection of HIV/HPV DNAs. Sens. Actuators B Chem. 2021 346 130485 10.1016/j.snb.2021.130485
    [Google Scholar]
  96. Liu D. Zhang Y. Zhu M. Yu Z. Ma X. Song Y. Zhou S. Yang C. Microfluidic-integrated multicolor immunosensor for visual detection of HIV-1 p24 antigen with the naked eye. Anal. Chem. 2020 92 17 11826 11833 10.1021/acs.analchem.0c02091 32867503
    [Google Scholar]
  97. Schmidt-Speicher L.M. Länge K. Microfluidic integration for electrochemical biosensor applications. Curr. Opin. Electrochem. 2021 29 100755 10.1016/j.coelec.2021.100755
    [Google Scholar]
  98. Dector A. Galindo-de-la-Rosa J. Amaya-Cruz D.M. Ortíz-Verdín A. Guerra-Balcázar M. Olivares-Ramírez J.M. Arriaga L.G. Ledesma-García J. Towards autonomous lateral flow assays: Paper-based microfluidic fuel cell inside an HIV-test using a blood sample as fuel. Int. J. Hydrogen Energy 2017 42 46 27979 27986 10.1016/j.ijhydene.2017.07.079
    [Google Scholar]
  99. Benjamin S. de Lima F. Nascimento V. de Andrade G. Oriá R. Advancement in paper-based electrochemical biosensing and emerging diagnostic methods. Biosensors (Basel) 2023 13 7 689 10.3390/bios13070689 37504088
    [Google Scholar]
  100. Noviana E. McCord C.P. Clark K.M. Jang I. Henry C.S. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip 2020 20 1 9 34 10.1039/C9LC00903E 31620764
    [Google Scholar]
  101. Colozza N. Caratelli V. Moscone D. Arduini F. Origami paper-based electrochemical (bio)sensors: state of the art and perspective. Biosensors (Basel) 2021 11 9 328 10.3390/bios11090328 34562920
    [Google Scholar]
  102. Jiang Y. Li S. Zhu P. Zhao J. Xiong X. Wu Y. Zhang X. Li Y. Song T. Xiao W. Wang Z. Han J. Electrochemical DNA biosensors based on the intrinsic topological insulator BiSbTeSe 2 for potential application in HIV determination. ACS Appl. Bio Mater. 2022 5 3 1084 1091 10.1021/acsabm.1c01153 35157417
    [Google Scholar]
  103. Srisomwat C. Yakoh A. Chuaypen N. Tangkijvanich P. Vilaivan T. Chailapakul O. Amplification-free DNA sensor for the one-step detection of the hepatitis B virus using an automated paper-based lateral flow electrochemical device. Anal. Chem. 2021 93 5 2879 2887 10.1021/acs.analchem.0c04283 33326737
    [Google Scholar]
  104. Li X. Qin Z. Fu H. Li T. Peng R. Li Z. Rini J.M. Liu X. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosens. Bioelectron. 2021 177 112672 10.1016/j.bios.2020.112672 33461849
    [Google Scholar]
  105. Gug I.T. Tertis M. Hosu O. Cristea C. Salivary biomarkers detection: Analytical and immunological methods overview. Trends Analyt. Chem. 2019 113 301 316 10.1016/j.trac.2019.02.020
    [Google Scholar]
  106. Nasrollahi F. Haghniaz R. Hosseini V. Davoodi E. Mahmoodi M. Karamikamkar S. Darabi M.A. Zhu Y. Lee J. Diltemiz S.E. Montazerian H. Sangabathuni S. Tavafoghi M. Jucaud V. Sun W. Kim H.J. Ahadian S. Khademhosseini A. Micro and nanoscale technologies for diagnosis of viral infections. Small 2021 17 45 2100692 10.1002/smll.202100692 34310048
    [Google Scholar]
  107. Gray E.R. Turbé V. Lawson V.E. Page R.H. Cook Z.C. Ferns R.B. Nastouli E. Pillay D. Yatsuda H. Athey D. McKendry R.A. Ultra-rapid, sensitive and specific digital diagnosis of HIV with a dual-channel SAW biosensor in a pilot clinical study. NPJ Digit. Med. 2018 1 1 35 10.1038/s41746‑018‑0041‑5 31304317
    [Google Scholar]
  108. Li T. Xing W. Yu F. Xue Z. Yang X. Zou G. Zhu Y. Pathogen identification: ultrasensitive nucleic acid detection via a dynamic dna nanosystem-integrated ratiometric electrochemical sensing strategy. Anal. Chem. 2022 94 50 17725 17732 10.1021/acs.analchem.2c04736 36472242
    [Google Scholar]
  109. Kazer S.W. Aicher T.P. Muema D.M. Carroll S.L. Ordovas-Montanes J. Miao V.N. Tu A.A. Ziegler C.G.K. Nyquist S.K. Wong E.B. Ismail N. Dong M. Moodley A. Berger B. Love J.C. Dong K.L. Leslie A. Ndhlovu Z.M. Ndung’u T. Walker B.D. Shalek A.K. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat. Med. 2020 26 4 511 518 10.1038/s41591‑020‑0799‑2 32251406
    [Google Scholar]
/content/journals/chr/10.2174/011570162X363311250206045837
Loading
/content/journals/chr/10.2174/011570162X363311250206045837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test